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Abstract

We consider the problem of electromagnetic wave propagation in homogeneous dielec-
tric dispersive waveguidds = D x R whereD is a bounded domain ik?, produced
by non-uniformly moving sources of the form

j(x.t) = A()o(x = Xo(t)) (0.1)

wherej(x,t) is the current densityA(t) is a vector amplitudex = xp(t) is a trajectory
of the source.
We consider the propagation o andT M waves in the waveguidd, produced
by the source (0.1). As example we study the propagation of electromagnetic waves
in a waveguides filled by a cold, non magnetized plasma.
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1 Introduction

We consider the problem of electromagnetic wave propagation in homogeneous dielectric
dispersive waveguideH = D x R whereD is a bounded domain iR?, produced by a
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non-uniformly moving source of the form
j(x.t) = A()o(x —xo(1))

wheregj (x,t) is the current density = Xp(t),t € R is a trajectory of the sourcéy(t) is a vector
amplitude. The problem under consideration has a well-known theoretical and applied
interest in the many branches of theoretical and applied physics, for example, in the satellite
communications, nuclear and relativistic physics.

It should be noted that the problem of propagation of electromagnetic waves from the
moving particle in a homogeneous space is a classical problem of electrodynamics (see, for
instance, [15], [12], [9], [10] ). The electromagnetic field produced by uniformly moving
source in homogeneous waveguides was considered in the monograph [7], see, also papers
devoted the well-known Vavilov-Cherenkoffect in homogeneous waveguides generated
by uniformly moving sources (see, for instance, [1], [9] and references cited there).

Our approach is based on the asymptotic analysis of the problem where the large param-
eter characterizes simultaneously a large distance between the source and receiver, slowly
oscillation of the velocity(t) and the amplitudé\(t). We apply in the paper the methods
which developed earlier under investigation of the problem of underwater wave propagation
from moving sources (see [17], [18], [19]) and in the electromagenetic waves propagation
in dispersive media in [3], [20]. As an example we consider the waves propagation in the
plasma waveguides generated by moving source.

2 Maxwell's equation

Maxwell’'s equations in the élierential representations are (see for instance [24])

VXEX) = - aB{;"t), @2.1)
VxH(x,t) = 8D§[<,t) +J(x,1),

V-B(x,t) =0, V-D(r,t) = p(x,t),x = (X1, X2, X3)

where

X = (X1, X2, X3) € R3,t e R,

E = (E1, E», E3) is the electric field,

H =(H1, Hy, H3) is the magnetic field,

D =(D1, D, D3) is the electric flux,

B =(B1, By, B3) is the magnetic flux,

j(x,t) is the vector of current density,

o(x,1) is the charge density.

The current density(x,t) and the charge densitfx,t) are connected by the continuity
equation

. 0p
Vj+— =0. 2.2
I+ (2.2)
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We will suppose that electromagnetic waves are produced by the moving source for which
oot = Ae(x—x°(1)),

whereA(t) is vector-valued amplitude.
For isotropic homogeneous dispersive media:

D(w, X)=&(w)E(w, X), B(w,X)=u(w)H (w,X), (2.3)

where

®(w,X) = fR O(t, x)etdt

is a Fourier transform with respecttta R of the vector-functiom®(t, X),e = e(w) is electri-
cal permittivity,u = u(w) is magnetic permittivity depending on the frequency.

We suppose (see [16], Chap. IX) that:

(i) The functionss(w), u(w) are limits in the sense of the distributions of analytic bounded
in the upper complex half-plane functions;

(i) K3(w) = wle(w)u(w) has a finite numbeap; < ... < wy of simple zeros oik, and

K(w) >0
weR\[w1—€,wk+e€]
for small enougte > 0.
(i) the group velocityvg(w) = Wlw) >0forallweR\[wy—€ wk+€].
After Fourier transform and the standard manipulations (see for instance [24]) the
Maxwell’s system splits into two independent equations

V2E(w, X)+K2(w)E(w, X) = Hw) Vp(w, X) — iwpu(w) f(w,X) (2.4)

= —lwp(w)(jlw,x)+ V(V- Nw. X)) = F(w.X)

1
k?(w)
V2H (w, X)+K2(w)H (w, X)= =V X j(w,X)= ®(w,X) (2.5)

In what follows we consider the propagation of transverse elediif) &nd transverse
magnetic T M) waves. The electric field of th€ E-waves is directed ix;x,—plane. We
will characterize thé E-waves to use thély, component of the magnetic field, and sup-
pose thak,, = 0, andT M-waves are characterized By, while Hy, = 0. We suppose that
the boundary of the waveguidéis an ideal conductor. It implies the boundary conditions
(see

o oH
4
¢ =0
Ew lon= 0,
where% is the normal derivative dE; at the point of the boundary.

The componentg’ = (Ex,, Ex,).H” = (Hx,, Hx,) of the electric and magnetic fields can
be found from the expressiong4£ H,) (see for instance [24], page 339-340).
Equations (2.4) and (2.5) implies
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9p(w,X)

AEHw, X)+K(w)Ex(w, X) =" (w) 0~ 10(0) jw,X) (2.7)
= () X+ V(T D0 0) = Folo),
Iéz lori= 0.
AHz(w, X)+K2(w)Hz(w, X)=—V X j(w,X);=0(w, X), (2.8)
oH, o
5 lori= 0.

3 Waveguide Green function

First we consider the Green function for Helmholtz equation in the waveduittat is the
solution of the equation

— (A + ko)) 9w, X' X5, 2) = 6(X = Xp)6(2). X = (X', 2)ell (3.1)

wherex6 € O with the Dirichlet condition

glon= 0, (3.2)
and the Neumann condition P
a—g lor= 0. (3.3)
vV

We consider the spectral Dirichlet problem in the cross-sediiarf I1

, —Avp(X) = 2p(X), X' € D,
BDSD(X):{ o« )‘Pla;of(o.)

It is well known that the spectral problem (3.4) has a positive discrete spectrum

(3.4)

spﬂ%z)z{0<a§<a§<...<aﬁq<...<}

in the spacéd.2(D) and the orthonormal base irf(D) of the eigenfunction§<pj}‘;i1
Bogj(X') = aZpj(X),X € D. (3.5)

We will find a solution of the equation (3.1) in the form

9@, X, %52 = ) ¥i(@,2X0)¢j(X), (3.6)
j=1

Substitutingg(w, X', X;, 2) in (3.1) we obtain

Z [—— +(af - kz(w))] ¥j(w,2Xg)ej(X) = 6(X" —X0)5(2). (3.7)

j=1
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(=)
j=

Since the systerfy;] , is orthonormal in the spade!(2) we obtain

d2 /7 ’ /7 ’ ’
[qgﬂﬁm%ﬁhw@w=Uku4@mmwy® (3.8)
= ¢j(Xp)d(d.
Solution of the equation (3.8) satisfying the limiting absorption principle is

i /kz(w)—on?IZI

Yi(w,zXp) = ——=0j(Xg) (3.9
2i [k2(w) - 0/12
Hence
0 i lkz(w)—ajzlzl
O(w, X', X4,2) = @j(X)pj(Xg)- (3.10)

i=1 2i |/k2(w) —ajz

In what follows we are of interesting the members of the row (3.10) which are oscillating
at infinity, that is the members for whighis such that the condition

o < K(w) (3.11)

k@) = () -2

and we say that th&; > 0 is a critical frequency of the waveguideif(w) > 0 for all
w > Q;. Note that the functiop(w) is monotonically increasing on the segma, +o)
becausd(w) is a monotonically increasing function.

Hence if we are restricted by the propagated modes in the expression for the Green
functiong(w, X', x;, 2) we will write the propagated Green function as

holds. We set

2, grjw)id

E, o _ NV AW VU
Oprop(w, X', X0, 2) = ]Z:; —Zi,uj(w) O, +0) (W)@ (X ) (Xp), (3.12)

WhereG)(Qj,m)(w) is the Heaviside function

1w>Q;
O +0) (W) ={ 0w < Q} X

The similar situation holds for the Neumann problem. In this case he eigenvalues are
0<p2 <p5<..<f4<..<and we obtain the decomposition of the Green function for the
Neumann problem

(o)

H; AN eiVj ()2 ’ ’
gprop(w, X, XO’ Z) = ; m®(ﬂj,+w) (w)¢1 (X )¢J (XO)’ (3 13)

wherev(w) = /kz(w)—,sz whereg;(x’) are eigenfunctions of the Neumann problem for
the Laplaciam\ in D.
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4 Dynamic problem
We consider the equation

(A+K(w)) Ew,x) = =Fz(w,x).x €I, (4.1)
Ez(w,X) lan=0.

The solution of the problem (4.1) is given as
)= [ 9o X K02 2P Xy 22, (4.2)
II

Formula (4.2) implies that

E(t.X.2) = 2_171 f f gioft-) ( f g(w,x',xg,z-zo)FZ(T,xg,,zo)dxgdzo)dwdr. (4.3)
11
RZ

Let
F2(t,x) =A[)5(X" - x5(1)d(z— z0(1)), (4.4)

describes a source moving in the waveguilavherexg(t) = (Xo1(t), Xo2(t)) € D, 20(t) € R
for everyt € R. Applying (4.4) we obtain that

Eu(t,X,2) = % f f et Ig(w, X, x4(7), 20(7))dwdr.
RZ

Taking into account the propagated modes only, we obtain

LS L (ARSI B o
Ecpron.2) = ). 5 [ [ A0, (@) (X ()
=1 R2 :

(4.5)

The similar way we obtain

' o 1 ([ A(r)eki@iz®et=n) N
Pagrooll:2) = Z fo 2iu;(w) O(q).+0) (W) (X )} (Xo(7))dewdlr,
=1 R i

(4.6)

where
D4(t,X) =A1()5(X" —X5(1))8(z— 20(1)) (4.7)

5 Asymptotic analysis of modes generated by moving source

We introduce a parametadras

. wo
A= inf |z—2(7) o (5.1)
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wherec is the light speed in the vacuum? > 0 is a frequency scale of the problem and
suppose thal >> 1 is the large dimensionless parameter.
Let
A(t) = a(t)e ', (5.2)

wherewg > 0 is a support frequency of the soure€t) = a(t/1), whered(t) is an infinitely
differentiable function bounded with all derivatives,

1_ .t
20(t) = 720(). (5:3)
where all derivatives oZy(t) are bounded,
t
Xo(t) = Xo(3). (5.4)

X4(t) is bounded function with all derivatives.
Formulas (5.2), (5.3), (5.49) demonstrate @} andx;(t) are slowly varying because

, L te o 1dXG ot
[a(t)]’ = Za(/_l)’xo(t) = /_lﬁ(jl)’ (5.5)
andzy(t) is slowly varying because
Lo 1d?Zg t
2(t) = EF(E)' (5.6)

After substitution of (5.2), (5.3), (5.4) in (4.5) and the scale change of variables
2=AZt=AT, 7t = A.
we obtain

Egro p(Ta X', Z)

o A 3(y) g @IZ=Zo@=(T—0)~wor) / ’
) Z fo BO(0;.+w) (W) (X ) (Xo(1))dwde.
=1 s

2iptj ()
Let
~ , A A(y) i @)Z=Zo(=(T—0)~wor) / /
512 = fo 2011 () 0@+ (@) (X ) (Xp())dwdl. (5.7)
R2

We will investigate the asymptotics of the functitﬁ’f(T,x',Z) for fix (T,x’,Z) and
A — +o0 applying the 2-dimensional stationary phase method (see [4], [8]). Let
éj(T,Z,a),L) = pj(w)1Z = Zo()| = (T =) —wot
the phase of the double integral (5.7). The stationary points of the phase are solutions of
the system of the equations

0Si(T.Zw.1) Z—Zo(y)l _
o =) —(T-1) =0, (5.8)

o

= —11j(@)Zo(1)SgNZ - Zo(1)) + w = wo = 0,
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whereuj(w) is a wave number, anej’(w) is the group velocity of the mode with numbgr
that is

Let (wé = wg(T,Z),Lg = Lé(T,Z)) be a stationary point, that is a solution of system (5.8).
We suppose that this point is non degenerate, that is

detS”(T,Z wl, ) £ 0,

where ; ;
?Sj(T.Zwy)  8°Si(T.Zwy)
Q77 _ 0w? 0wl
S{(T.Zw,) = R8T Zws)  ?8(T.Zwa)

OwoL o2
is the Hess matrix of the phase.

Let sgné]’(T,Z,ws,Ls) be the diference between the number of positive and negative
eigenvalues of the matri§3’(T,Z,ws,Ls). Then according to the two dimensional station-
ary phase method the contribution of the stationary point,:f) in the asymptotics of
Ef(T,x’,Z) is given by the formula

E/(T.X,2) (5.9)

i, i e U i

a(L )eI/ISJ(T,Z,wS,LS)HZSgrSj (T,Zws,ts) ) ) o

== ——0(.+00) (@D (X ) (X))
2ipj(wd)|detS) (T,Z,wée)

x(1+ O(%))

Note that the main term of the asymptotEﬁ(T,x’,Z) does not equal O ybls > Q;j only.
The asymptotics of the fieIE[grop(T,x’,Z) for 2 — +oo is given by the formula

N
Epop(T-X,2) = Y E{(T.X,2),
=1

whereN is the number of propagated modes, thalNiss a maximal number such that
ws € (Qj,+00), for j<1<N.
For the further calculations it is convenient to come back to the original notations

N
Eprop(t.X2) ~ > Ej(t.X,2), (5.10)
=1

where

Ej(t,x,2) (5.11)

1S (tzwhtl)+iFsong (tzwltl)

a(rs)e , o
= > . 12 ¥i (x )SDJ (XO(LJS))v
2ipj(we) |detS (t,z wg, 7Y
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and
Sj(t.2w.7) = pj(w) Iz 20(7)| - w(t - 7) - wor, (5.12)

the pair (yé,rg) is the solution of the system

0Si(t.zw,7) _ |z—2(7)l

- - t -T)= 03 5- 13
0Si(t,zw,7) )
e g = —pj(w)20(7)sgN(z - 20(7)) + w —wo = 0,
azéj (t,zw,7) 62§j (t,zw,7)
" - 2 300
SJ (t, Zw, T) - 62§].(%€)Zw’1.) 62§j E(t),Z,Ta),T)
Adwdt or2

is the Hess matrix with respect to,(r). _ _

Note that the stationary pointe{, &) have explicit physical sensei = w(t,2) is the
instantaneous frequency of the wave process defined by the Ejice , 2) andrl = 74(t, 2)
is the radiation time of a mode arrived to the source at the time

5.1 Motion with a constant horizontal velocity

Let the sources move with a constant horizontal velocity, that is
,, 1
X(t) = (X'(30. ).

The the system (5.8) is of the form

(9§j(T,Z,a),L) _|Z-v]

o =) —(T-1)=0, (5.14)
ST, Zw,t)
T:+yj(a))v+a)—wo=0, (5.15)

Equations (5.15) are independent @hd under condition

sup v
Ww>Qj ng(w)

<1 (5.16)

that is the horizontal velocity is smaller then the minimum of the group velocity, has the
unique solution which can be find by the method of successive approximations.
Consider now the equation (5.14) whese= wl. Then
|Z—wt|
V(wl)

—(T-y)=0. (5.17)

This equation under condition (5.16) has unique solutLomhich also can be find by the
method of successive approximations.
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g S,(T Zw,t)

Note that = 0. Hence
~ o 1/2 \Vj
detS/(T,Z w1 = |1 |,
V(wl)
and o
SgrS]'(T,Z,a)JS,LJS) =0.
Hence
E{(T.X.,2) (5.18)

Ao ((T.Zwhd) _ , o
= — O,+00) (@D} (X ) (X0 (1)
2iy] (‘Us)

_g( )

1
x(1+0()),
and coming back to the old coordinates we’,z) we obtain

Ej(t,x,2) (5.19)

a(Tj )ei/lSj (t,Z,wé,Té) . , L
~ O(q;+00) (W} (X )i (Xp(T8)),

2Iy1(ws) 1+

vg( 9
where
Si(t.zw, 1) = pj(w)|2—vr)| - W(t - 7) — wor,
wé are solutions of the equation
Fuj(w)V+ (w—wo) =0, (5.20)

andr) are solutions of the equation

|z—vr|
V(w))

—(t-7)=0. (5.21)

5.2 Motion in plasma waveguides

We consider a lossless no magnetized plasma whose the collision frequency equals to zero
(see for instance [11], [22], [23]). Hence the constitutive parameters in plasma are

wp
e(w) = eo(1- F)’“ = Mo, (5.22)

£0, 1o are the electric and magnetic permittivity of the vacuum,

wp = 4”62'\' - (5.64- 104\/N/(sm)3— (5.23)
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is theplasma frequengywhereN is theparticle density concentration of electrons,aare
the mass and charge of the electron.
In the ionosphere

1 1
103(:—m3 <N<3. 1060—mg (5.24)

Graphic ofN is given in Fig.1. Note that in the accelerator of the partitles 10*3#.
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Fig. 1. Graphic of N.

Phase velocity in the plasma is

clw) = —2 (5.25)

1-

|‘€
foloto

w

wherecy is the light speed in the vacuum, and the wave-number is

Jw?—w?

(5.26)

The group velocity in the plasma

1
K'(w)

2
“p

Vg(w) = = ¢ (5.27)

-=
wherecy = 2.997- 108£C is the light speed in the vacuum. Hence the phase velocity in the

plasma larger thao, and the group velocity is smaller thagif w > wp.
The mode wave number in the plasma waveguide is

2,2 wZ—Q2
p@)= [P —p?= L (5.28)
c3 I Co

whereQ; = /w3 +aj2c8 is the critical frequency of th¢—mode, and the group velocity of

the j—-mode is
(@) = —— =cor| i (5.29)
Vg(w) = = =C\|1-—. 5.
g ﬂj(w) w?
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Hence the phase velocity of themode

w Co
Hj (w) Q2
1

> Co

is larger than the light speed in the vacuurnvit Q;j while the group veIocitwé(w) <o if
w > Qj .
Note that in the case of a rectangular waveguide

II=DxR

where
D =[0,h1] x[0,hy]

the spectrum of the Dirichlet problem #f1 is
i2

g5,
of = {ﬂz(h—%+ h—g),J = (j1. j2) eNZ}, (5.30)

and normed in_?(D) eigenfunctions are

Tj1Xy . mjaXo

goj(xl,x2)=2(h1h2)‘% sin sin —
2

(5.31)
j =(j1,j2) eENXN

We consider the electric waves generated by the moving in the wavegusinigrce of the
form

F4(t,X)= = a(t)e™o'5(x’ — x{(t))d(z— i),
5(X" = xg(1)) = 6(x1 — X10(1)) (%2 — X20(1))

where the functiongig(t), x2o(t), anda(t) are slowly varying, and
0< Xlo(t) < hl,O < Xzo(t) < hz.

According formulas (5.19) we obtain

5(tx.2) (5.32)
a()e1Si (t2ws ™) 4 o

. S). O(qy+o0) (WS} (X )pj (X0(7¥))
2ipj (W) |1+ 52

V? (@h)

where
Si(t.Zzw,7) = yj(w) 2= V1) - w(t - 7) —wor,j = (j1. j2),
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2
2_ 2 Jw? = Q)
J

uj(w) = at =
. c Co
2 2 2 J% Jg
af =aj j, =7 (5 +15),
2

. 1 02
Vg(w) =~ = Co \[1~ —3.j = (j1. j2) e N XN,
ﬂj(w) w

(a)js, HS) are solutions of the system

Fuj(W)V+ (w=wo) =0,j = (j1,j2) e NXN,

6 Numerical Examples and Graphics

Here is a numerical example of motion in plasma waveguides. We graph some
equations and parameters like critical frequencies, dispersion curves, group velocities,
instant frequencies, doppleffect and the field E.

For the graphs we take the particle density concentration of electrohls:oio“ﬁ
and a total of 4 eigenvalues witlh; = h, =5mas a dimensions of the rectangular
waveguide.

In the Figure 2 we graph the critical frequencies, we have 4 valu@§32« 108,
9.4670+ 1P, 2.1298+10°, and 37862:10°. The plasma frequenay, for N =104
is 17835+« 10’

% 105 Critical Frequencies

4 ! ! ! ! !
KK b fommme s R S b 8
] I SO SR SO SR SO 1
25 . R e
SO — e e e e :
R . . e . e :
B I b, S SO IO R i
05 wmememeeee- oo T rrrrrrrrrrrrrr i R e 1

] i i i
1 15 2 25 3 35 4

I

Fig. 2. Critical Frequencie®; = ,/wj +a%c]
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w0
In the figure 3 we graph the dispersion curves of the equati¢w) = o ’
each curve corresponds to each eigenvalue and to each critical frequency.

Dispersion Curves

Fig. 3. Dispersion Curvesj(w) =

Co

, 2
In the figure 4 we graph the group velocity of themodevy(w) = m =Coy/1- %

]
whereQ; = ,/w%+a'j20(2) is the critical frequency of th¢-mode, with j = 4 modes, each

curve corresponds to its critical frequency mentioned in the figure 2. As we can see
the group velocities are near to the light velocity but never are biggest that it.

Group Velocities

Fig. 4. Group Velocitiesk(w) =

1 Y
@ =1

w?
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In the figure 5 we graph the instants frequencigsof the wave process as the
solution of the equatiorry; (w)v+ (w — wo) = 0 with respect tav, where each group of
4 curves (color) corresponds to affdrent wg, as we can see we made three groups
of graphs with the values ofug of 1.8%10'0, 1.9x10% and 17%10. It shows
that there is two branches for each curve because the double sign of the equation
Fuj(w)V+ (w—wo) = 0.

B J
0 (Os

Fig. 5. sz as the solution of the equatianj (w)v + (w — wo) = 0 with respect taw

In the figure 6 we graph the doppleffect asws—wg With wo = 1.7+101, each
curve corresponds to each critical frequency of egemode, and the curves have
two branches because the double sign of the equakjgiiw)v+ (w —wo) = 0.

Fig. 6. Doppler &ect.
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Finally in the figure 7 we graph the field E of the real part of the equation

E] (t, X,, Z) (6 ) 1)
a T] ei/lsj (t’z’sz:"js) . , L
e ) B0y +00) (W8} (X )} (XO(TH))
21y () |1+ =2

V()

As we can see the field shows an oscillatory behavior and is a sum of the
j—modes of the field, for the shown graph we have a source velocity+df0’m/s
with an a(ry) sinusoidal.

Fig. 7. Field E
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