
Communications in Mathematical Analysis
Volume 17, Number 2, pp. 108–130 (2014)
ISSN 1938-9787

www.math-res-pub.org/cma

An Algorithm for the Truncated Matrix Hausdorff
Moment Problem

Abdon E. Choque Rivero ∗
Instituto de Fı́sica y Matemáticas,
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Abstract

In this paper we obtain an algorithm for the truncated matrix Hausdorff moment
problem with an odd number of given moments. The coefficients of the correspond-
ing linear fractional matrix transformation can be calculated using the prescribed mo-
ments. No conditions besides solvability are assumed for the moment problem. The
question of the determinateness of the moment problem is answered by (a part of) the
algorithm as well. Several examples are provided.
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1 Introduction

In this paper we consider the truncated matrix Hausdorff moment problem: find a non-
decreasing matrix-valued function M(x) = (mk, j(x))N−1

k, j=0 on [a,b], which is left-continuous
in (a,b), M(a) = 0, and such that∫ b

a
xndM(x) = S n, n = 0,1, ..., ℓ, (1.1)

where {S n}ℓn=0 is a prescribed sequence of Hermitian (N ×N) complex matrices N ∈ N, ℓ ∈
Z+. Here a,b ∈ R: a < b. If this problem has a unique solution, it is said to be determinate.
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In the opposite case, it is said to be indeterminate. A historical review on the results about
this problem can be found in [5].

In this paper we shall analyze the case of an odd number of prescribed moments: ℓ =
2d, with d ∈ N. Our main aim is to derive an algorithm which allows us to explicitly
solve the moment problem. The coefficients of the corresponding linear fractional matrix
transformation can be calculated using the prescribed moments for an arbitrary solvable
moment problem (1.1).

Lately, a Nevanlinna-type formula for solutions of the moment problem (1.1) was ob-
tained in [5]. In order to state this result we need some definitions and constructions
from [5].
Set

Γk = (S i+ j)k
i, j=0 =


S 0 S 1 . . . S k

S 1 S 2 . . . S k+1
...

...
. . .

...

S k S k+1 . . . S 2k

 , k ∈ Z+ : 2k ≤ ℓ; (1.2)

Γ̃k = (−abS i+ j+ (a+b)S i+ j+1−S i+ j+2)k−1
i, j=0, k ∈ N : 2k ≤ ℓ. (1.3)

In the case of an odd number of prescribed moments ℓ = 2d, the result of Choque Rivero,
Dyukarev, Fritzsche and Kirstein states that conditions

Γd ≥ 0, Γ̃d ≥ 0, (1.4)

are necessary and sufficient for the solvability of the matrix moment problem (1.1), see [1,
Theorem 1.3, p. 106].

Consider the matrix moment problem (1.1) with ℓ = 2d, d ∈ N. Suppose that condi-
tions (1.3) are satisfied. Let Γd = (γd;n,m)(d+1)N−1

n,m=0 , γd;n,m ∈ C. Notice that

γd;rN+ j,tN+n = s j,n
r+t, 0 ≤ j,n ≤ N −1; 0 ≤ r, t ≤ d, (1.5)

where
S n = (sk,ℓ

n )N−1
k,ℓ=0, n ∈ Z+

are the given moments. By Theorem 2.1 in [5] a finite-dimensional Hilbert space H and a
sequence {xn}(d+1)N−1

n=0 in H exist such that

(xn, xm) = γd;n,m, n,m = 0,1, ..., (d+1)N −1, (1.6)

and span{xn}(d+1)N−1
n=0 = Lin{xn}(d+1)N−1

n=0 = H. Set Ha = Lin{xn}dN−1
n=0 . Consider the following

operators:

Ax =
dN−1∑
k=0

αk xk+N , x ∈ Ha, x =
dN−1∑
k=0

αk xk, αk ∈ C. (1.7)

B =
2

b−a
A− a+b

b−a
EH , (1.8)

with D(A) = D(B) = Ha. The operators A and B are Hermitian, and B is a contraction in H
(i.e. ∥B∥ ≤ 1), see Proposition 2.1 in [5].
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Let B̂ be an arbitrary self-adjoint extension of B in a Hilbert space Ĥ ⊇ H. Let Rz(B̂)
be the resolvent of B̂ and {Êλ}λ∈R be an orthogonal resolution of unity of B̂. Recall that the
operator-valued function Rz: Rzh = PĤ

HRz(B̂)h, h ∈ H is said to be a generalized resolvent
of B, z ∈ C\R. The function Eλ: Eλh = PĤ

H Êλh, λ ∈ R, h ∈ H is said to be a spectral function
of the symmetric operator B.
In the case when B̂ is a self-adjoint contraction, the corresponding generalized resolvent Rz:
Rzh= PĤ

HRz(B̂)h, h ∈H, is said to be a generalized sc-resolvent of B. The sets of generalized
sc-resolvents and sc-spectral functions are nonempty.

DenoteD=D(B), R=H⊖D. A set of all self-adjoint contractive extensions of B inside
H, we denote by BH(B). There are the ”minimal” element Bµ and the ”maximal” element
BM in this set, such that BH(B) coincides with the operator segment

Bµ ≤ B̃ ≤ BM . (1.9)

In the case Bµ = BM the set BH(B) consists of a unique element. This case is said to be
determinate, whereas the case Bµ , BM is called indeterminate. The case Bµx , BM x,
x ∈ R\{0} is said to be completely indeterminate. The indeterminate case can always be
reduced to the completely indeterminate. If R0 = {x ∈ R : Bµx = BM x}, we may extend B to
a linear operator Be such that

Bex = Bx, x ∈ D; Bex = Bµx, x ∈ R0. (1.10)

The sets of generalized sc-resolvents for B and for Be coincide. Set

C = BM −Bµ, (1.11)

Qµ(z) =
(
C

1
2 Rµz C

1
2 +EH

)∣∣∣∣∣R , z ∈ C\[−1,1], (1.12)

where Rµz = (Bµ − zEH)−1. An operator-valued function k(z) with values in [R] belongs to
the class RR[−1,1] if

1) k(z) is analytic in z ∈ C\[−1,1] and

Imk(z)
Imz

≤ 0, z ∈ C : Imz , 0;

2) For z ∈ R\[−1,1], k(z) is a self-adjoint non-negative contraction.

Set LN = Lin{xk}N−1
k=0 . Define a linear transformation G from CN onto LN by the following

relation:
Ge⃗k = xk, k = 0,1, ...,N −1, (1.13)

where e⃗k = (δ0,k, δ1,k, ..., δN−1,k). The following result from [5, Theorem 2.4] will be our
starting point to construct an algorithm.

Theorem 1.1. Let the matrix moment problem (1.1) with ℓ = 2d, d ∈ N be given and con-
ditions (1.4) hold. Let the operator B be defined by (1.8). The following statements are
true:
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1) If Bµ = BM , then the moment problem (1.1) has a unique solution. This solution is
given by

M(x) = (m j,n(x))N−1
j,n=0, m j,n(x) =

(
Eµ2

b−a x− a+b
b−a

x j, xn

)
H
, 0 ≤ j,n ≤ N −1, (1.14)

where {Eµz } is the left-continuous in [−1,1), right-continuous at the point 1, constant
outside [−1,1], orthogonal resolution of unity of the operator Bµ.

2) If Bµ , BM , define the extended operator Be by (1.10); Re = H ⊖D(Be) and Q′µ(z) =(
C

1
2 Rµz C

1
2 +EH

)∣∣∣∣Re
, z ∈ C\[−1,1]. An arbitrary solution M(·) of the moment problem

can be found by the Stieltjes-Perron inversion formula from the following relation∫ 1

−1

1
t− z

dMT
(
(b−a)t+ (a+b)

2

)
=A(z)−C(z)k(z)(ERe +D(z)k(z))−1B(z), (1.15)

where k(z) ∈ RRe[−1,1], and on the left-hand side one means the matrix of the cor-
responding operator in CN . Here A(z),B(z),C(z),D(z) are analytic operator-valued
functions given by

A(z) =G∗PH
LN

Rµz PH
LN

G : CN → CN , (1.16)

B(z) =C
1
2 Rµz PH

LN
G : CN →Re, (1.17)

C(z) =G∗PH
LN

Rµz C
1
2 : Re→ CN , (1.18)

D(z) =Q′µ(z)−ERe : Re→Re. (1.19)

Moreover, the correspondence between all solutions of the moment problem and
k(z) ∈ RRe[−1,1] is one-to-one.

Our algorithm allows the explicit construction of the matrix functionsA(z), B(z), C(z),
D(z). The algorithm will be illustrated by several examples.

Formulas for the extremal extensions Bµ and BM were proposed by Krein in [2]. Some
other formulas were obtained by Shtraus, see [3], [4] and references therein. We shall
present other formulas, under some additional assumptions, which are convenient for a
calculation in our algorithm.
Notations. As usual, we denote by R,C,N,Z,Z+ the sets of real numbers, complex num-
bers, positive integers, integers and non-negative integers, respectively; Re =C\R. By Cn×m

we denote the set of all complex (n×m) matrices, n,m ∈ N. For a complex (finite or semi-
infinite) matrix M, by MT we mean its transposed matrix, and by M∗ we denote the complex
conjugate matrix. By Iδ we denote the identity matrix of order (δ×δ), δ ∈ N.

For a separable Hilbert space H we denote by (·, ·)H and ∥ · ∥H the scalar product and the
norm in H, respectively. The indices may be omitted in obvious cases.
For a linear operator A in H we denote by D(A) its domain, by R(A) its range, and by A∗

we denote its adjoint if it exists. If A is bounded, then ∥A∥ stands for its operator norm. By
Ker A we mean the set {x ∈ H : Ax = 0} (the kernel of A). For a set of elements {xn}n∈B in
H, we denote by Lin{xn}n∈B and span{xn}n∈B the linear span and the closed linear span (in
the norm of H), respectively. Here B is an arbitrary set of indices. For a set M ⊆ H we
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denote by M the closure of M in the norm of H. By EH we denote the identity operator in
H, i.e. EH x = x, x ∈ H. If H1 is a subspace of H, by PH1 = PH

H1
we denote the operator of

the orthogonal projection on H1 in H. A set of all linear bounded operators which map H
into H is denoted by [H]. All operators in this paper are assumed to be linear.

2 Formulas for extremal extensions of a symmetric contraction

We shall use the following result, which in the case of matrices is known as a lemma on the
block matrix.

Theorem 2.1. Let T be a bounded self-adjoint operator in a Hilbert space H, D(T ) = H.
Suppose that

H = H1⊕H2, (2.1)

where H1, H2 are some subspaces of H, and T has the following block representation:

T =
(

A B
B∗ C

)
, (2.2)

where A = PH
H1

T PH
H1

: H1 7→ H1, B = PH
H1

T PH
H2

: H2 7→ H1, C = PH
H2

T PH
H2

: H2 7→ H2.
Assume that R(A) is closed. The operator T is non-negative (T ≥ 0) if and only if the
following conditions hold:

1) A ≥ 0;

2) There exists a bounded operator X, which maps H2 into H1, such that B = AX;

3) For an operator X, which satisfies 2), we have the inequality

C−X∗AX ≥ 0. (2.3)

If conditions 1)-3) are satisfied, then the operator X∗AX does not depend on the choice
of an operator X, which satisfies 2).

Proof. The proof follows the lines of the proof for the matrix case, see, e.g., [6], with
slight necessary modifications.

Necessity. Let h =
(
λh1
µh2

)
, λ,µ ∈ C, h1 ∈ H1, h2 ∈ H2. Then

(Th,h)H = |λ|2(Ah1,h1)H1 +µλ(Bh2,h1)H1 +λµ(B
∗h1,h2)H2 + |µ|2(Ch2,h2)H2 . (2.4)

Using conditions for the quadratic form with respect to λ and µ to be non-negative, we get

(Ah1,h1)H1 ≥ 0, (Ch2,h2)H2 ≥ 0, h1 ∈ H1, h2 ∈ H2; (2.5)

|(Bh2,h1)H1 |2 ≤ (Ah1,h1)H1(Ch2,h2)H2 , h1 ∈ H1, h2 ∈ H2. (2.6)

In particular, condition 1) of the theorem holds. By (2.6), if h1 ∈Ker A then (Bh2,h1)H1 = 0,
∀h2 ∈ H2; therefore BH2 ⊥ Ker A. Then

BH2 ⊆ R(A) = R(A). (2.7)
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Set Ã = A|R(A). The operator Ã is a bounded self-adjoint invertible operator on the Hilbert
space R(A). Moreover, R(Ã) = R(A). Therefore the inverse operator Ã−1 is bounded. Ac-
cording to (2.7), we may introduce the following operator:

X := Ã−1B, (2.8)

which is bounded and maps H2 into H1. Since AX = AÃ−1B = B, then condition 2) holds
for X.

Consider inequality (2.6) with h1 = Xh2 = Ã−1Bh2. Then Bh2 = Ãh1 = Ah1, and

|(Ah1,h1)H1 |2 ≤ (Ah1,h1)H1(Ch2,h2)H2 , h2 ∈ H2, h1 = Xh2.

If (Ah1,h1)H1 , 0, we get

(Ah1,h1)H1 = (X∗AXh2,h2)H1 ≤ (Ch2,h2)H2 , h2 ∈ H2, h1 = Xh2. (2.9)

In the case (Ah1,h1)H1 = 0, by (2.5) we conclude that relation (2.9) holds as well. Thus,
condition 3) is proved.
Sufficiency. By conditions 1),3) it follows that relation (2.5) holds. Inequality (2.6) must be
checked to verify that the quadratic form in (2.4) is non-negative and complete the proof of
the sufficiency. For arbitrary h1 ∈ H1, h2 ∈ H2, we may write

|(h1,Bh2)H1 |2 =|(h1,AXh2)H1 |2 = |(Ah1,Xh2)H1 |2

≤(Ah1,h1)H1(AXh2,Xh2)H1 ≤ (Ah1,h1)H1(Ch2,h2)H1 .

Here we used the property |(Ah,g)|2 ≤ (Ah,h)(Ag,g), h,g ∈ H1.
Let us check the last statement of the theorem. Let X1,X2 be bounded operators, which

map H2 into H1, and satisfy the following relation:

B = AX1, B = AX2.

Then B∗ = X∗1A = X∗2A, and we get

X∗1AX1 = X∗1B = X∗1AX2 = X∗2AX2.

�

Theorem 2.2. Let B be a symmetric contraction in a Hilbert space H, defined on a subspace
D, and R := H ⊖D. Suppose that sets R

(
PH
DB±ED

)
are closed. The extremal self-adjoint

contractive extensions Bµ,BM have the following block representations with respect to the
decomposition H =D⊕R:

Bµ =
(

B1 B∗2
B2 Dµ

)
, BM =

(
B1 B∗2
B2 DM

)
, (2.10)

where B1 = PH
DB : D 7→D, B2 = PH

RB : D 7→ R,

Dµ = X∗B1X+X∗X−ER, DM = X̃∗B1X̃− X̃∗X̃+ER, (2.11)

Here, the operators X, X̃ are arbitrary bounded operators which map R intoD, such that

B∗2 = B1X+X, B∗2 = B1X̃− X̃. (2.12)

The operators Dµ,DM do not depend on the choice of bounded operators X, X̃ which map
R intoD and satisfy (2.12).
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Proof. Consider an arbitrary self-adjoint contraction B̃⊇ B in the Hilbert space H. The
block representation of B̃ with respect to the decomposition H =D⊕R has the following
form:

B̃ =
(

B1 B∗2
B2 D

)
, (2.13)

where D is a bounded self-adjoint operator in R, D(D) = R. We shall use the following
elementary lemma.

Lemma 2.1. Let A be a bounded self-adjoint operator in a Hilbert space H, D(A) = H. The
operator A is a contraction (∥A∥ ≤ 1) if and only if the following relation holds:

−EH ≤ A ≤ EH . (2.14)

Proof of the lemma. Necessity. Let A =
∫ 1
−1λdEλ, be the spectral representation of A,

where {Eλ} is an orthogonal resolution of the identity of A. Then

((EH −A)h,h)H =

∫ 1

−1
(1−λ)d(Eλh,h)H ≥ 0, h ∈ H,

and the second inequality in (2.14) is proved. The first inequality in (2.14) can be similarly
derived.
Sufficiency. We have

(Ax, x)H ≤ (x, x)H , (Ax, x)H ≥ −(x, x)H , ∀x ∈ H,

and therefore
|(Ax, x)H | ≤ (x, x)H ,∀x ∈ H.

Then ∥A∥ = supx∈H: ∥x∥H=1 |(Ax, x)| ≤ 1. � (End of the proof of the lemma).
By applying Lemma 2.1 to the contraction B̃ we obtain that the following relation holds:(

B1+ED B∗2
B2 D+ER

)
≥ 0,

(
ED−B1 −B∗2
−B2 ER−D

)
≥ 0. (2.15)

By employing Theorem 2.1 we obtain that the operator D satisfies the following relation:

X∗B1X+X∗X−ER ≤ D, D ≤ X̃∗B1X̃− X̃∗X̃+ER, (2.16)

where operators X, X̃ are arbitrary bounded operators which map R into D, and satisfy
relation (2.12).

On the other hand, for an arbitrary bounded self-adjoint operator D in R, D(D) = R,
which satisfies (2.16), there corresponds a self-adjoint operator of the form (2.13). By The-
orem 2.1 relation (2.15) holds, and therefore this operator is a contraction. Consequently,
there exists a one-to-one correspondence between contractive self-adjoint extensions of B
in H and the operator segment

Dµ ≤ D ≤ DM, (2.17)

where Dµ and DM are defined by (2.11).
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Let us check the first equality in (2.10). Denote the operator in the right-hand side of this
equality by Bµ,0. Since the extremal extension Bµ is a contractive self-adjoint extension of
B, it has a representation of the form (2.13) with some D = D1 from the segment (2.17).
Therefore

D1 ≥ Dµ.

On the other hand, since Bµ is the extremal extension, we have

0 ≤ Bµ,0−Bµ =
(

0 0
0 Dµ−D1

)
,

and therefore D1 ≤ Dµ. Thus, we get D1 = Dµ, and the first equality in (2.10) is proved. The
second equality in (2.10) can be derived in a similar manner. �

3 An algorithm

Consider a matrix moment problem (1.1) with ℓ = 2d, d ∈ N, and some set of prescribed
moments {S n}2d

n=0. Suppose that conditions of solvability (1.4) are satisfied for the mo-
ment problem. Repeating our constructions in the Introduction, below (1.4), we come to
the formula (1.15) which describes all solutions of the moment problem. Our aim here
is to calculate the matrices of operator-valued functions A(z), B(z), C(z), D(z), using the
prescribed moments.

Observe that
∥xn∥2H = (xn, xn)H = γd;n,n, 0 ≤ n ≤ N −1.

Taking into account relation (1.5) we conclude that the norms of elements xn can be explic-
itly calculated. If

∥xn∥H = 0, ∀n : 0 ≤ n ≤ N −1, (3.1)

then S 0 = 0, and the moment problem (1.1) has a unique solution M(x) = 0, a ≤ x ≤ b. Thus,
in the case of (3.1) we stop the algorithm. Notice that by Theorem 2.5 in [5], Bµ = BM .

Suppose that there exists a non-zero element in a sequence x0, x1, . . . , xN−1. Let us apply
the Gram-Schmidt orthogonalization procedure to a sequence

x0, x1, . . . , xdN+N−1, (3.2)

with the removal of linearly dependent elements. We shall obtain an orthonormal basis A =
{ f j}R−1

j=0 in H, where 1 ≤ R ≤ dN +N. Elements x0, x1, . . . , xN−1 during the above procedure

will form a subset A0 = { f j}ρ−1
j=0 , where 1 ≤ ρ ≤ R. Notice that A0 is an orthonormal basis

in LN . Moreover, elements x0, x1, . . . , xdN−1 during the above procedure will form a subset
A1 = { f j}ω−1

j=0 , where 1 ≤ ω ≤ R. Observe that A1 is an orthonormal basis in D(B) = Ha.
We emphasize that elements f j are linear combinations of elements xk with coefficients
expressed in terms of moments using relations (1.6) and (1.5).

Denote by G the matrix of the operator G with respect to the bases A2 := {⃗ek}N−1
k=0 and

A0:
G = ((Gek, f j)H)0≤ j≤ρ−1, 0≤k≤N−1 = ((xk, f j)H)0≤ j≤ρ−1, 0≤k≤N−1.

Notice that the matrix G can be explicitly calculated by the given moments.
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Case (A): ω = R. In this case D(B) = H, and therefore Bµ = BM = B. By Theorem 1.1 we
conclude that the moment problem is determinate. By Remark 2.2 in [5] formula (1.15)
holds in this case with k(z) = 0. Thus, it remains to calculate A(z) using (1.16). LetM1,z
be the matrix of the operator Bµ− zEH = B− zEH , z ∈ Re with respect to the basis A:

M1,z = (((B− zEH) fk, f j)H)R−1
j,k=0.

Since fk are linear combinations of elements xk with known coefficients, then all elements
((B−zEH) fk, f j)H are expressed in terms of known γd;n,m. Then the inverse matrixM−1

1,z will
be the matrix of the operator (Bµ− zEH)−1 = Rµz , z ∈ Re with respect to the basis A. Denote
the matrix standing in the first ρ rows and the first ρ columns ofM−1

1,z byM2,z. The matrix
M2,z is the matrix of the operator PH

LN
Rµz PH

LN
, z ∈ Re with respect to the basis A0. Finally,

the matrix of A(z), z ∈ Re with respect to the basis A2 is equal to G∗M2,zG. The unique
solution is given by formula (1.15), and we stop the algorithm.
Case (B): ω < R. In this case D(B) , H. Let us calculate the extremal extensions Bµ and
BM. By Theorem 2.2 these extensions have the form (2.10). Set A3 := { f j}R−1

j=ω. Notice that
A3 is an orthonormal basis in R = H ⊖D. Denote by B1, B2 the matrices of the operators
B1, B2 with respect to the bases A1, and A1, A3, respectively. Observe that the matrices B1,
B2 can be calculated explicitly. Denote by X, X̃ the matrices of the operators X, X̃ with
respect to the bases A3 and A1. By (2.12) we obtain that the following relation holds:

B∗2 = B1X+X, B∗2 = B1X̃− X̃. (3.3)

Relations (3.3) are equivalent to a linear system of simultaneous equations with respect to
the unknown elements of the matrices X and X̃. We can choose an arbitrary solutions of
these systems.
LetDµ,DM be the matrices of the operators Dµ, DM with respect to the basis A3. By (2.11)
we conclude that

Dµ = X∗B1X+X∗X− IR−ω, DM = X̃∗B1X̃− X̃∗X̃+ IR−ω. (3.4)

Denote by Bµ, BM the matrices of the operators Bµ, BM with respect to the basis A.
By (2.10) we obtain that

Bµ =
(
B1 B∗2
B2 Dµ

)
, BM =

(
B1 B∗2
B2 DM

)
. (3.5)

If Bµ = BM , then by Theorem 1.1 the moment problem is determinate. In this case we denote
byM3,z the matrix of the operator Bµ− zEH , z ∈ Re with respect to the basis A. By (3.5) we
see that

M3,z = Bµ− zIR.

The matrix of the operator (Bµ − zEH)−1 = Rµz , z ∈ Re, with respect to the basis A is equal
to (Bµ − zIR)−1. Denote the matrix standing in the first ρ rows and the first ρ columns of
(Bµ − zIR)−1 by M4,z. The matrix M4,z is the matrix of the operator PH

LN
Rµz PH

LN
, z ∈ Re,

with respect to the basis A0. Finally, the matrix of A(z), z ∈ Re with respect to the basis
A2 is equal to G∗M4,zG. The unique solution, according to Remark 2.2 in [5], is given by
formula (1.15), and we stop the algorithm.
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We assume that Bµ , BM .
Case (i): det(DM −Dµ) , 0. Here we have the completely indeterminate case and Be = B,
Re = R. The matrix of A(z), z ∈ Re, with respect to the basis A2 is constructed in the same
way as (3.5).
Denote the matrix standing in the first ρ rows (the first ρ columns) of (Bµ− zIR)−1 byM5,z
(respectively byM6,z), z ∈ Re. The matrixM5,z (M6,z) is the matrix of the operator PH

LN
Rµz

(respectively of Rµz PH
LN

), z ∈ Re with respect to the bases A0, A.

The matrix of the operator C
1
2 with respect to the basis A is equal to

(
BM −Bµ

) 1
2 . Denote

matrix standing in the last R−ω rows (the last R−ω columns) of
(
BM −Bµ

) 1
2 byM7 (re-

spectively byM8). The matrixM7 (M8) is the matrix of the operator PH
Re

C
1
2 (respectively

of C
1
2 PH
Re

) with respect to the bases A3, A. Then the matrices of B(z) and C(z), z ∈ Re with
respect to the bases A2, A3 are equal to

M7M6,zG, (3.6)

and
G∗M5,zM8, (3.7)

respectively. Finally, the matrix ofD(z), z ∈ Re with respect to the basis A3 is equal to

M7(Bµ− zIR)−1M8. (3.8)

Solutions can be found by relation (1.15) and we stop the algorithm.
Case (ii): det(DM −Dµ) = 0. Here we do not have the completely indeterminate case,
and Be , B, Re , R. Of course, the matrix of A(z), z ∈ Re with respect to the basis A2 is
constructed in the same way as above in the case (i).
Consider a linear bounded operator T in R:

T := DM −Dµ.

Observe that

C = BM −Bµ =
(

0 0
0 T

)
.

Therefore Ha⊕KerT ⊆ KerC. The converse inclusion is also valid, and we have

KerC = Ha⊕KerT.

Since D(Be) = Ker(BM −Bµ) = KerC, then

Re = H⊖D(Be) = H⊖KerC = R(T ).

On the other hand we have
R(T ) = Lin{T f j}R−1

j=ω.

Observe that

g j := T f j =

R−1∑
k=ω

α j,k fk, ω ≤ j ≤ R−1, (3.9)
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where
α j,k = (T f j, fk)H , ω ≤ j,k ≤ R−1. (3.10)

Notice that α j,k are elements of the matrix BM −Bµ standing in the last R−ω rows, and in
the last R−ω columns.

In a sequence
gω,gω+1, . . . ,gR−1, (3.11)

there exists a non-zero element. In the opposite case, we would have R(T ) = {0}, KerT =R,
T = 0, BM = Bµ, and this contradicts our assumptions.

Let us apply the Gram-Schmidt orthogonalization procedure to the sequence (3.11), by
removing linearly dependent elements. We shall obtain an orthonormal basis A4 = {y j}δ−1

j=0,
1≤ δ≤R−ω, inRe. The elements of the basis A4 are linear combinations of f j, ω≤ j≤R−1
with known coefficients.
Recall that the matrix of the operator C

1
2 with respect to the basis A is equal to

(
BM −Bµ

) 1
2 .

Thus, we know all the following values:

(C
1
2 f j, fk)H , 0 ≤ j,k ≤ R−1. (3.12)

Denote byM9 (M10) the matrix of the operator PH
Re

C
1
2 (respectively of C

1
2 PH
Re

), with re-
spect to the bases A4, A. Since elements of the basis A4 are linear combinations of f j, then
these matrices are calculated using the values from (3.12).
Denote the matrix, standing in the first ρ rows (the first ρ columns) of (Bµ− zIR)−1 byM5,z
(respectively byM6,z), z ∈ Re. The matrixM5,z (M6,z) is the matrix of the operator PH

LN
Rµz

(respectively of Rµz PH
LN

), z ∈ Re with respect to the bases A0, A. Then the matrices of B(z)
and C(z), z ∈ Re with respect to the bases A2, A4 are equal to

M9M6,zG, (3.13)

and
G∗M5,zM10, (3.14)

respectively. Finally, the matrix ofD(z), z ∈ Re with respect to the basis A4 is equal to

M9(Bµ− zIR)−1M10. (3.15)

All solutions can be found by relation (1.15), and the algorithm is completed.
Notice that during the algorithm we checked whether Bµ = BM . By Theorem 2.5 in [5]

this gives an explicit answer to the question of the determinateness of the moment prob-
lem (1.1).

Example 3.1. Consider the moment problem (1.1) with ℓ = 2, d = 1; a = 0, b = 1; S 0 = 1,
S 1 =

1
2 , S 2 =

1
3 ; N = 1. In this case we have

Γ1 =

(
S 0 S 1
S 1 S 2

)
=

(
1 1

2
1
2

1
3

)
,

Γ̃1 = S 0−S 2 =
1
6
.
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Thus, Γ1 > 0, Γ̃1 > 0, and conditions (1.4) are satisfied. Therefore the moment problem has
a solution.

Let {xn}1n=0 be a sequence of elements in a Hilbert space H such that Lin{xn}1n=0 = H,
and

(x0, x0)H = 1, (x0, x1)H = (x1, x0)H =
1
2
, (x1, x1)H =

1
3
.

Notice thatD = Ha = Lin{xn}dN−1
n=0 = Lin{x0}. We have

Ax0 = x1; Bx0 = (2A−EH)x0 = 2x1− x0, D(A) = D(B) = Lin{x0}.

Notice that ∥x0∥2H = (x0, x0)H = 1 , 0. Let us apply the Gram-Schmidt orthogonalization
procedure to a sequence x0, x1. Set

f0 =
x0

∥x0∥H
= x0;

Observe that

∥x1− (x1, f0)H f0∥2H =∥x1− (x1, x0)H x0∥2H =
∥∥∥∥∥x1−

1
2

x0

∥∥∥∥∥2

H

=

(
x1−

1
2

x0, x1−
1
2

x0

)
H
=

1
12
.

Then

f1 =
√

12
(
x1−

1
2

x0

)
.

Therefore A = { f0, f1}, R = 2. Moreover, A0 = { f0}, ρ = 1; A1 = A0, ω = 1; A2 = {⃗e0}, and

G = (x0, f0)H = (x0, x0)H = 1.

We have case (B): ω<R. Let calculate the extremal extensions Bµ and BM. We setA3 = { f1}.
Then

B1 = (B1 f0, f0)H = (Bx0, x0)H = (2x1− x0, x0)H = 0,

B2 = (B2 f0, f1)H =

(
Bx0,

√
12

(
x1−

1
2

x0

))
H
=

1
√

3
.

By (3.3) we may write
1
√

3
= 0+X, 1

√
3
= 0−X̃,

and therefore X = 1√
3
, X̃ = − 1√

3
. By (3.4) we get

Dµ = −
2
3
, DM =

2
3
.

By (3.5) we conclude that

Bµ =
 0 1√

3
1√
3
−2

3

 , BM =

 0 1√
3

1√
3

2
3

 .
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Since det(DM −Dµ) = 4
3 , 0, we have case (i). Let calculate the matrix of A(z), z ∈ Re.

Observe that (Bµ− zI2
)−1
=

1
(z+1)(z− 1

3 )

 − 2
3 − z − 1√

3
− 1√

3
−z

 , z ∈ Re.

Set

M4,z =
1

(z+1)(z− 1
3 )

(
−2

3
− z

)
, z ∈ Re.

The matrix ofA(z) is equal to

1
(z+1)(z− 1

3 )

(
−2

3
− z

)
, z ∈ Re.

Set

M5,z =
1

(z+1)(z− 1
3 )

(
−2

3
− z,− 1

√
3

)
,

M6,z =
1

(z+1)(z− 1
3 )

 −2
3 − z
− 1√

3

 , z ∈ Re.

Notice that (
BM −Bµ

) 1
2 =

 0 0
0 2√

3

 .
Set

M7 =

(
0,

2
√

3

)
, M8 =

 0
2√
3

 .
The matrices of B(z) and C(z), z ∈ Re, with respect to A2, A4 both are equal to

− 2
3(z+1)(z− 1

3 )
.

The matrix ofD(z) with respect to A4 is equal to

− 4z

3(z+1)(z− 1
3 )
.

By (1.15) we may write that all solutions of the moment problem can be found from the
following relation:∫ 1

−1

1
t− z

dMT
(
t+1

2

)
=−

z+ 2
3

(z+1)(z− 1
3 )

− 4
9(z+1)2(z− 1

3 )2
k̂(z)

1− 4z

3(z+1)(z− 1
3 )

k̂(z)

−1

, z ∈ Re,

(3.16)

where k̂(z) is the matrix of an arbitrary function k(z) ∈ RRe[−1,1]. Here the following defi-
nition is useful.
Let r ∈ N. A Cr×r-valued function k̂(z) belongs to a class Rr[−1,1] iff
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1) k̂(z) is analytic in z ∈ C\[−1,1] and

Im k̂(z)
Imz

≤ 0, z ∈ C : Imz , 0;

2) For z ∈ R\[−1,1], k̂∗(z) = k̂(z), k̂∗(z)̂k(z) ≤ Ir, k̂(z) ≥ 0.

Proposition 3.1. LetR be a finite-dimensional Hilbert space, r = dimR≥ 1. LetA′ = {h j}r−1
j=0

be an orthonormal basis in R. A [R]-valued function k(z), z ∈ C\[−1,1] belongs to the class
RR[−1,1] if and only if the function k̂(z), z ∈ C\[−1,1], where k̂(z) is the matrix of the
operator k(z) with respect toA′, belongs to Rr[−1,1].

The proof is straightforward.
Let k̂(z) = 0. Then∫ 1

−1

1
t− z

dMT
(
t+1

2

)
= −

z+ 2
3

(z+1)(z− 1
3 )
=
− 1

4

z+1
+
−3

4

z− 1
3

, z ∈ Re,

and therefore

MT
(
t+1

2

)
=


0, t ≤ −1
1
4 , −1 < t ≤ 1

3
1 t > 1

3

.

Let u = t+1
2 . Then

M(u) =


0, u ≤ 0
1
4 , 0 < u ≤ 2

3
1 u > 2

3

.

Example 3.2. Consider the moment problem (1.1) with ℓ = 2, d = 1; a = −1, b = 1; S 0 = 1,
S 1 =

1
2 , S 2 =

1
3 ; N = 1. In this case we get

Γ1 =

(
S 0 S 1
S 1 S 2

)
=

(
1 1

2
1
2

1
3

)
,

Γ̃1 = S 0−S 2 =
2
3
.

So, Γ1 > 0, Γ̃1 > 0, conditions (1.4) are satisfied, and the moment problem has a solution.
Let {xn}1n=0 be a sequence of elements in a Hilbert space H such that Lin{xn}1n=0 = H,

and
(x0, x0)H = 1, (x0, x1)H = (x1, x0)H =

1
2
, (x1, x1)H =

1
3
.

Observe thatD = Ha = Lin{xn}dN−1
n=0 = Lin{x0}. We have

Ax0 = x1; B = A, D(A) = D(B) = Lin{x0}.

The Gram-Schmidt orthogonalization procedure will be the same as in Example 3.2. Thus,
we shall obtain A = { f0, f1}, f0 = x0, f1 =

√
12

(
x1− 1

2 x0
)
, R = 2. The bases A0, A1, A2 will

be the same, ρ = 1, ω = 1, and
G = (x0, f0)H = 1.
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We obtain case (B): ω < R. Let find the extremal extensions Bµ and BM . Set A3 = { f1}.
Then

B1 = (B1 f0, f0)H =
1
2
,

B2 = (B2 f0, f1)H =
1

2
√

3
.

By (3.3) we may write
1

2
√

3
=

1
2
X+X;

1

2
√

3
=

1
2
X̃− X̃,

and therefore X = 1
3
√

3
, X̃ = − 1√

3
. By (3.4) we get

Dµ = −
17
18
, DM =

5
6
.

By (3.5) we conclude that

Bµ =
 1

2
1

2
√

3
1

2
√

3
− 17

18

 , BM =

 1
2

1
2
√

3
1

2
√

3
5
6

 .
Since det(DM −Dµ) = 16

9 , 0, then we have case (i). Let us calculate the matrix of A(z),
z ∈ Re. Notice that

(Bµ− zI2
)−1
=

1

(z+1)(z− 5
9 )

 −z− 17
18 − 1

2
√

3
− 1

2
√

3
1
2 − z

 , z ∈ Re.

Set

M4,z =
−z− 17

18

(z+1)(z− 5
9 )
, z ∈ Re.

The matrix ofA(z) is equal to

−z− 17
18

(z+1)(z− 5
9 )
, z ∈ Re.

Set

M5,z =
1

(z+1)(z− 5
9 )

(
−z− 17

18
,− 1

2
√

3

)
,

M6,z =
1

(z+1)(z− 5
9 )

 −z− 17
18

− 1
2
√

3

 , z ∈ Re.

Notice that (
BM −Bµ

) 1
2 =

(
0 0
0 4

3

)
.

Set

M7 =

(
0,

4
3

)
, M8 =

(
0
4
3

)
.
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The matrices of B(z) and C(z), z ∈ Re, with respect to A2, A4 both are equal to

− 2

3
√

3(z+1)(z− 5
9 )
.

The matrix ofD(z) with respect to A4 is equal to

16( 1
2 − z)

9(z+1)(z− 5
9 )
.

By (1.15) we obtain that all solutions of the moment problem can be found from the fol-
lowing relation:∫ 1

−1

1
t− z

dMT (t) =
−z− 17

18

(z+1)(z− 5
9 )
− 4

27(z+1)2(z− 5
9 )2

k̂(z)

1+ 16( 1
2 − z)

9(z+1)(z− 5
9 )

k̂(z)

−1

, z ∈ Re,

(3.17)

where k̂(z) ∈ Rr[−1,1].
Let k̂(z) = 0. Then∫ 1

−1

1
t− z

dM(t) =
−z− 17

18

(z+1)(z− 5
9 )
=

1
28

−1− z
+

27
28

5
9 − z
, z ∈ Re,

and therefore

M(t) =


0, t ≤ −1
1

28 , −1 < t ≤ 5
9

1 t > 5
9

.

Let k̂(z) = 1. Then ∫ 1

−1

1
t− z

dM(t) =
1
4

1− z
+

3
4

3
9 − z
, z ∈ Re,

and therefore

M(t) =


0, t ≤ 1

3
3
4 ,

1
3 < t < 1

1 t ≥ 1
.

Example 3.3. Consider the moment problem (1.1) with ℓ = 2, d = 1; a = −1, b = 1; S 0 =(
2 0
0 2

)
, S 1 =

(
0 2

3
2
3 0

)
, S 2 =

( 2
3 0
0 2

3

)
, N = 2. In this case we have

Γ1 =

(
S 0 S 1
S 1 S 2

)
=


2 0 0 2

3
0 2 2

3 0
0 2

3
2
3 0

2
3 0 0 2

3

 = (γd;n,m)3
n,m=0,

Γ̃1 = S 0−S 2 =

( 4
3 0
0 4

3

)
.
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Since Γ1 ≥ 0, Γ̃1 > 0, the moment problem has a solution.
Consider a Hilbert space H and a sequence of elements {xn}3n=0 in H such that Lin{xn}3n=0 =

H, and
(xn, xm)H = γd;n,m, 0 ≤ n,m ≤ 3.

Observe thatD = Ha = Lin{xn}dN−1
n=0 = Lin{x0, x1}. We have

Ax0 = x2,Ax1 = x3; B = A.

Notice that ∥x0∥2H = (x0, x0)H = 2, 0. Apply the Gram-Schmidt orthogonalization procedure
to a sequence x0, x1, x2, x3. We get A = { f j}3j=0, f0 = 1√

2
x0, f1 = 1√

2
x1, f2 = 1

2 (3x2 − x1),

f3 = 1
2 (3x3− x0), R = 4. Moreover, A0 = { f j}1j=0, ρ = 2; A1 = A0, ω = 2; A2 = {⃗e0, e⃗1}, and

G =
(

(x0, f0)H (x1, f0)H

(x0, f1)H (x1, f1)H

)
=
√

2I2.

We have case (B): ω < R. Let us calculate Bµ and BM . Set A3 = { f j}3j=2. Then

B1 = ((B1 fk, fl)H)1
l,k=0 =

1
3

(
0 1
1 0

)
,

B2 = ((B2 fk, fl)H)l=2,3, k=0,1 =

√
2

3
I2.

By (3.3) we may write
√

2
3

I2 =
1
3

(
0 1
1 0

)
X+X,

√
2

3
I2 =

1
3

(
0 1
1 0

)
X̃− X̃,

and therefore

X =
√

2
8

(
3 −1
−1 3

)
, X̃ =

√
2

8

(
−3 −1
−1 −3

)
.

By (3.4) we obtain that

Dµ =
(
−3

4 − 1
12

− 1
12 −3

4

)
, DM =

( 3
4 − 1

12
− 1

12
3
4

)
.

By (3.5) we get

Bµ =


0 1

3

√
2

3 0
1
3 0 0

√
2

3√
2

3 0 −3
4 − 1

12

0
√

2
3 − 1

12 − 3
4

 , B
M =


0 1

3

√
2

3 0
1
3 0 0

√
2

3√
2

3 0 3
4 − 1

12

0
√

2
3 − 1

12
3
4

 .
Since det(DM −Dµ) , 0, we have case (i). Observe that(Bµ− zI4

)−1
=

1
z(z+1)(z− 1

2 )

·


1
6 (1−3z−6z2) 1

6 (−1−2z) 1−4z
6
√

2
− 1

6
√

2
1
6 (−1−2z) 1

6 (1−3z−6z2) − 1
6
√

2
1−4z
6
√

2
1−4z
6
√

2
− 1

6
√

2
1
12 +

z
4 − z2 1

12 (−1+ z)
− 1

6
√

2
1−4z
6
√

2
1

12 (−1+ z) 1
12 +

z
4 − z2

 , z ∈ Re.
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Set

M4,z =
1

6z(z+1)(z− 1
2 )

(
1−3z−6z2 −1−2z
−1−2z 1−3z−6z2

)
, z ∈ Re.

The matrix ofA(z) is equal to

1
3z(z+1)(z− 1

2 )

(
1−3z−6z2 −1−2z
−1−2z 1−3z−6z2

)
, z ∈ Re.

Set

M5,z =
1

z(z+1)(z− 1
2 )

 1
6 (1−3z−6z2) 1

6 (−1−2z) 1−4z
6
√

2
− 1

6
√

2
1
6 (−1−2z) 1

6 (1−3z−6z2) − 1
6
√

2
1−4z
6
√

2

 ,

M6,z =
1

z(z+1)(z− 1
2 )


1
6 (1−3z−6z2) 1

6 (−1−2z)
1
6 (−1−2z) 1

6 (1−3z−6z2)
1−4z
6
√

2
− 1

6
√

2
− 1

6
√

2
1−4z
6
√

2

 , z ∈ Re.

Notice that

(
BM −Bµ

) 1
2 =


0 0 0 0
0 0 0 0

0 0
√

3
2 0

0 0 0
√

3
2


.

Set

M7 =

 0 0
√

3
2 0

0 0 0
√

3
2

 , M8 =


0 0
0 0√

3
2 0

0
√

3
2


.

The matrices of B(z) and C(z), z ∈ Re, with respect to A2, A4 both are equal to√
3
2

6z(z+1)(z− 1
2 )

(
1−4z −1
−1 1−4z

)
.

The matrix ofD(z), z ∈ Re, with respect to A4 is equal to

3
2z(z+1)(z− 1

2 )

( 1
12 +

z
4 − z2 1

12 (−1+ z)
1
12 (−1+ z) 1

12 +
z
4 − z2

)
.

Using (1.15) we may write that all solutions of the moment problem can be found from the
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following relation:∫ 1

−1

1
t− z

dMT (t) =
1

3z(z+1)(z− 1
2 )

(
1−3z−6z2 −1−2z
−1−2z 1−3z−6z2

)
− 1

24z2(z+1)2(z− 1
2 )2

(
1−4z −1
−1 1−4z

)
k̂(z)

·
I2−

3
2z(z+1)(z− 1

2 )

( 1
12 +

z
4 − z2 1

12 (−1+ z)
1
12 (−1+ z) 1

12 +
z
4 − z2

)
k̂(z)

−1 (
1−4z −1
−1 1−4z

)
,

(3.18)

where z ∈ Re, k̂(z) ∈ R2[−1,1].
Let k̂(z) = 0. Then∫ 1

−1

1
t− z

dMT (t) =
1

3z(z+1)(z− 1
2 )

(
1−3z−6z2 −1−2z
−1−2z 1−3z−6z2

)

=
1
3


2
−z +

4
3
−1−z +

8
3

1
2−z

−2
−z +

− 2
3

−1−z +
8
3

1
2−z

−2
−z +

− 2
3

−1−z +
8
3

1
2−z

2
−z +

4
3
−1−z +

8
3

1
2−z

 , z ∈ Re,

and therefore

m0,0(t) = m1,1(t) =


0, t ≤ −1
4
9 , −1 < t ≤ 0
10
9 , 0 < t ≤ 1

2
2 t > 1

2

,

m0,1(t) = m1,0(t) =


0, t ≤ −1
− 2

9 , −1 < t ≤ 0
− 8

9 , 0 < t ≤ 1
2

0 t > 1
2

.

Example 3.4. Consider the moment problem (1.1) with ℓ = 2, d = 1; a = −1, b = 1; S 0 =(
2 0
0 2

3

)
, S 1 =

(
0 2

3
2
3 0

)
, S 2 =

( 2
3 0
0 2

5

)
, N = 2. In this case we have

Γ1 =

(
S 0 S 1
S 1 S 2

)
=


2 0 0 2

3
0 2

3
2
3 0

0 2
3

2
3 0

2
3 0 0 2

5

 = (γd;n,m)3
n,m=0,

Γ̃1 = S 0−S 2 =

( 4
3 0
0 4

15

)
.

Since Γ1 ≥ 0, Γ̃1 ≥ 0, the moment problem has a solution.
Let {xn}3n=0 be a sequence of elements in a Hilbert space H such that Lin{xn}3n=0 = H,

and
(xn, xm)H = γd;n,m, 0 ≤ n,m ≤ 3.
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Observe thatD = Ha = Lin{x0, x1}. We have

Ax0 = x2,Ax1 = x3; B = A.

Notice that ∥x0∥2H = (x0, x0)H = 2 , 0. Let apply the Gram-Schmidt orthogonalization

procedure to a sequence x0, x1, x2, x3. We obtain A = { f j}2j=0, f0 = 1√
2

x0, f1 =
√

3
2 x1,

f2 =
√

45
8 (x3− 1

3 x0), R = 3. Moreover, A0 = { f j}1j=0, ρ = 2; A1 = A0, ω = 2; A2 = {⃗e0, e⃗1}, and

G =
√

2
 1 0

0 1√
3

 .
We have case (B): ω<R. Let us calculate the extremal extensions Bµ and BM. Set A3 = { f2}.
Then

B1 = ((B1 f j, fk)H)1
k, j=0 =

1
√

3

(
0 1
1 0

)
,

B2 = ((B2 f j, fk)H)k=2, j=0,1 =
2
√

15
(0,1).

By (3.3) we may write

2
√

15

(
0
1

)
=

1
√

3

(
0 1
1 0

)
X+X, 2

√
15

(
0
1

)
=

1
√

3

(
0 1
1 0

)
X̃− X̃,

and therefore

X = 1
√

5

(
−1√

3

)
, X̃ = 1

√
5

(
−1
−
√

3

)
.

By (3.4) we obtain that

Dµ = −
3
5
, DM =

3
5
.

By (3.5) we get

Bµ =


0 1√

3
0

1√
3

0 2√
15

0 2√
15
−3

5

 , BM =


0 1√

3
0

1√
3

0 2√
15

0 2√
15

3
5

 .
Since det(DM −Dµ) , 0, we have case (i). Notice that

(Bµ− zI3
)−1
=

1
(z+1)(−z2+ 2

5 z+ 1
5 )


z2+ 3

5 z− 4
15

1√
3
z+

√
3

5
2

3
√

5
1√
3
z+

√
3

5 z2+ 3
5 z 2√

15
z

2
3
√

5
2√
15

z z2− 1
3

 , z ∈ Re.

Set

M4,z =
1

(z+1)(−z2+ 2
5 z+ 1

5 )

 z2+ 3
5 z− 4

15
1√
3
z+

√
3

5
1√
3
z+

√
3

5 z2+ 3
5 z

 , z ∈ Re.
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The matrix ofA(z), z ∈ Re, with respect to A2 is equal to

2
(z+1)(−z2+ 2

5 z+ 1
5 )

(
z2+ 3

5 z− 4
15

1
3 z+ 1

5
1
3 z+ 1

5
1
3 (z2+ 3

5 z)

)
, z ∈ Re.

Set

M5,z =
1

(z+1)(−z2+ 2
5 z+ 1

5 )

 z2+ 3
5 z− 4

15
1√
3
z+

√
3

5
2

3
√

5
1√
3
z+

√
3

5 z2+ 3
5 z 2√

15
z

 ,
M6,z =

1
(z+1)(−z2+ 2

5 z+ 1
5 )


z2+ 3

5 z− 4
15

1√
3
z+

√
3

5
1√
3
z+

√
3

5 z2+ 3
5 z

2
3
√

5
2√
15

 , z ∈ Re.

Notice that (
BM −Bµ

) 1
2 =


0 0 0
0 0 0

0 0
√

6
5

 .
Set

M7 =

0,0,
√

6
5

 , M8 =


0
0√

6
5

 .
The matrices of B(z) and C(z), z ∈ Re, with respect to A2, A4 are equal to

4

5
√

3(z+1)(−z2+ 2
5 z+ 1

5 )
(1,z),

4

5
√

3(z+1)(−z2+ 2
5 z+ 1

5 )

(
1
z

)
,

respectively. The matrix ofD(z), z ∈ Re, with respect to A4 is equal to

6(z2− 1
3 )

5(z+1)(−z2+ 2
5 +

1
5 )
.

Using (1.15) we may write that all solutions of the moment problem can be found from the
following relation:∫ 1

−1

1
t− z

dMT (t) =
2

(z+1)(−z2+ 2
5 z+ 1

5 )

(
z2+ 3

5 z− 4
15

1
3 z+ 1

5
1
3 z+ 1

5
1
3 (z2+ 3

5 z)

)

− 16
75(z+1)2(−z2+ 2

5 z+ 1
5 )2

(
1
z

)
k̂(z)

1+ 6(z2− 1
3 )

5(z+1)(−z2+ 2
5 +

1
5 )

k̂(z)

−1

(1,z), (3.19)
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where z ∈ Re, k̂(z) ∈ R1[−1,1].
Let k̂(z) = 0. Then∫ 1

−1

1
t− z

dMT (t) =
2

(z+1)(−z2+ 2
5 z+ 1

5 )

(
z2+ 3

5 z− 4
15

1
3 z+ 1

5
1
3 z+ 1

5
1
3 (z2+ 3

5 z)

)
, z ∈ Re.

We may write ∫ 1

−1

dm0,0(t)
t− z

=

2
9

−1− z
+

8
9 −

√
6

18

1
5 +

√
6

5 − z
+

8
9 +

√
6

18

1
5 −

√
6

5 − z
, z ∈ Re,

and therefore

m0,0(t) =


0, t ≤ −1
2
9 , −1 < t ≤ 1

5 −
√

6
5

10
9 +

√
6

18 ,
1
5 −

√
6

5 < t ≤ 1
5 +

√
6

5

2 t > 1
5 +

√
6

5

.

We may also write∫ 1

−1

dm0,1(t)
t− z

=
− 2

9

−z−1
+

1√
6
+ 1

9

−z+ 1
5 +

√
6

5

+
− 1√

6
+ 1

9

−z+ 1
5 −

√
6

5

, z ∈ Re,

and therefore

m0,1(t) =


0, t ≤ −1
−2

9 , −1 < t ≤ 1
5 −

√
6

5

−1
9 −

1√
6
, 1

5 −
√

6
5 < t ≤ 1

5 +
√

6
5

0 t > 1
5 +

√
6

5

.

Finally, we have∫ 1

−1

1
t− z

dm1,1(t)=
2

3(z+1)(−z2+ 2
5 z+ 1

5 )
(z2+

3
5

z)=
2
9

−1− z
+

2
9 +

1
3
√

6

1
5 +

√
6

5 − z
+

2
9 −

1
3
√

6

1
5 −

√
6

5 − z
, z ∈Re.

Therefore

m1,1(t) =


0, t ≤ −1
2
9 , −1 < t ≤ 1

5 −
√

6
5

4
9 −

1
3
√

6
, 1

5 −
√

6
5 < t ≤ 1

5 +
√

6
5

2
3 t > 1

5 +
√

6
5

.

References

[1] A. E. Choque Rivero, Yu. M. Dyukarev, B. Fritzsche, and B. Kirstein, A truncated ma-
tricial moment problem on a finite interval. The case of an odd number of prescribed
moments. In: System Theory, The Shur Algorithm and Multidimensional Analysis,
Operator Theory: Advances and Applications 176 (2007), pp 99-164.



130 Abdon E. Choque Rivero and Sergey M. Zagorodnyuk

[2] M. Krein, The theory of self-adjoint extensions of semi-bounded Hermitian transfor-
mations and its applications. I. Matem. Sbornik 20 (62) (1947), No. 3, pp 431-495 (in
Russian).

[3] A. V. Shtraus, On extensions of a semi-bounded operator. DAN SSSR 211 (1973),
No. 3, pp 543-546 (in Russian).

[4] A. V. Shtraus, To the theory of extensions of a semi-bounded operator. Funktsionalniy
analiz (Ulyanovsk) issue 9 (1977), pp 167-173 (in Russian).

[5] S. M. Zagorodnyuk, The truncated matrix Hausdorff moment problem. Methods and
Applications of Analysis 19 (2012), No. 1, pp 21-42.

[6] V. A. Zolotarev, Analytic methods of spectral representations of non-selfadjoint and
non-unitary operators, KhNU, Kharkov 2003 (in Russian).


