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Abstract

We consider a model operator Hµλ, µ,λ ≥ 0 associated with the energy operator of
a lattice system describing two identical bosons and one particle, another nature in
interactions, without conservation of the number of particles. The existence of in-
finitely many negative eigenvalues of H0λ is proved for the case where the associ-
ated Friedrichs model have a zero energy resonance and an asymptotics of the form
U0| log |z|| for the number of eigenvalues of H0λ lying below z < 0, is obtained. We
find the conditions for the infiniteness of the number of eigenvalues located inside (in
the gap, in the below of the bottom) of the essential spectrum of Hµλ.
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1 Introduction

The main goal of the present paper is to give a thorough mathematical treatment of the
spectral properties for a model operator Hµλ, µ,λ ≥ 0 with emphasis on the infiniteness of
the number of eigenvalues embedded in its essential spectrum. This operator is associated
with a lattice system describing two identical bosons and one particle, another nature in
interactions, without conservation of the number of particles.
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In the spectral theory of the continuous and discrete three-particle Schrödinger opera-
tors, there is the remarkable phenomenon known as Efimov’s effect: if in a system of three
particles, interacting by means of short-range pair potentials none of the three two-particle
subsystems has bound states with negative energy, but at least two of them have a resonance
with zero energy, then this three-particle system has an infinite number of three-particle
bound states with negative energy, accumulating at zero. Since its discovery by Efimov in
[8] many papers have been devoted to this subject. See, for example [2, 5, 7, 25, 30, 31, 33].
The first mathematical proof of the existence of this effect was given by Yafaev [33], and the
asymptotics of the number of eigenvalues near the threshold of the essential spectrum was
established by Sobolev [30]. The presence of the Efimov effect for the discrete Schrödinger
operators was proved in [3, 11, 12, 13] and an asymptotics analogous to [30] was obtained
in [3] for the number of eigenvalues.

Perturbation problems for operators with embedded eigenvalues are generally challeng-
ing since the embedded eigenvalues cannot be separated from the rest of the spectrum.
Embedded eigenvalues occur in many applications arising in physics and many works have
been devoted to the study of embedded eigenvalues of the Schrödinger operators. See, for
example [1, 20, 24, 28].

The number of eigenvalues in the gap of the essential spectrum and the formula for
the number of eigenvalues in an arbitrary interval outside of the essential spectrum of the
three-particle discrete Schrödinger operator were studied in [18], [19].

In all above mentioned papers devoted to the embedded eigenvalues, systems where the
number of quasi-particles is fixed have been considered. In the theory of solid-state physics
[17], quantum field theory [9], statistical physics [15, 16], fluid mechanics [6], magneto-
hydrodynamics [14] and quantum mechanics [32] some important problems arise where
the number of quasi-particles is finite, but not fixed. In [29] geometric and commutator
techniques have been developed in order to find the location of the spectrum and to prove
absence of singular continuous spectrum for Hamiltonians without conservation of the par-
ticle number. Recall that the study of systems describing n particles in interaction, without
conservation of the number of particles can be reduced to the investigation of the spectral
properties of self-adjoint operators acting in the cut subspace of the Fock space, consisting
of r ≤ n particles [9, 16, 17, 29].

In the present paper we consider a model operator Hµλ, µ,λ ≥ 0 associated with a lattice
system describing two bosons and one particle another nature in interaction, without con-
servation of the number of particles. This operator acts in the Hilbert spaceH , which is the
direct sum of zero-, one- and two-particle subspaces of the bosonic Fock space and it is a
lattice analogue of the spin-boson Hamiltonian [16]. Under some smoothness assumptions
on the parameters of the two families of Friedrichs models hµ(p), hλ(p), p ∈ T3 ≡ (−π;π]3,

we obtain the following results:
(i) We describe the location and structure of the essential spectrum of Hµλ via the spec-

trum of hµ(p) and hλ(p);
(ii) We prove the presence of an infinite number of negative eigenvalues of H0λ0 , and

accumulating at zero, for some λ0 > 0 (Efimov’s effect). Here λ = λ0 corresponds to the
existence of the zero energy resonance for the Friedrichs model hλ(p1), p1 = (0,0,0) ∈ T3.

We also show that the number Nλ(z) of eigenvalues of H0λ on the left of z, z < 0 has the
asymptotics Nλ0(z) ∼U0| log |z|| as z→−0, where 0 <U0 <∞;
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(iii) We find conditions which guarantee for the infiniteness of the number of eigenval-
ues located inside, in the gap, and in the below of the bottom of the essential spectrum of
Hµλ0 , respectively.

It is remarkable that in the assertion (ii) for the Friedrichs model hλ(p1) the presence of
a zero energy resonance (consequently the existence of the Efimov effect for H0λ) is due to
the annihilation and creation operators.

We discuss the case where the lattice kinetic energy ε(·) of a particle has a special form
with non-degenerate minimum at the several points of the three-dimensional torus. In [4]
the operator matrix H0λ with kinetic energy which has a unique non-degenerate minimum
is considered and proved the same assertion as (ii). Hence the assertion (ii) looks sur-
prising, because it does’t depends on the number of points at which the function ε(·) has
non-degenerate minimum, that is, the asymptotics of the discrete spectrum is stable with
respect to the number of that points.

Note that the operator matrices like Hµλ has been considered before in [21, 26, 27, 34]
where only its essential spectrum was investigated. The lattice model operators in fermionic
Fock space with the kinetic part depending on parameter γ, was considered in [22, 23] and
the authors find a critical value γ∗ for the parameter γ that allows or forbids the Efimov
effect.

The organization of the present paper is as follows. Section 1 is an introduction to
the whole work. In Section 2, the model operator Hµλ is described as a bounded self-
adjoint operator in H and the main results of the present paper are formulated. In Section
3 the set of negative eigenvalues of hµ(p) is described and an expansion for the Fredholm
determinant associated with the operator hλ(p) is obtained. In Section 4, the structure of the
essential spectrum of Hµλ0 is studied. In Section 5, first we give a realization of the Birman-
Schwinger principle for H0λ and then we obtain an asymptotic formula for the number of
negative eigenvalues of H0λ0 . Section 5 is devoted to the proof of the infiniteness of the
number of eigenvalues of Hµλ0 lying inside (in the gap, in the below of the bottom) of its
essential spectrum.

Throughout the present paper we adopt the following conventions: Denote by T3 the
three-dimensional torus, the cube (−π,π]3 with appropriately identified sides equipped with
its Haar measure. The spectrum, the essential spectrum, and the discrete spectrum of a
bounded self-adjoint operator will be denoted by σ(·), σess(·) and σdisc(·), respectively. In
what follows we deal with the operators in various spaces of vector-valued functions. They
will be denoted by bold letters and will be written in the matrix form. For each δ > 0, the
notation Uδ(p0) := {p ∈ T3 : |p− p0| < δ} stands for a δ-neighborhood of the point p0 ∈ T

3.

2 The model operator and main results

Let C be the field of complex numbers, L2(T3) be the Hilbert space of square integrable
(complex) functions defined on T3 and Ls

2((T3)2) be the Hilbert space of square integrable
(complex) symmetric functions defined on (T3)2. Denote by H the direct sum of spaces
H0 := C, H1 := L2(T3) and H2 := Ls

2((T3)2), that is, H := H0 ⊕H1 ⊕H2. The Hilbert
spaces H0, H1 and H2 are zero-, one- and two-particle subspaces of a bosonic Fock space
Fs(L2(T3)) over L2(T3), respectively.
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Let Hi j be annihilation (creation) operators [9] defined in the Fock space for i< j (i> j).
We note that in physics, an annihilation operator is an operator that lowers the number of
particles in a given state by one, a creation operator is an operator that increases the number
of particles in a given state by one, and it is the adjoint of the annihilation operator.

In this paper we consider the case, where the number of annihilations and creations of
the particles of the considering system is equal to 1. It means that Hi j ≡ 0 for all |i− j| > 1.
So, an model operator (Hamiltonian) Hµλ, µ,λ ≥ 0 associated to a system describing three
particles in interaction, without conservation of the number of particles, acts in the Hilbert
spaceH as a 3×3 block matrix operator

Hµλ :=

 H00 H01 0
H∗01 H11 λH12
0 λH∗12 H0

22−µV

 .
Let its components are defined by the rule

H00 f0 = w0 f0, H01 f1 =
∫
T3

v1(s) f1(s)ds, (H11 f1)(p) = w1(p) f1(p),

(H12 f2)(p) =
∫
T3

f2(p, s)ds, (H0
22 f2)(p,q) = w2(p,q) f2(p,q),

(V f2)(p,q) = v2(q)
∫
T3

v2(s) f2(p, s)ds+ v2(p)
∫
T3

v2(s) f2(s,q)ds,

where H∗i j (i < j) denotes the adjoint operator to Hi j and fi ∈ Hi, i = 0,1,2.
Here µ,λ are non-negative real numbers, w0 is a fixed real number, vi(·), i = 1,2 are

real-valued continuous functions on T3, the functions w1(·) and w2(·, ·) are defined by the
equalities

w1(p) := ε(p)+1, w2(p,q) := l1ε(p)+ l2ε(p+q)+ l1ε(q),

respectively, with l1, l2 > 0 and

ε(q) :=
3∑

i=1

(1− cos(3q(i))), q = (q(1),q(2),q(3)) ∈ T3.

Under these assumptions the operator Hµλ is bounded and self-adjoint.
To study the spectral properties of the operator Hµλ we introduce a family of bounded

self-adjoint operators (Friedrichs models) ĥµλ(p), p ∈ T3, which acts inH0⊕H1 as

ĥµλ(p) :=
(

h00(p) λh01
λh∗01 h0

11(p)−µv

)
,

where
h00(p) f0 = w1(p) f0, h01 f1 =

1
√

2

∫
T3

f1(s)ds,

(h0
11(p) f1)(q) = w2(p,q) f1(q), (v f1)(q) = v2(q)

∫
T3

v2(s) f1(s)ds.

In [27] it was shown that the operator ĥµλ(p) has at most three eigenvalues.
The following theorem describes [27] the location of the essential spectrum of the op-

erator Hµλ by the spectrum of the family ĥµλ(p).
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Theorem 2.1. For the essential spectrum of Hµλ the equality

σess(Hµλ) =
⋃
p∈T3

σdisc(̂hµλ(p))∪ [0; M], M :=
9
2

(2l1+ l2) (2.1)

holds. Moreover, the set σess(Hµλ) is a union of at most four intervals.

Definition 2.2. The sets
⋃

p∈T3
σdisc(̂hµλ(p)) and [0; M] are called two-particle and three-

particle branches of the essential spectrum of Hµλ.

The following assumption we be needed throughout the paper: the function v1(·) is
periodical on each variable with period 2π/3 and function v2(·) satisfies the condition∫

T3
v2(s)g(p, s)ds = 0 (2.2)

for any function g ∈ Ls
2((T3)2), which is periodical on each variable with period 2π/3.

Note that the functions v2(p)=
3∑

i=1
ci cos(3p(i)/2) and v2(p)=

3∑
i=1

ci cos(3p(i)/2)cos(3p(i)),

where ci, i = 1,2,3 are arbitrary real numbers, satisfies the condition (2.2). Indeed, for

v2(p) =
3∑

i=1
ci cos(3p(i)/2), we have∫

T3
v2(s)g(p, s)ds =

∫
T3

v2(s+2π̄/3)g(p, s+2π̄/3)ds = −
∫
T3

v2(s)g(p, s)ds, π̄ := (π,π,π),

which yields the equality (2.2).
Under the assumption (2.2) the discrete spectrum of ĥµλ(p) coincides (see Lemma 3.1

below) with the union of discrete spectra of the operators

hµ(p) := h0
11(p)−µv and hλ(p) :≡ ĥ0λ(p).

It follows from the definition of the operators hµ(p) and hλ(p) that their structure is
simpler than that of ĥµλ(p) and the equality (2.1) can be written as

σess(Hµλ) =
⋃
p∈T3

σdisc(hλ(p))∪
⋃
p∈T3

σdisc(hµ(p))∪ [0; M]. (2.3)

We introduce the points of the form p= (p(1), p(2), p(3)) with p(k) ∈ {0,±2π/3}, k = 1,2,3.
Direct calculation shows that the number of these points is equal to 27 and for convenience
we numerate that points as p1, . . . , p27.

Denote l,m := l, . . . ,m. It is easy to check that the function w2(·, ·) has non-degenerate
zero minimum at the points (pi, p j) ∈ (T3)2, i, j = 1,27. A similar computation shows that
the function w2(·, ·) has non-degenerate maximum at the points (qi,q j) ∈ (T3)2, i, j = 1,27,
where q j = (q(1)

j ,q
(2)
j ,q

(3)
j ) with q(k)

j ∈ {π,±π/3}, k = 1,2,3. So, the equalities w2(pi, p j) = 0

and w2(qi,q j) = M hold for all i, j = 1,27.
We remark that the definitions of w1(·) and w2(·, ·) imply the identity hλ(p1) ≡ hλ(pi) for

i = 2,27.
Let us denote by C(T3) and L1(T3) the Banach spaces of continuous and integrable

functions on T3, respectively.
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Definition 2.3. The operator hλ(p1) is said to have a zero energy resonance, if the number
1 is an eigenvalue of the integral operator given by

(Gλψ)(q) =
λ2

2(l1+ l2)

∫
T3

ψ(s)
ε(s)

ds, ψ ∈C(T3)

and at least one (up to a normalization constant) of the associated eigenfunctions ψ satisfies
the condition ψ(p1) , 0. If the number 1 is not an eigenvalue of the operator Gλ, then we
say that z = 0 is a regular type point for the operator hλ(p1).

Remark 2.4. We notice that in the Definition 2.3 the requirement of the presence of the
eigenvalue 1 of Gλ corresponds to the existence of a solution of hλ(p1) f = 0 and the con-
dition ψ(p1) , 0 implies that the solution f of this equation does not belong to H0 ⊕H1.

More exactly, if hλ(p1) has a zero energy resonance, then the vector f = ( f0, f1), where

f0 = ψ(q) ≡ const, f1(q) = −
λ f0

√
2(l1+ l2)ε(q)

, (2.4)

obeys the equation hλ(p1) f = 0 and f1 ∈ L1(T3) \L2(T3) (see Lemma 3.4).

Set
λ0 :=

√
2(l1+ l2)

(∫
T3

ds
ε(s)

)−1/2
.

Remark 2.5. The number 1 is an eigenvalue of Gλ if and only if λ = λ0, see Lemma 3.3.

Since the function w2(·, ·) has non-degenerate zero minimum at the points (pi, p j) ∈
(T3)2, i, j = 1,27 and the function v2(·) is a continuous on T3, for any p ∈ T3 the integral

I(p) :=
∫
T3

v2
2(s)ds

w2(p, s)

is positive and finite. The Lebesgue dominated convergence theorem and the equality
I(p1) = I(pi), i = 2,27 yield I(p1) = lim

p→pi
I(pi), i = 1,27, and hence the function I(·) is a

positive and continuous on T3.

We introduce the following notations:

µ1 :=min
p∈T3

I−1(p), µ2 :=max
p∈T3

I−1(p);

aµ :=min
{⋃

p∈T3

σdisc(hµ(p))∩ (−∞;0]
}
, bµ :=max

{⋃
p∈T3

σdisc(hµ(p))∩ (−∞;0]
}
,

for µ > µ1.

Note that the operator hλ0(p) is a non-negative (see Lemma 3.5) and hence⋃
p∈T3

σdisc(hλ0(p))∩ (−∞;0) = ∅. (2.5)

Therefore, the study of the structure of the set σess(Hµλ0) is reduced to the study of the
structure of the set

⋃
p∈T3

σdisc(hµ(p))∪ [0; M].

The following theorem describes the structure of the part of the essential spectrum of
Hµλ0 located in (−∞; M].
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Theorem 2.6. The following assertions hold.
(i) If µ ∈ [0;µ1], then (−∞; M]∩σess(Hµλ0) = [0; M];
(ii) If µ ∈ (µ1;µ2], then (−∞; M]∩σess(Hµλ0) = [aµ; M] and aµ < 0;
(iii) If µ ∈ (µ2;+∞), then (−∞; M]∩σess(Hµλ0) = [aµ;bµ]∪ [0; M] and aµ < bµ < 0.

As in the introduction, let us denote by τess(H0λ) the bottom of the essential spec-
trum σess(H0λ) of H0λ and by Nλ(z) the number of eigenvalues of H0λ on the left of
z, z < τess(H0λ). The assertion (i) of Theorem 2.6 implies that τess(H0λ0) = 0.

We will denote by N the set of all positive integers.
The main results of the present paper as follows.

Theorem 2.7. The operator H0λ0 has infinitely many negative eigenvalues (En)n∈N such
that lim

n→∞
En = 0, and the function Nλ0(·) obeys the relation

lim
z→−0

Nλ0(z)
| log |z||

= U0, 0 <U0 <∞. (2.6)

Remark 2.8. The constantU0 does not depend on the function v1(·) and is given as a positive
function depending only on the ratio l1/l2.

Remark 2.9. Clearly, by equality (2.6) the infinite cardinality of the negative discrete spec-
trum of H0λ0 follows automatically from the positivity ofU0.

Remark 2.10. In fact, a result similar to Theorem 2.7 was proved in [4] for H0λ0 provided
that all third order partial derivatives of w2(·, ·) are Hölder continuous functions on (T3)2

with a unique non-degenerate minimum. Therefore, Theorem 2.7 can be considered as
a generalization of Theorem 2.14 in [4], since in our case the function w2(·, ·) has non-
degenerate minimum at 729 different points of (T3)2 and it is surprising that the asymptotics
(2.6) doesn’t depends on the number of these points.

For n ∈ N denote by f (n) the eigenvector corresponding to the eigenvalue En of H0λ
defined in Theorem 2.7.

In the following theorem, we precisely describe the dependence of the location of the
eigenvalues (En)n∈N as the eigenvalues of Hµλ0 on the parameter µ ≥ 0.

Theorem 2.11. For any µ ≥ 0 the numbers (En)n∈N are eigenvalues of Hµλ0 with the eigen-
vector f (n), n ∈ N. Moreover,
(i) if µ ∈ [0;µ1], then the set {En : n ∈N} is located on the below of the bottom of the essential
spectrum of Hµλ0 ;
(ii) if µ ∈ (µ1;µ2], then the countable subset of {En : n ∈N} located in the essential spectrum
of Hµλ0 ;
(iii) if µ ∈ (µ2;+∞), then the countable subset of {En : n ∈ N} located in the gap of the
essential spectrum of Hµλ0 .

Since lim
µ→µ2+0

bµ = 0, it follows from the parts (iii) of Theorems 2.6 and 2.11 that for

any given finite number k ∈ N there exists µ′(k) ∈ (µ2;+∞) such that for µ = µ′(k) the set
{En : n ∈ N}∩ [aµ;bµ] consists of k elements.
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3 Some spectral properties of the family of Friedrichs models
ĥµλ(p)

In this section we study some spectral properties of the family of Friedrichs models ĥµλ(p),
which plays an important role in the study of spectral properties of Hµλ.

3.1 Spectrum of ĥµλ(p)

Let the operator h0(p) acts inH0⊕H1 as

h0(p) :=
(

0 0
0 h0

11(p)

)
.

The perturbation ĥµλ(p)−h0(p) of the operator h0(p) is a self-adjoint operator of rank
at most 3, and thus, according to the Weyl theorem, the essential spectrum of the opera-
tor ĥµλ(p) coincides with the essential spectrum of h0(p). It is evident that σess(h0(p)) =
[m(p); M(p)], where the numbers m(p) and M(p) are defined by

m(p) :=min
q∈T3

w2(p,q), M(p) :=max
q∈T3

w2(p,q).

This yields σess(̂hµλ(p)) = [m(p); M(p)].
For any fixed µ,λ > 0 and p ∈ T3, we define the analytic functions in C \ [m(p); M(p)]

by

∆µ(p ;z) := 1−µ
∫
T3

v2
2(s)ds

w2(p, s)− z
, ∆λ(p ;z) := w1(p)− z−

λ2

2

∫
T3

ds
w2(p, s)− z

;

these functions are the Fredholm determinants associated with the operators hµ(p) and
hλ(p), respectively.

The following lemma describes the relation between the eigenvalues of the operators
ĥµλ(p), hµ(p) and hλ(p).

Lemma 3.1. The number z ∈ C \ [m(p); M(p)] is an eigenvalue of ĥµλ(p) if and only if the
number z is an eigenvalue of at least one of the operators hµ(p) and hλ(p).

Proof. Suppose ( f0, f1) ∈ H0⊕H1 is an eigenvector of the operator ĥµλ(p) associated with
the eigenvalue z ∈C\[m(p); M(p)]. Then f0 and f1 satisfy the following system of equations

(w1(p)− z) f0+
λ
√

2

∫
T3

f1(s)ds = 0;

λ
√

2
f0+ (w2(p,q)− z) f1(q)−µv2(q)

∫
T3

v2(s) f1(s)ds = 0. (3.1)

Since for any z ∈ C \ [m(p); M(p)] and q ∈ T3 the relation w2(p,q)− z , 0 holds for all
p ∈ T3, from the second equation of the system (3.1) for f1 we have

f1(q) =
µC f1v2(q)

w2(p,q)− z
−

λ
√

2

f0
w2(p,q)− z

, (3.2)
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where

C f1 =

∫
T3

v2(s) f1(s)ds. (3.3)

Substituting the expression (3.2) for f1 into the first equation of the system (3.1) and the
equality (3.3), and then using the condition (2.2), we conclude that the system of equations
(3.1) has a nontrivial solution if and only if the system of equations

∆λ(p ;z) f0 = 0;

∆µ(p ;z)C f1 = 0

has a nontrivial solution, i.e., if the condition ∆µ(p ;z)∆λ(p ;z) = 0 is satisfied.
If in above analysis we set µ = 0, then ĥµλ(p) = hλ(p); in this case the number z ∈

C \ [m(p); M(p)] is an eigenvalue of hλ(p) if and only if ∆λ(p ;z) = 0.
It can be similarly shown that the number z ∈ C\ [m(p); M(p)] is an eigenvalue of hµ(p)

if and only if ∆µ(p ;z) = 0. The lemma is proved. �

From Lemma 3.1 it follows that

σdisc(̂hµλ(p)) = σdisc(hµ(p))∪σdisc(hλ(p)), (3.4)

where

σdisc(hµ(p)) = {z ∈ C \ [m(p); M(p)] : ∆µ(p ;z) = 0}; (3.5)

σdisc(hλ(p)) = {z ∈ C \ [m(p); M(p)] : ∆λ(p ;z) = 0}. (3.6)

So by Lemma 3.1, that is, by the equality (3.4), the study of spectrum of ĥµλ(p) is
reduced to the study of spectra of hµ(p) and hλ(p).

The following lemma describes the set of negative eigenvalues of hµ(p).

Lemma 3.2. (i) Let µ ∈ [0;µ1]. Then for any p ∈ T3 the operator hµ(p) has no negative
eigenvalues;
(ii) Let µ ∈ (µ1;µ2]. Then there exists a non empty open set Dµ ⊂ T

3 such that Dµ , T
3 and

for any p ∈ Dµ the operator hµ(p) has a unique negative eigenvalue and for any p ∈ T3 \Dµ

the operator hµ(p) has no negative eigenvalues;
(iii) Let µ > µ2. Then for any p ∈ T3 the operator hµ(p) has a unique negative eigenvalue.

Proof. First we prove part (ii). Let µ ∈ (µ1;µ2]. Since ∆µ(· ;0) is a continuous on T3, the
definition of the numbers µi, i = 1,2 imply min

p∈T3
∆µ(p ;0) < 0 and max

p∈T3
∆µ(p ;0) ≥ 0 for any

µ ∈ (µ1;µ2]. Then there exist the points θ1, θ2 ∈ T
3 such that

min
p∈T3
∆µ(p ;0) = ∆µ(θ1 ;0) and max

p∈T3
∆µ(p ;0) = ∆µ(θ2 ;0).

Therefore, ∆µ(θ1 ;0) < 0 and ∆µ(θ1 ;0) ≥ 0 for any µ ∈ (µ1;µ2].



10 M. I. Muminov and T. H. Rasulov

Let us introduce the notation: Dµ := {p ∈ T3 : ∆µ(p ;0) < 0}. The continuity of the func-
tion ∆µ(· ;0) and the assertion ∆µ(θ1 ;0) < 0 implies that Dµ is a non empty open set, and
Dµ , T

3 because θ1 < Dµ.

For any µ > 0 and p ∈ T3 the function ∆µ(p ; ·) is continuous and decreasing on (−∞;0]
and lim

z→−∞
∆µ(p ;z) = 1. Then for any p ∈ Dµ there exists a unique point eµ(p) ∈ (−∞;0) such

that ∆µ(p ;eµ(p)) = 0. By the equality (3.5) for any p ∈ Dµ the point eµ(p) is the unique
negative eigenvalue of the operator hµ(p).

For any p ∈ T3 \Dµ and z < 0 we have ∆µ(p ;z) > ∆µ(p ;0) ≥ 0. Hence again by the
equality (3.5) for each p ∈ T3 \Dµ the operator hµ(p) has no negative eigenvalues.

It is immediate that if µ ∈ [0;µ1] (resp. µ ∈ (µ2;+∞)), then Dµ = ∅ (resp. Dµ = T
3), and

the above analysis leads again to the case (i) (resp. (iii)). The straightforward details are
omitted. The lemma is completely proved. �

3.2 Threshold analysis of the family of Friedrichs models hλ(p)

First we remark that the definitions of w1(·) and w2(·, ·) imply ∆λ(p1 ;0)=∆λ(pi ;0), i= 2,27.

Lemma 3.3. The following statements are equivalent:
(i) the operator hλ(p1) has a zero energy resonance;
(ii) ∆λ(p1 ;0) = 0;
(iii) λ = λ0.

Proof. Let the operator hλ(p1) have a zero energy resonance for some λ > 0. Then by Defi-
nition 2.3 the equation Gλψ=ψ has a simple solution ψ ∈C(T3) which satisfies the condition
ψ(p1), 0. This solution is equal to the function ψ(q)≡ 1 (up to a constant factor). Therefore
we see that

1 =
λ2

2(l1+ l2)

∫
T3

ds
ε(s)

and hence

∆λ(p1 ;0) = 1−
λ2

2(l1+ l2)

∫
T3

ds
ε(s)

and so λ = λ0.

Let for some λ > 0 the equality ∆λ(p1 ;0) = 0 holds and consequently λ = λ0. Then it is
clear that only the function ψ(q) ≡ 1 (up to a constant factor) is a solution of the equation
Gλψ = ψ, that is, by Definition 2.3 the operator hλ(p1) has a zero energy resonance. �

Henceforth, we shall denote by C1,C2,C3 different positive numbers and set

Tδ := T3 \

27⋃
j=1

Uδ(p j).

Lemma 3.4. The vector f = ( f0, f1), where f0 and f1 are given by (2.4), obeys the equation
hλ0(p1) f = 0 and f1 ∈ L1(T3) \L2(T3).
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Proof. Since the fact that the vector f defined as in Lemma 3.4 satisfies hλ0(p1) f = 0 is
obvious, we show that f1 ∈ L1(T3) \ L2(T3). The definition of the function ε(·) implies that
there exist C1,C2,C3 > 0 and δ > 0 such that

C1|q− p j|
2 ≤ ε(q) ≤C2|q− p j|

2, q ∈ Uδ(p j), j = 1,27; (3.7)

ε(q) ≥C3, q ∈ Tδ. (3.8)

Using the estimates (3.7) and (3.8) we have∫
T3
| f1(s)|2ds ≥

λ2
0| f0|

2

2(l1+ l2)2

∫
Uδ(p1)

ds
ε2(s)

≥C2

∫
Uδ(p1)

ds
|s− p1|4

=∞;∫
T3
| f1(s)|ds =

λ0| f0|
√

2(l1+ l2)

( 27∑
j=1

∫
Uδ(p j)

ds
ε(s)
+

∫
Tδ

ds
ε(s)

)
≤C1

27∑
j=1

∫
Uδ(p j)

ds
|s− p j|

2 +C3 <∞.

Therefore, f1 ∈ L1(T3) \L2(T3). �

Lemma 3.5. For any p ∈ T3 the operator hλ0(p) has no negative eigenvalues, that is, the
operator hλ0(p) is nonnegative.

Proof. Let the function Λ(·) be defined in T3 as

Λ(p) :=
∫
T3

ds
w2(p, s)

.

Using the properties of the function w2(·, ·), one can easily verify that Λ(p1) = Λ(pi) for
i = 2,27. First we prove that the inequality Λ(p) <Λ(p1) holds for any p ∈ T3 \ {p1, . . . , p27}.

Since the function w2(·, ·) is even the function Λ(·) is also even. Then we get

Λ(p)−Λ(p1) =
1
4

∫
T3

2w2(p1, s)− (w2(p, s)+w2(−p, s))
w2(p, s)w2(−p, s)w2(p1, s)

[w2(p, s)+w2(−p, s)]ds

−
1
4

∫
T3

[w2(p, s)−w2(−p, s)]2

w2(p, s)w2(−p, s)w2(p1, s)
ds.

Applying the latter equality and the equality

w2(p1, s)−
w2(p,q)+w2(−p,q)

2
=

3∑
k=1

(cos(3p(k))−1)(1+ cos(3q(k)))

we obtain the inequality Λ(p)−Λ(p1) < 0 for all p ∈ T3 \ {p1, . . . , p27}. It means that the
function Λ(·) has maximum at the points pi ∈ T

3, i = 1,27. Since the function w1(·) has
minimum at the points pi ∈ T

3, i = 1,27 the function ∆λ(· ;0) also has minimum at these
points. So, ∆λ(p ;0) > ∆λ(p1 ;0) holds for any p ∈ T3 \ {p1, . . . , p27}.

By Lemma 3.3 we have ∆λ0(p1 ;0) = 0 and hence

∆λ0(p ;z) > ∆λ0(p ;0) ≥min
p∈T3
∆λ0(p ;0) = ∆λ0(p1 ;0) = 0

for all p ∈T3 and z< 0.Now the equality (3.6) yields that the operator hλ0(p) has no negative
eigenvalues. �
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Now we formulate a lemma (zero energy expansion for the Fredholm determinant, lead-
ing to behaviors of the zero energy resonance), which is important in the proof of Theorem
2.7, that is, the asymptotics (2.6).

Lemma 3.6. The following decomposition

∆λ0(p ;z) =
6λ2

0π
2

(l1+ l2)3/2

√
l21+2l1l2

l1+ l2
|p− pi|

2−
2z
9
+O(|p− pi|

2)+O(|z|)

holds for all |p− pi| → 0, i = 1,27 and z→−0.

Remark 3.7. An analogue lemma for the two-body discrete Schrödinger operator has been
proven in [3] in the case where the function ε(·) is of the form

ε(q) =
3∑

i=1

(1− cosq(i)).

Proof of Lemma 3.6. Let us sketch the main idea of the proof. Take a sufficiently small
δ > 0 such that Uδ(pi)∩Uδ(p j) = ∅ for all i , j, i, j = 1,27.

Using the additivity property of the integral we represent the function ∆λ0(· ; ·) as

∆λ0(p ;z) = w1(p)− z−
λ2

0

2

27∑
j=1

∫
Uδ(p j)

ds
w2(p, s)− z

−
λ2

0

2

∫
Tδ

ds
w2(p, s)− z

. (3.9)

Since the function w2(·, ·) has non-degenerate minimum at the points (pi, p j), i, j= 1,27,
analysis similar to that in the proof of Lemma 3.5 in [4] show that∫

Uδ(p j)

ds
w2(p, s)− z

=

∫
Uδ(p j)

ds
w2(pi, s)

−
4π2

9(l1+ l2)3/2

√
l21+2l1l2

l1+ l2
|p− pi|

2−
2z
9
+O(|p− pi|

2)+O(|z|);∫
Tδ

ds
w2(p, s)− z

=

∫
Tδ

ds
w2(pi, s)

+O(|p− pi|
2)+O(|z|)

as |p− pi| → 0 for i = 1,27 and z→ −0. Substituting the last two expressions and the the
expansion

w1(p) = 1+
9
2
|p− pi|

2+O(|p− pi|
4)

as |p− pi| → 0 for i = 1,27, to the equality (3.9) we obtain

∆λ0(p ;z) = ∆λ0(p1 ;0)+
6λ2

0π
2

(l1+ l2)3/2

√
l21+2l1l2

l1+ l2
|p− pi|

2−
2z
9
+O(|p− pi|

2)+O(|z|)

as |p− pi| → 0 for i = 1,27 and z→−0. Now the equality ∆λ0(p1 ;0) = 0 completes the proof
of the Lemma 3.6. �
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Corollary 3.8. For some C1,C2,C3 > 0 and δ > 0 the following inequalities hold
(i) C1|p− pi| ≤ ∆λ0(p ;0) ≤C2|p− pi|, p ∈ Uδ(pi), i = 1,27;
(ii) ∆λ0(p ;0) ≥C3, p ∈ Tδ.

Proof. Lemma 3.6 yields the assertion (i) for some positive numbers C1,C2. The positivity
and continuity of the function ∆λ0(· ;0) on the compact set Tδ imply the assertion (ii). �

4 The structure of the essential spectrum of Hµλ0

In this section we will prove Theorem 2.6.

Proof of Theorem 2.6. First we recall that by Lemma 3.5 for any T3 the operator hλ0(p) is
nonnegative and hence the equality holds⋃

p∈T3

σdisc(hλ0(p))∩ (−∞; M] = [0; M]. (4.1)

Therefore, by the equality (2.3) it is enough to study the structure of the set⋃
p∈T3

σdisc(hµ(p))∪ [0; M].

We consider the following three cases.
(i) Let µ ∈ [0;µ1]. Then by assertion (i) of Lemma 3.2 it follows that for any p ∈ T3 the

operator hµ(p) has no negative eigenvalues, that is,⋃
p∈T3

σdisc(hµ(p))∩ (−∞;0) = ∅.

Then equalities (2.3) and (4.1) complete the proof of assertion (i) of Theorem 2.6.
(ii) Let µ ∈ (µ1;µ2]. Then by assertion (ii) of Lemma 3.2 there exists a non empty open

set Dµ ⊂ T
3 such that Dµ , T

3 and for any p ∈ Dµ the operator hµ(p) has a unique negative
eigenvalue eµ(p). Since the function v2(·) is a continuous on T3 and the function w2(·, ·) is
an analytic on (T3)2, the function eµ : p ∈ Dµ→ eµ(p) is a continuous on Dµ.

Since for any fixed µ > 0 and p ∈ T3 the operator hµ(p) is a bounded and T3 is a compact
set, there exists a positive number Cµ such that sup

p∈T3
‖hµ(p)‖ ≤ Cµ. Consequently, for any

p ∈ T3 we have

σ(hµ(p)) ⊂ [−Cµ;Cµ]. (4.2)

For any q ∈ ∂Dµ = {p ∈T3 :∆µ(p ;0)= 0} there exist {pn}n∈N ⊂Dµ such that pn→ q as n→∞.
If we set e(n)

µ = eµ(pn), then by Lemma 3.2 for any n ∈ N the inequality e(n)
µ < 0 holds and

from (4.2) we get {e(n)
µ }n∈N ⊂ [−Cµ;0). Without loss of generality (otherwise we would have

to take a subsequence) we assume that e(n)
µ → e(0)

µ as n→∞ for some e(0)
µ ∈ [−Cµ;0].

From the continuity of the function ∆µ(· ; ·) in T3 × (−∞;0], and pn→ q and e(n)
µ → e(0)

µ

as n→∞ it follows that

0 = lim
n→∞
∆µ(pn ;e(n)

µ ) = ∆µ(q ;e(0)
µ ).
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Since for any µ > 0 and p ∈ T3 the function ∆µ(p ; ·) is decreasing in (−∞;0] and q ∈ ∂Dµ

we see that ∆µ(q ;e(0)
µ ) = 0 if and only if e(0)

µ = 0.
Now for q ∈ ∂Dµ we define

eµ(q) = lim
p′→q, p′∈Dµ

eµ(p′) = 0.

Since the function eµ(·) is a continuous on the compact set Dµ ∪ ∂Dµ and eµ(q) = 0 for all
q ∈ ∂Dµ we conclude that Im(eµ) = [aµ;0] and aµ < 0, where Im(eµ) denotes the range of
the function eµ(·).

Hence the set ⋃
p∈T3

σdisc(hµ(p))∩ (−∞;0]

coincides with the set Im(eµ) = [aµ;0]. Then equalities (2.3) and (4.1) complete the proof
of assertion (ii) of Theorem 2.6.

(iii) Let µ > µ2. Then by assertion (iii) of Lemma 3.2 for all p ∈T3 the operator hµ(p) has
a unique negative eigenvalue eµ(p). Since the function eµ : p ∈ Dµ→ eµ(p) is a continuous
on the compact set T3 the set Im(eµ) is a connected closed subset of (−∞;0), that is, Im(eµ)=
[aµ;bµ] with aµ < bµ < 0 and hence⋃

p∈T3

σdisc(hµ(p))∩ (−∞;0] = [aµ;bµ].

Then again the equalities (2.3) and (4.1) complete the proof of assertion (iii) of Theorem
2.6. �

5 Asymptotics for the number of negative eigenvalues of H0λ0

In this section first we review the corresponding Birman-Schwinger principle for the oper-
ator H0λ and then we prove the asymptotic relation (2.6) for the number of negative eigen-
values of H0λ0 .

5.1 The Birman-Schwinger principle.

For a bounded self-adjoint operator A acting in the Hilbert space R, we define the number
n(γ,A) by the rule

n(γ,A) := sup{dimF : (Au,u) > γ, u ∈ F ⊂ R, ||u|| = 1}.

The number n(γ,A) is equal to the infinity if γ < maxσess(A); if n(γ,A) is finite, then it
is equal to the number of the eigenvalues of A bigger than γ.

By the definition of Nλ(z), we have

Nλ(z) = n(−z,−H0λ), −z > −τess(H0λ).

Since the function ∆λ(· ; ·) is a positive on T3× (−∞;τess(H0λ)), the positive square root
of ∆λ(p ;z) exists for any p ∈ T3 and z < τess(H0λ).
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In our analysis of the discrete spectrum of H0λ the crucial role is played by the self-
adjoint compact 2×2 block operator matrix T̂λ(z), z < τess(H0λ) acting onH0⊕H1 as

T̂λ(z) :=
(

T̂00(λ;z) T̂01(λ;z)
T̂ ∗01(λ;z) T̂11(λ;z)

)
with the entries

T̂00(λ;z)g0 = (1+ z−w0)g0, T̂01(λ;z)g1 = −

∫
T3

v(s)g1(s)ds
√
∆λ(s ;z)

;

(T̂11(λ;z)g1)(p) =
1

2
√
∆λ(p ;z)

∫
T3

g1(s)ds
√
∆λ(s ;z)(w2(p, s)− z)

.

The following lemma is a modification of the well-known Birman-Schwinger principle
for the operator H0λ (see [3, 4, 18, 19, 30]).

Lemma 5.1. The operator T̂λ(z) is compact and continuous in z < τess(H0λ) and

Nλ(z) = n(1, T̂λ(z)).

For the proof of this lemma, see Lemma 5.1 of [4].

5.2 Proof of Theorem 2.7.

Let S2 be the unit sphere in R3 and σ := L2(S2). As we shall see, the discrete spectrum
asymptotics of the operator T̂λ0(z) as z→ −0 is determined by the integral operator S r,

r = 1/2| log |z|| in L2((0,r),σ) with the kernel

S (y, t) :=
1

4π2

(l1+ l2)2√
l21+2l1l2

1
(l1+ l2)coshy+ l2t

,

where y = x− x′, x, x′ ∈ (0,r), t = 〈ξ,η〉, ξ,η ∈ S2.

The eigenvalues asymptotics for the operator S r have been studied in detail by Sobolev
[30], by employing an argument used in the calculation of the canonical distribution of
Toeplitz operators.

Let us recall some results of [30] which are important in our work.
The coefficient in the asymptotics (2.6) of Nλ0(z) will be expressed by means of the

self-adjoint integral operator Ŝ (θ), θ ∈ R, in the space σ, whose kernel is of the form

Ŝ (θ, t) :=
1

4π2

(l1+ l2)2

l21+2l1l2

sinh[θarccos l2
l1+l2

t]

sinh(πθ)
,

and depends on the inner product t = 〈ξ,η〉 of the arguments ξ,η ∈ S2. For γ > 0, define

U(γ) :=
1

4π

∫ +∞

−∞

n(γ, Ŝ (θ))dθ.
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This function was studied in detail in [30]; where it was used in showing existence proof of
the Efimov effect. In particular, as it was shown in [30], the function U(·) is continuous in
γ > 0, and the limit

lim
r→0

1
2

r−1n(γ,S r) = U(γ) (5.1)

exists and the number U(1) is positive.
For completeness, we reproduce the following lemma, which has been proven in [30].

Lemma 5.2. Let A(z) := A0(z)+A1(z), where A0(z) (A1(z)) is compact and continuous for
z < 0 (for z ≤ 0). Assume that the limit

lim
z→−0

f (z)n(γ,A0(z)) = l(γ)

exists and l(·) is continuous in (0;+∞) for some function f (·), where f (z)→ 0 as z→ −0.
Then the same limit exists for A(z) and

lim
z→−0

f (z)n(γ,A(z)) = l(γ).

Remark 5.3. Since the function U(·) is continuous with respect to γ, it follows from Lemma
5.2 that any perturbation of A0(z) treated in Lemma 5.2 (which is compact and continuous
up to z = 0) does not contribute to the asymptotic relation (2.6). In the rest part of this
subsection we use this fact without further comments.

Now we are going to reduce the study of the asymptotics for the operator T̂λ0(z) to that
of the asymptotics S r.

Let T(δ; |z|) be the operator inH0⊕H1 defined by

T(δ; |z|) :=
(

0 0
0 T11(δ; |z|)

)
,

where T11(δ; |z|) is the integral operator inH1 with the kernel

(l1+ l2)3/2

54π2

27∑
i, j=1

χδ(p− pi)χδ(q− p j)(m|p− pi|
2+2|z|/9)−

1
4 (m|q− p j|

2+2|z|/9)−
1
4

(l1+ l2)|p− pi|
2+2l2(p− pi,q− p j)+ (l1+ l2)|q− p j|

2+2|z|/9
.

Here m := (l21+2l1l2)/(l1+ l2) and χδ(·) is the characteristic function of the domain Uδ(0).
The operator T(δ; |z|) is called singular part of T̂λ0(z).
The main technical point to apply Lemma 5.2 is the following lemma.

Lemma 5.4. For any z ≤ 0 and small δ > 0 the difference T̂λ0(z)−T(δ; |z|) is compact and
is continuous with respect to z ≤ 0.

Proof. Since the function w2(·, ·) has non-degenerate zero minimum at the points (pi, p j) ∈
(T3)2, i, j = 1,27, we obtain the following expansion

w2(p,q) =
9
2

[
(l1+ l2)|p− pi|

2+2l2(p− pi,q− p j)+ (l1+ l2)|q− p j|
2
]

+O(|p− pi|
4)+O(|q− p j|

4)
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as |p− pi|, |q− p j| → 0, for i, j = 1,27. Then there exist C1,C2 > 0 and δ > 0 such that

C1(|p− pi|
2+ |q− p j|

2) ≤ w2(p,q) ≤C2(|p− pi|
2+ |q− p j|

2),

(p,q) ∈ Uδ(pi)×Uδ(p j) for i, j = 1,27;

w2(p,q) ≥C1, (p,q) ∈ T2
δ.

Applying last inequalities and Corollary 3.8, one can estimate the kernel of the operator
T̂11(λ0;z)−T11(δ; |z|), z ≤ 0, by the square-integrable function

C1

27∑
i, j=1

[ 1
|p− pi|

1/2 +
1

|q− p j|
1/2 +

|p− pi|+ |q− p j|

|p− pi|
1/2(|p− pi|

2+ |q− p j|
2)|q− p j|

1/2

+
|z|1/2

(|p− pi|
2+ |z|)1/4(|p− pi|

2+ |q− p j|
2)(|q− p j|

2+ |z|)1/4 +1
]
.

Hence, the operator T̂11(λ0;z)−T11(δ; |z|) belongs to the Hilbert-Schmidt class for all z ≤ 0.
In combination with the continuity of the kernel of the operator with respect to z < 0, this
implies the continuity of T̂11(λ0;z)−T11(δ; |z|) with respect to z ≤ 0.

It is easy to see that T̂00(λ0;z), T̂01(λ0;z) and T̂ ∗01(λ0;z) are rank 1 operators and they
are continuous from the left up to z = 0. Consequently T̂λ0(z)−T(δ; |z|) is compact and
continuous in z ≤ 0. �

From definition of T(δ; |z|) it follows that σ(T(δ; |z|)) = {0} ∪σ(T11(δ; |z|)) and hence
n(γ,T(δ; |z|)) = n(γ,T11(δ; |z|)) for all γ > 0.

The following theorem is fundamental for the proof of the asymptotic relation (2.6).

Theorem 5.5. We have the relation

lim
|z|→0

n(γ,T11(δ; |z|))
| log |z||

= U(γ), γ > 0. (5.2)

Proof. The subspace of functions ψ, supported by the set Ωδ :=
27⋃
i=1

Uδ(pi) is invariant with

respect to the operator T11(δ; |z|).
Let T 0

11(δ; |z|) be the restriction of the integral operator T11(δ; |z|) to the subspace L2(Ωδ),
that is, the integral operator in L2(Ωδ) with the kernel T 0

11(δ; |z|; ·, ·) defined on Ωδ×Ωδ as

T 0
11(δ; |z|; p,q) :=

(l1+ l2)3/2

54π2

(m|p− pi|
2+2|z|/9)−

1
4 (m|q− p j|

2+2|z|/9)−
1
4

(l1+ l2)|p− pi|
2+2l2(p− pi,q− p j)+ (l1+ l2)|q− p j|

2+2|z|/9
,

(p,q) ∈ Uδ(pi)×Uδ(p j) for i, j = 1,27.

Since L2(
27⋃
i=1

Uδ(pi)) �
27⊕
i=1

L2(Uδ(pi)), we can express the integral operator T 0
11(δ; |z|) as

the 27×27 block operator matrix T0(δ; |z|) acting on
27⊕
i=1

L2(Uδ(pi)) as

T0(δ; |z|) :=


T (1,1)

0 (δ; |z|) . . . T (1,27)
0 (δ; |z|)

...
. . .

...

T (27,1)
0 (δ; |z|) . . . T (27,27)

0 (δ; |z|)

 ,
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where for i, j = 1,27 the operator T (i, j)
0 (δ; |z|) : L2(Uδ(p j))→ L2(Uδ(pi)) is the integral oper-

ator with the kernel T0(δ; |z|; p,q), (p,q) ∈ Uδ(pi)×Uδ(p j).
Set

L(27)
2 (Ur(0)) := {φ = (φ1, · · · ,φ27) : φi ∈ L2(Ur(0)), i = 1,27}.

It is easy to show that T0(δ; |z|) is unitarily equivalent to the 27× 27 block operator
matrix T1(r), r = |z|−

1
2 , acting on L(27)

2 (Ur(0)) as

T1(r) :=


T1(r) . . . T1(r)
...

. . .
...

T1(r) . . . T1(r)

 ,
where T1(r) is the integral operator on L2(Ur(0)) with the kernel

(l1+ l2)3/2

54π2

(m|p|2+2/9)−
1
4 (m|q|2+2/9)−

1
4

(l1+ l2)|p|2+2l2(p,q)+ (l1+ l2)|q|2+2/9
.

The equivalence is realized by the unitary dilation (27×27 diagonal matrix)

Br := diag{B(1)
r , . . . ,B(27)

r } :
27⊕
i=1

L2(Uδ(pi))→ L(27)
2 (Ur(0)),

Here for i = 1,27 the operator B(i)
r : L2(Uδ(pi))→ L2(Ur(0)) acts as

(B(i)
r f )(p) = (r/δ)−3/2 f (δp/r+ pi).

Let Ar and E be the 27×1 and 1×27 matrices of the form

Ar :=


T1(r)
...

T1(r)

 , E := (I . . . I),

respectively, where I is the identity operator on L2(Ur(0)).
It is well known that if B1,B2 are bounded operators and γ , 0 is an eigenvalue of B1B2,

then γ is an eigenvalue for B2B1 as well of the same algebraic and geometric multiplicities
(see e.g. [10]). Therefore, n(γ,ArE) = n(γ,EAr), γ > 0. Direct calculation shows that
T1(r) = ArE and EAr = 27T1(r). So, for γ > 0 we have n(γ,T1(r)) = n(γ,27T1(r)).

Furthermore, replacing

(m|p|2+2/9)
1
4 , (m|q|2+2/9)

1
4 and (l1+ l2)|p|2+2l2(p,q)+ (l1+ l2)|q|2+2/9

by the expressions

(m|p|2)
1
4 (1−χ1(p))−1, (m|q|2)

1
4 (1−χ1(q))−1 and (l1+ l2)|p|2+2l2(p,q)+ (l1+ l2)|q|2,

respectively, we obtain the integral operator T2(r). The error 27T1(r)−T2(r) is a Hilbert-
Schmidt operator and continuous up to z = 0.
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Using the dilation

M : L2(Ur(0) \U1(0))→ L2((0,r),σ), (M f )(x,w) = e3x/2 f (exw),

where r= 1/2| log |z||, x ∈ (0,r),w ∈ S2, one sees that the operator T2(r) is unitarily equivalent
to the integral operator S r.

Since the difference of the operators S r and T11(δ; |z|) is compact (up to unitary equiva-
lence) and hence, since r = 1/2| log |z||, we obtain the equality

lim
|z|→0

n(γ,T11(δ; |z|))
| log |z||

= lim
r→0

1
2

r−1n(γ,S r), γ > 0.

Now Lemma 5.2 and the equality (5.1) completes the proof of Theorem 5.5. �

We are now ready for the

Proof of Theorem 2.7. Using Lemmas 5.2, 5.4 and Theorem 5.5 we have that

lim
|z|→0

n(1,Tλ0(z))
| log |z||

= U(1).

Taking into account the last equality and Lemma 5.1, and settingU0 = U(1), we complete
the proof of Theorem 2.7. �

6 Infiniteness of the number of embedded eigenvalues of Hµλ0

In this section we shall prove Theorem 2.11.

Proof of Theorem 2.11. First we recall that by the assertion (i) of Theorem 2.6 we have
minσess(H0λ0) = 0 and by Theorem 2.7 the operator H0λ0 has infinitely many negative
eigenvalues E1, . . . ,En, . . . , accumulating at zero. Let f (1), . . . , f (n), . . . be the corresponding
eigenvectors.

Denote byL0 the subspace of all eigenvectors of H0λ0 , corresponding to the all negative
eigenvalues. We show that V

∣∣∣∣
L0
= 0.

Let z < 0 be an eigenvalue of the operator H0λ0 and f = ( f0, f1, f2) ∈ H be the corre-
sponding eigenvector. Then f0, f1 and f2 are satisfy

(w0− z) f0+
∫
T3

v1(s) f1(s)ds = 0;

v1(p) f0+ (w1(p)− z) f1(p)+λ
∫
T3

f2(p, s)ds = 0; (6.1)

λ

2
( f1(p)+ f1(q))+ (w2(p,q)− z) f2(p,q) = 0.

Since z < [0; M], from the third equation of the system (6.1) for f2 we have

f2(p,q) = −
λ( f1(p)+ f1(q))
2(w2(p,q)− z)

. (6.2)
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Substituting the expression (6.2) for f2 into the second equation of the system (6.1), we
obtain

f1(p) =
λ2

0

2∆λ0(p ;z)

∫
T3

f1(s)ds
w2(p, s)− z

−
v1(p) f0
∆λ0(p ;z)

.

Since the functions v1(·),w1(·) and w2(·, ·) are periodic of each variable with period 2π/3 this
implies that f1(·) is also a periodic function on each variable with period 2π/3. Therefore,
the function f2(·, ·) defined by (6.2), is a periodic function on each six variables with period
2π/3. Hence this function satisfies the condition (2.2), that is, V f2 = 0 for any f2 ∈ L0.

From here, in particular, it follows that V f (n)
2 = 0 for any n ∈N. Therefore, for any µ ≥ 0 the

numbers E1, . . . ,En, . . . are eigenvalues of Hµλ0 with the same eigenvectors f (n), n ∈ N.
If µ ∈ [0;µ1], then by the assertion (i) of Theorem 2.6 we have minσess(Hµλ0) = 0. In

this case, the set {En : n ∈N} is located in the below of the bottom of the essential spectrum
of Hµλ0 and lim

n→∞
En = 0. Let µ ∈ (µ1;µ2]. Then the assertion (ii) of Theorem 2.6 implies that

σess(Hµλ0) = [aµ; M] with aµ < 0. Hence, the countable part of the set {En : n ∈N} is located
in the essential spectrum of Hµλ0 . If µ > µ2, then by the assertion (iii) of Theorem 2.6 we
obtain σess(Hµλ0) = [aµ;bµ]∪ [0; M] with aµ < bµ < 0. It means that the countable part of
the set {En : n ∈ N} is located in (bµ;0). Theorem 2.11 is proved. �
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