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Abstract

We consider the problem of electromagnetic wave propagation in homogeneous dielec-
tric dispersive waveguidesΠ =D×R whereD is a bounded domain inR2, produced
by non-uniformly moving sources of the form

j (x,t) = A(t)δ(x−x0(t)) (0.1)

wherej (x,t) is the current density,A(t) is a vector amplitude,x = x0(t) is a trajectory
of the source.

We consider the propagation ofT E andT M waves in the waveguideΠ, produced
by the source (0.1). As example we study the propagation of electromagnetic waves
in a waveguides filled by a cold, non magnetized plasma.
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1 Introduction

We consider the problem of electromagnetic wave propagation in homogeneous dielectric
dispersive waveguidesΠ = D×R whereD is a bounded domain inR2, produced by a
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non-uniformly moving source of the form

j (x,t) = A(t)δ(x−x0(t))

wherej (x,t) is the current density,x = x0(t), t ∈R is a trajectory of the source,A(t) is a vector
amplitude. The problem under consideration has a well-known theoretical and applied
interest in the many branches of theoretical and applied physics, for example, in the satellite
communications, nuclear and relativistic physics.

It should be noted that the problem of propagation of electromagnetic waves from the
moving particle in a homogeneous space is a classical problem of electrodynamics (see, for
instance, [15], [12], [9], [10] ). The electromagnetic field produced by uniformly moving
source in homogeneous waveguides was considered in the monograph [7], see, also papers
devoted the well-known Vavilov-Cherenkov effect in homogeneous waveguides generated
by uniformly moving sources (see, for instance, [1], [9] and references cited there).

Our approach is based on the asymptotic analysis of the problem where the large param-
eter characterizes simultaneously a large distance between the source and receiver, slowly
oscillation of the velocityv(t) and the amplitudeA(t). We apply in the paper the methods
which developed earlier under investigation of the problem of underwater wave propagation
from moving sources (see [17], [18], [19]) and in the electromagenetic waves propagation
in dispersive media in [3], [20]. As an example we consider the waves propagation in the
plasma waveguides generated by moving source.

2 Maxwell’s equation

Maxwell’s equations in the differential representations are (see for instance [24])

∇×E(x,t) = −
∂B(x,t)
∂t

, (2.1)

∇×H(x,t) =
∂D(x,t)
∂t

+J(x,t),

∇ ∙B(x, t) = 0, ∇ ∙D(r ,t) = ρ(x,t),x = (x1, x2, x3)

where
x = (x1, x2, x3) ∈ R3, t ∈ R,
E = (E1,E2,E3) is the electric field,
H =(H1,H2,H3) is the magnetic field,
D =(D1,D2,D3) is the electric flux,
B =(B1,B2,B3) is the magnetic flux,
j (x,t) is the vector of current density,
ρ(x, t) is the charge density.
The current densityj (x,t) and the charge densityρ(x, t) are connected by the continuity

equation

∇ ∙ j+
∂ρ

∂t
= 0. (2.2)
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We will suppose that electromagnetic waves are produced by the moving source for which

j (x,t) = A(t)δ(x−x0(t)),

whereA(t) is vector-valued amplitude.
For isotropic homogeneous dispersive media:

D̂(ω,x)=ε(ω)Ê(ω,x), B̂(ω,x)=μ(ω)Ĥ(ω,x), (2.3)

where

Φ̂(ω,x) =
∫

R
Φ(t,x)eiωtdt

is a Fourier transform with respect tot ∈ R of the vector-functionΦ(t,x),ε = ε(ω) is electri-
cal permittivity,μ = μ(ω) is magnetic permittivity depending on the frequency.

We suppose (see [16], Chap. IX) that:
(i) The functionsε(ω),μ(ω) are limits in the sense of the distributions of analytic bounded

in the upper complex half-plane functions;
(ii) k2(ω) = ω2ε(ω)μ(ω) has a finite numberω1 < ... < ωk of simple zeros onR, and

inf
ω∈R\[ω1−ε,ωk+ε]

k2(ω) > 0

for small enoughε > 0.
(iii) the group velocityvg(ω) = 1

k′(ω) > 0 for allω ∈ R\ [ω1− ε,ωk+ ε] .
After Fourier transform and the standard manipulations (see for instance [24]) the

Maxwell’s system splits into two independent equations

∇2Ê(ω,x)+k2(ω)Ê(ω,x)=ε−1(ω)∇ρ̂(ω,x)− iωμ(ω) ̂(ω,x) (2.4)

= −iωμ(ω)( ̂(ω,x)+
1

k2(ω)
∇(∇ ∙ ̂)(ω,x)) = F(ω,x)

∇2Ĥ(ω,x)+k2(ω)Ĥ(ω,x)= −∇× ̂(ω,x)=Φ(ω,x) (2.5)

In what follows we consider the propagation of transverse electric (T E) and transverse
magnetic (T M) waves. The electric field of theT E-waves is directed inx1x2−plane. We
will characterize theT E−waves to use theHx3 component of the magnetic field, and sup-
pose thatEx3 = 0, andT M-waves are characterized byEx3 while Hx3 = 0. We suppose that
the boundary of the waveguideΠ is an ideal conductor. It implies the boundary conditions
(see

Ez |∂Π= 0, (2.6)

or
∂Hz

∂ν
|∂Π= 0,

where∂Ez
∂ν is the normal derivative ofEz at the point of the boundary.

The componentsE′ = (Ex1,Ex2),H
′ = (Hx1,Hx2) of the electric and magnetic fields can

be found from the expressions (Ez,Hz) (see for instance [24], page 339-340).
Equations (2.4) and (2.5) implies
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ΔÊz(ω,x)+k2(ω)Êz(ω,x)=ε−1(ω)
∂ρ̂(ω,x)
∂z

− iωμ(ω) ̂z(ω,x) (2.7)

= −iωμ(ω)( ̂z(ω,x)+
1

k2(ω)
∇(∇ ∙ ̂)z(ω,x)) = F̂z(ω,x),

Êz |∂Π= 0.

ΔĤz(ω,x)+k2(ω)Ĥz(ω,x)=−∇× ̂(ω,x)z=Φ̂z(ω,x), (2.8)

∂Ĥz

∂ν
|∂Π= 0.

3 Waveguide Green function

First we consider the Green function for Helmholtz equation in the waveguideΠ, that is the
solution of the equation

−
(
Δx +k2(ω)

)
g(ω,x′,x′0,z) = δ(x

′ −x′0)δ(z),x = (x′,z)∈Π (3.1)

wherex′0 ∈ D with the Dirichlet condition

g |∂Π= 0, (3.2)

and the Neumann condition
∂g
∂ν
|∂Π= 0. (3.3)

We consider the spectral Dirichlet problem in the cross-sectionD of Π

BDϕ(x′) =

{
−Δx′ϕ(x′) = α2ϕ(x′),x′ ∈ D,

ϕ |∂D= 0.
(3.4)

It is well known that the spectral problem (3.4) has a positive discrete spectrum

spBD =
{
0< α2

1 < α
2
2 < ... < α

2
m< ... <

}

in the spaceL2(D) and the orthonormal base inL2(D) of the eigenfunctions
{
ϕ j

}∞
j=1

BDϕ j(x′) = α2
jϕ j(x′),x′ ∈ D. (3.5)

We will find a solution of the equation (3.1) in the form

g(ω,x′,x′0,z) =
∞∑

j=1

ψ j(ω,z,x′0)ϕ j(x′). (3.6)

Substitutingg(ω,x′,x′0,z) in (3.1) we obtain

∞∑

j=1

[

−
d2

dz2
+ (α2

j −k2(ω))

]

ψ j(ω,z,x′0)ϕ j(x′) = δ(x′ −x′0)δ(z). (3.7)



88 V. Rabinovich and A. J. V.Alcantar

Since the system
{
ϕ j

}∞
j=1

is orthonormal in the spaceL2(D) we obtain

[

−
d2

dz2
+ (α2

j −k2(ω))

]

ψ j(ω,z,x′0) =

(∫

D
δ(x′ −x′0)ϕ j(x′)dx′

)

δ(z) (3.8)

= ϕ j(x′0)δ(z).

Solution of the equation (3.8) satisfying the limiting absorption principle is

ψ j(ω,z,x′0) =
e

i
√

k2(ω)−α2
j |z|

2i
√

k2(ω)−α2
j

ϕ j(x′0). (3.9)

Hence

g(ω,x′,x′0,z) =
∞∑

j=1

e
i
√

k2(ω)−α2
j |z|

2i
√

k2(ω)−α2
j

ϕ j(x′)ϕ j(x′0). (3.10)

In what follows we are of interesting the members of the row (3.10) which are oscillating
at infinity, that is the members for whichj is such that the condition

α2
j < k2(ω) (3.11)

holds. We set
μ j(ω) =

√
k2(ω)−α2

j

and we say that theΩ j > 0 is a critical frequency of the waveguide ifμ j(ω) > 0 for all
ω > Ω j . Note that the functionμ j(ω) is monotonically increasing on the segment

[
Ω j ,+∞

)

becausek(ω) is a monotonically increasing function.
Hence if we are restricted by the propagated modes in the expression for the Green

functiong(ω,x′,x′0,z) we will write the propagated Green function as

gEz
prop(ω,x

′,x′0,z) =
∞∑

j=1

eiμ j (ω)|z|

2iμ j(ω)
Θ(Ω j ,+∞)(ω)ϕ j(x′)ϕ j(x′0), (3.12)

whereΘ(Ω j ,+∞)(ω) is the Heaviside function

Θ(Ω j ,+∞)(ω) =

{
1,ω > Ω j

0,ω ≤ Ω j
.

The similar situation holds for the Neumann problem. In this case he eigenvalues are
0≤ β2

1 < β
2
2 < ... < β

2
n < ... < and we obtain the decomposition of the Green function for the

Neumann problem

gHz
prop(ω,x

′,x′0,z) =
∞∑

j=1

eiν j (ω)|z|

2iν j(ω)
Θ(Ω j ,+∞)(ω)φ j(x′)φ j(x′0), (3.13)

whereν j(ω) =
√

k2(ω)−β2
j whereφ j(x′) are eigenfunctions of the Neumann problem for

the LaplacianΔ inD.
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4 Dynamic problem

We consider the equation
(
Δ+k2(ω)

)
Êz(ω,x) = −F̂z(ω,x),x ∈ Π, (4.1)

Êz(ω,x) |∂Π= 0.

The solution of the problem (4.1) is given as

Êz(ω,x) =
∫

Π

g(ω,x′,x′0,z−z0)F̂z(ω,x′0,z0)dx′0dz0. (4.2)

Formula (4.2) implies that

Ez(t,x′,z) =
1
2π

"

R2

e−iω(t−τ)
(∫

Π

g(ω,x′,x′0,z−z0)Fz(τ,x′0,z0)dx′0dz0

)

dωdτ. (4.3)

Let
Fz(t,x) =A(t)δ(x′ −x′0(t))δ(z−z0(t)), (4.4)

describes a source moving in the waveguideΠ, wherex′0(t) = (x01(t), x02(t)) ∈ D,z0(t) ∈ R
for everyt ∈ R. Applying (4.4) we obtain that

Ez(t,x′,z) =
1
2π

"

R2

e−iω(t−τ)g(ω,x′,x′0(τ),z0(τ))dωdτ.

Taking into account the propagated modes only, we obtain

Ez,prop(t,x′,z) =
∞∑

j=1

1
2π

"

R2

A(τ)ei(μ j (ω)|z−z0(τ)|−ω(t−τ))

2iμ j(ω)
Θ(Ω j ,+∞)(ω)ϕ j(x′)ϕ j(x′0(τ))dωdτ.

(4.5)
The similar way we obtain

Hz,prop(t,x′,z) =
∞∑

j=1

1
2π

"

R2

A1(τ)ei(μ j (ω)|z−z0(τ)|−ω(t−τ))

2iμ j(ω)
Θ(Ω j ,+∞)(ω)ϕ j(x′)ϕ j(x′0(τ))dωdτ,

(4.6)
where

Φz(t,x) =A1(t)δ(x′ −x′0(t))δ(z−z0(t)) (4.7)

5 Asymptotic analysis of modes generated by moving source

We introduce a parameterλ as

λ = inf
τ∈R
|z−z0(τ)|

ω0

c0
, (5.1)
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wherec0 is the light speed in the vacuum,ω0 > 0 is a frequency scale of the problem and
suppose thatλ >> 1 is the large dimensionless parameter.

Let
A(t) = a(t)e−iω0t, (5.2)

whereω0 ≥ 0 is a support frequency of the source,a(t) = ã(t/λ), whereã(t) is an infinitely
differentiable function bounded with all derivatives,

z0(t) =
1
λ

Z0(
t
λ

), (5.3)

where all derivatives ofZ0(t) are bounded,

x′0(t) = X′0(
t
λ

), (5.4)

X′0(t) is bounded function with all derivatives.
Formulas (5.2), (5.3), (5.49) demonstrate thata(t) andx′0(t) are slowly varying because

[a(t)]′ =
1
λ

ã(
t
λ

), ẋ′0(t) =
1
λ

dX′0
dt

(
t
λ

), (5.5)

andż0(t) is slowly varying because

z̈0(t) =
1
λ

d2Z0

dt2
(

t
λ

). (5.6)

After substitution of (5.2), (5.3), (5.4) in (4.5) and the scale change of variables

z= λZ, t = λT, τ = λι.

we obtain

Ẽλ
prop(T,x

′,Z)

=

∞∑

j=1

λ

2π

"

R2

ã(ι)eiλ(μ j (ω)|Z−Z0(ι)|−ω(T−ι)−ω0ι)

2iμ j(ω)
Θ(Ω j ,+∞)(ω)ϕ j(x′)ϕ j(x′0(ι))dωdι.

Let

Ẽλ
j (T,x

′,Z) =
λ

2π

"

R2

ã(ι)eiλ(μ j (ω)|Z−Z0(ι)|−ω(T−ι)−ω0ι)

2iμ j(ω)
Θ(Ω j ,+∞)(ω)ϕ j(x′)ϕ j(x′0(ι))dωdι. (5.7)

We will investigate the asymptotics of the functionEλ
j (T,x

′,Z) for fix (T,x′,Z) and
λ→ +∞ applying the 2-dimensional stationary phase method (see [4], [8]). Let

S̃ j(T,Z,ω, ι) = μ j(ω) |Z−Z0(ι)| −ω(T − ι)−ω0ι

the phase of the double integral (5.7). The stationary points of the phase are solutions of
the system of the equations

∂S̃ j(T,Z,ω, ι)

∂ω
=
|Z−Z0(ι)|

vg
j (ω)

− (T − ι) = 0, (5.8)

∂S̃ j(T,Z,ω, ι)

∂ι
= −μ j(ω)Ż0(ι)sgn(Z−Z0(ι))+ω−ω0 = 0,
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whereμ j(ω) is a wave number, andvg
j (ω) is the group velocity of the mode with numberj,

that is

vg
j (ω) =

1
μ′j(ω)

.

Let (ω j
s = ω

j
s(T,Z), ι js = ι

j
s(T,Z)) be a stationary point, that is a solution of system (5.8).

We suppose that this point is non degenerate, that is

detS̃′′(T,Z,ω j
s, ι

j
s) , 0,

where

S̃′′j (T,Z,ω, ι) =




∂2S̃ j (T,Z,ω,ι)
∂ω2

∂2S̃ j (T,Z,ω,ι)
∂ω∂ι

∂2S̃ j (T,Z,ω,ι)
∂ω∂ι

∂2S̃ j (T,Z,ω,ι)
∂ι2




is the Hess matrix of the phase.
Let sgnS̃′′j (T,Z,ωs, ιs) be the difference between the number of positive and negative

eigenvalues of the matrix̃S′′j (T,Z,ωs, ιs). Then according to the two dimensional station-
ary phase method the contribution of the stationary point (ωs, ιs) in the asymptotics of
Eλ

j (T,x
′,Z) is given by the formula

Ẽλ
j (T,x

′,Z) (5.9)

=
ã(ιs)e

iλS̃ j (T,Z,ω
j
s,ι

j
s)+i π4 sgnS̃′′j (T,Z,ω j

s,ι
j
s)

2iμ j(ω
j
s)

∣∣∣∣detS̃′′j (T,Z,ω j
s, ι

j
s)
∣∣∣∣
1/2

Θ(Ω j ,+∞)(ω
j
s)ϕ j(x′)ϕ j(x′0(ι js))

× (1+O(
1
λ

))

Note that the main term of the asymptoticsEλ
j (T,x

′,Z) does not equal 0 ifω j
s> Ω j only.

The asymptotics of the fieldEλ
prop(T,x

′,Z) for λ→ +∞ is given by the formula

Ẽλ
prop(T,x

′,Z) =
N∑

j=1

Ẽλ
j (T,x

′,Z),

whereN is the number of propagated modes, that isN is a maximal number such that
ω

j
s ∈ (Ω j ,+∞), for j ≤ 1≤ N.

For the further calculations it is convenient to come back to the original notations

Eprop(t,x′,z) ∼
N∑

j=1

Ej(t,x′,z), (5.10)

where

Ej(t,x′,z) (5.11)

=
a(τs)e

iλSj (t,z,ω
j
s,τ

j
s)+i π4 sgnS′′j (t,z,ω j

s,τ
j
s)

2iμ j(ω
j
s)

∣∣∣∣detS′′j (t,z,ω j
s, τ

j
s)
∣∣∣∣
1/2

ϕ j(x′)ϕ j(x′0(ι js)),
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and
Sj(t,z,ω,τ) = μ j(ω) |z−z0(τ)| −ω(t−τ)−ω0τ, (5.12)

the pair (ω j
s, τ

j
s) is the solution of the system

∂Sj(t,z,ω,τ)

∂ω
=
|z−z0(τ)|

vg
j (ω)

− (t−τ) = 0, (5.13)

∂Sj(t,z,ω,τ)

∂τ
= −μ j(ω)ż0(τ)sgn(z−z0(τ))+ω−ω0 = 0,

S′′j (t,z,ω,τ) =




∂2S̃ j (t,z,ω,τ)
∂ω2

∂2S̃ j (t,z,ω,τ)
∂ω∂τ

∂2S̃ j (t,z,ω,τ)
∂ω∂τ

∂2S̃ j (t,z,ω,τ)
∂τ2




is the Hess matrix with respect to (ω,τ).
Note that the stationary points (ω j

s, τ
j
s) have explicit physical sense:ω j

s = ω
j
s(t,z) is the

instantaneous frequency of the wave process defined by the modeEj(t,x′,z) andτ j
s= τ

j
s(t,z)

is the radiation time of a mode arrived to the source at the timet.

5.1 Motion with a constant horizontal velocity

Let the sources move with a constant horizontal velocity, that is

x(t) = (X′(
1
λ

t),vt).

The the system (5.8) is of the form

∂S̃ j(T,Z,ω, ι)

∂ω
=
|Z−vι|

vg
j (ω)

− (T − ι) = 0, (5.14)

∂S̃ j(T,Z,ω, ι)

∂ι
= ∓μ j(ω)v +ω−ω0 = 0, (5.15)

Equations (5.15) are independent ofι and under condition

sup
ω>Ω j

|v|

vg
j (ω)

< 1 (5.16)

that is the horizontal velocity is smaller then the minimum of the group velocity, has the
unique solution which can be find by the method of successive approximations.

Consider now the equation (5.14) whereω = ω
j
s. Then

|Z−vι|

vg
j (ω

j
s)
− (T − ι) = 0. (5.17)

This equation under condition (5.16) has unique solutionι
j
s which also can be find by the

method of successive approximations.
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Note that
∂2S̃ j (T,Z,ω,ι)

∂ι2
= 0. Hence

∣∣∣∣detS̃′′j (T,Z,ω j
s, ι

j
s)
∣∣∣∣
1/2

=

∣∣∣∣∣∣∣∣
1±

v

vg
j (ω

j
s)

∣∣∣∣∣∣∣∣
,

and
sgnS̃′′j (T,Z,ω j

s, ι
j
s) = 0.

Hence

Ẽλ
j (T,x

′,Z) (5.18)

=
ã(ιs)eiλS̃ j (T,Z,ω

j
s,ι

j
s)

2iμ j(ω
j
s)

∣∣∣∣∣∣1±
v

vg
j (ω

j
s)

∣∣∣∣∣∣

Θ(Ω j ,+∞)(ω
j
s)ϕ j(x′)ϕ j(x′0(ι js))

× (1+O(
1
λ

)),

and coming back to the old coordinates we (t,x′,z) we obtain

Ej(t,x′,z) (5.19)

∼
a(τ j

s)eiλSj (t,z,ω
j
s,τ

j
s)

2iμ j(ω
j
s)

∣∣∣∣∣∣1±
v

vg
j (ω

j
s)

∣∣∣∣∣∣

Θ(Ω j ,+∞)(ω
j
s)ϕ j(x′)ϕ j(x′0(τ j

s)),

where
Sj(t,z,ω,τ) = μ j(ω) |z−vτ)| −ω(t−τ)−ω0τ,

ω
j
s are solutions of the equation

∓μ j(ω)v+ (ω−ω0) = 0, (5.20)

andτ j
s are solutions of the equation

|z−vτ|

vg
j (ω

j
s)
− (t−τ) = 0. (5.21)

5.2 Motion in plasma waveguides

We consider a lossless no magnetized plasma whose the collision frequency equals to zero
(see for instance [11], [22], [23]). Hence the constitutive parameters in plasma are

ε(ω) = ε0(1−
ω2

p

ω2
),μ = μ0, (5.22)

ε0,μ0 are the electric and magnetic permittivity of the vacuum,

ωp =

√
4πe2N

m
= (5.64∙104

√
N/(sm)3)

1
sec

(5.23)
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is theplasma frequency, whereN is theparticle density concentration of electrons, m,eare
the mass and charge of the electron.

In the ionosphere

103 1
cm3
≤ N ≤ 3 ∙106 1

cm3
(5.24)

Graphic ofN is given in Fig.1. Note that in the accelerator of the particlesN ' 108 1
sm3 .

Fig. 1. Graphic of N.

Phase velocity in the plasma is

c(ω) =
c0

√
1−

ω2
p

ω2

, (5.25)

wherec0 is the light speed in the vacuum, and the wave-number is

k(ω) =

√
ω2−ω2

p

c0
. (5.26)

The group velocity in the plasma

vg(ω) =
1

k′(ω)
= c0

√

1−
ω2

p

ω2
(5.27)

wherec0 = 2.997∙108 m
sec is the light speed in the vacuum. Hence the phase velocity in the

plasma larger thanc0, and the group velocity is smaller thanc0 if ω > ωp.

The mode wave number in the plasma waveguide is

μ j(ω) =

√
ω2−ω2

p

c2
0

−α2
j =

√
ω2−Ω2

j

c0
, (5.28)

whereΩ j =
√
ω2

p+α
2
j c

2
0 is the critical frequency of thej−mode, and the group velocity of

the j−mode is

vj
g(ω) =

1
μ′j(ω)

= c0

√

1−
Ω2

j

ω2
. (5.29)
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Hence the phase velocity of thej−mode

ω

μ j(ω)
=

c0
√

1−
Ω2

j

ω2

> c0

is larger than the light speed in the vacuum ifω >Ω j while the group velocityvj
g(ω) < c0 if

ω > Ω j .
Note that in the case of a rectangular waveguide

Π =D×R

where

D = [0,h1] × [0,h2]

the spectrum of the Dirichlet problem inD is

α2
j =




π2(

j21
h2

1

+
j22
h2

2

), j = ( j1, j2) ∈ N2




, (5.30)

and normed inL2(D) eigenfunctions are

ϕj (x1, x2) = 2(h1h2)−
1
2 sin

π j1x1

h1
sin

π j2x2

h2
, (5.31)

j = ( j1, j2) ∈ N×N

We consider the electric waves generated by the moving in the waveguide� source of the
form

Fz(t,x)= = a(t)e−iω0tδ(x′ −x′0(t))δ(z−vt),

δ(x′ −x′0(t)) = δ(x1− x10(t))δ(x2− x20(t))

where the functionsx10(t), x20(t), anda(t) are slowly varying, and

0< x10(t) < h1,0< x20(t) < h2.

According formulas (5.19) we obtain

Ej (t,x′,z) (5.32)

∼
a(τj

s)eiλSj (t,z,ω
j
s,τ

j
s)

2iμj (ω
j
s)

∣∣∣∣∣∣1±
v

vg
j (ω

j
s)

∣∣∣∣∣∣

Θ(Ωj ,+∞)(ω
j
s)ϕj (x′)ϕj (x′0(τj

s)),

where

Sj (t,z,ω,τ) = μj (ω) |z−vτ)| −ω(t−τ)−ω0τ, j = ( j1, j2),
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μ j(ω) =

√
ω2−ω2

p

c2
0

−α2
j =

√
ω2−Ω2

j

c0

α2
j = α

2
j1, j2 = π

2(
j21
h2

1

+
j22
h2

2

),

vj
g(ω) =

1
μ′j(ω)

= c0

√

1−
Ω2

j

ω2
, j = ( j1, j2) ∈ N×N,

(ωj
s, τ

j
s) are solutions of the system

∓μj (ω)v+ (ω−ω0) = 0, j = ( j1, j2) ∈ N×N,

|z−vτ|

vg
j (ωj

s)
− (t−τ) = 0.

6 Numerical Examples and Graphics

Here is a numerical example of motion in plasma waveguides. We graph some
equations and parameters like critical frequencies, dispersion curves, group velocities,
instant frequencies, doppler effect and the field E.

For the graphs we take the particle density concentration of electrons ofN = 104 1
cm3

and a total of 4 eigenvalues withh1 = h2 = 5m as a dimensions of the rectangular
waveguide.

In the Figure 2 we graph the critical frequencies, we have 4 values: 2.3730∗108,

9.4670∗108, 2.1298∗109, and 3.7862∗109. The plasma frequencyωp for N = 104 1
cm3

is 1.7835∗107.

Fig. 2. Critical FrequenciesΩ j =
√
ω2

p+α
2
j c

2
0
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In the figure 3 we graph the dispersion curves of the equationμj (ω) =

√
ω2−Ω2

j

c0
,

each curve corresponds to each eigenvalue and to each critical frequency.

Fig. 3. Dispersion Curvesμj (ω) =

√
ω2−Ω2

j

c0

In the figure 4 we graph the group velocity of thej−modevj
g(ω)= 1

μ′j (ω) = c0

√

1−
Ω2

j

ω2

whereΩ j =
√
ω2

p+α
2
j c

2
0 is the critical frequency of thej−mode, with j = 4 modes, each

curve corresponds to its critical frequency mentioned in the figure 2. As we can see
the group velocities are near to the light velocity but never are biggest that it.

Fig. 4. Group Velocitiesvj
g(ω) = 1

μ′j (ω) = c0

√

1−
Ω2

j

ω2
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In the figure 5 we graph the instants frequenciesω
j
s of the wave process as the

solution of the equation∓μj (ω)v+ (ω−ω0) = 0 with respect toω, where each group of
4 curves (color) corresponds to a differentω0, as we can see we made three groups
of graphs with the values ofω0 of 1.8∗ 1010, 1.9∗ 1010, and 1.7∗ 1010. It shows
that there is two branches for each curve because the double sign of the equation
∓μj (ω)v+ (ω−ω0) = 0.

Fig. 5.ωj
s as the solution of the equation∓μj (ω)v+ (ω−ω0) = 0 with respect toω

In the figure 6 we graph the doppler effect asωj
s−ω0 with ω0 = 1.7∗1010, each

curve corresponds to each critical frequency of eachj−mode, and the curves have
two branches because the double sign of the equation∓μj (ω)v+ (ω−ω0) = 0.

Fig. 6. Doppler effect.
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Finally in the figure 7 we graph the field E of the real part of the equation

Ej (t,x′,z) (6.1)

∼
a(τj

s)eiλSj (t,z,ω
j
s,τ

j
s)

2iμj (ω
j
s)

∣∣∣∣∣∣1±
v

vg
j (ω

j
s)

∣∣∣∣∣∣

Θ(Ωj ,+∞)(ω
j
s)ϕj (x′)ϕj (x′0(τj

s)),

As we can see the field shows an oscillatory behavior and is a sum of the
j−modes of the field, for the shown graph we have a source velocity of 1∗108m/s
with an a(τj

s) sinusoidal.

Fig. 7. Field E
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