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Abstract
In this article, we study the existence of mild solutions for the nonlocal Cauchy pro-
blem for a class of abstract fractional neutral integro-differential equations with infinite
delay. The results are obtained by using the theory of resolvent operators. Finally, an
application is given to illustrate the theory.
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1 Introduction

In this article, we study the existence of mild solutions for the nonlocal Cauchy problem
for a class of abstract fractional neutral integro-differential equations with infinite delay
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modeled in the form

Dα
t (x(t)+ f (t, xt)) = Ax(t)+

∫ t

0
B(t− s)x(s)ds+g(t, xt), t ∈ [0,b] (1.1)

x0 = ϕ+q(xt1 , xt2 , xt3 , · · · , xtn) ∈ B, x′(0) = x1, (1.2)

where α ∈ (1,2); A, (B(t))t≥0 are closed linear operators defined on a common domain which
is dense in a Banach space X, Dα

t h(t) represent the Caputo derivative of order α > 0 of h
defined by

Dα
t h(t) =

∫ t

0
gn−α(t− s)

dn

dsn h(s)ds,

where n is the smallest integer greater than or equal to α and gβ(t) := tβ−1

Γ(β) , t > 0, β ≥ 0. The
history xt : (−∞,0]→ X given by xt(θ) = x(t+ θ) belongs to some abstract phase space B
defined axiomatically, 0 < t1 < t2 < t3 < · · · < tn ≤ b, q :Bn→B and f ,g : [0,b]×B→ X are
appropriate functions.

There exist an extensive literature of differential equations with nonlocal conditions.
Motivated by physical applications, Byszewski studied in [6] the existence of mild, strong
and classical solutions for the nonlocal problem for a semi-linear evolution equation. The
nonlocal Cauchy problem for functional differential equations with delay is also studied by
Byszewski, in the paper [7], Byszewski discuss the existence, uniqueness and continuous
dependence on initial data of solutions for this type of Cauchy problem. On the other hand,
Hernandez [20], study the existence of mild, strong and classical solutions for the nonlocal
neutral partial functional differential equation with unbounded delay.

We observe that the fractional order can be complex from the viewpoint of pure mathe-
matics and there is much interest in developing the theoretical analysis and numerical meth-
ods of fractional equations, because they have recently proved to be valuable in various
fields of sciences and engineering [8, 18]. For details, including some applications and re-
cent results, see the monographs of Ahn and MacVinisch [4], Gorenglo and Mainardi [19],
Hilfer [22], Miller and Ross [25], and the papers of Agarwal et al. [1, 2], Cuevas et al.
[11, 12, 13, 14, 17], Lakshmikantham [24] (see also [5, 9, 10] and references therein), Zhou
et al. [27] and Dos Santos et. al [3, 15, 16, 17]. Our purpose in this paper is to establish the
existence of mild solutions for a nonlocal fractional neutral integro-differential equations
with unbounded delay.

2 Preliminaries

In what follows we recall some definitions, notations and results that we need in the
sequel. Throughout this paper, (X,‖ · ‖) is a Banach space and A, B(t), for t ≥ 0, are closed
linear operators defined on a common domainD = D(A) which is dense in X. The notation
[D(A)] represents the domain of A endowed with the graph norm. Let (Z,‖ · ‖Z) and (W,‖ ·
‖W) be Banach spaces. In this paper, the notation L(Z,W) stands for the Banach space of
bounded linear operators from Z into W endowed with the uniform operator topology and
we abbreviate this notation to L(Z) when Z = W. Furthermore, for appropriate functions
K : [0,∞)→ Z the notation K̂ denotes the Laplace transform of K. The notation, Br[x,Z]
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stands for the closed ball with center at x and radius r > 0 in Z. On the other hand, for a
bounded function x : [0,a]→ Z and b ∈ [0,a], the notation ‖x‖Z,b is defined by

‖x‖Z,b = sup{‖x(s)‖Z : s ∈ [0,b]},

and we simplify this notation to ‖x‖b when no confusion about the space Z arises.
To obtain our results, we assume that the abstract fractional integro-differential problem

Dα
t x(t) = Ax(t)+

∫ t
0 B(t− s)x(s)ds, (2.1)

x(0) = z ∈ X, x′(0) = 0, (2.2)

has an associated α-resolvent operator of bounded linear operators (Rα(t))t≥0 on X.

Definition 2.1. A one-parameter family of bounded linear operators (Rα(t))t≥0 on X is
called an α-resolvent operator of (2.1)-(2.2) if the following conditions are verified.

(a) The function Rα(·) : [0,∞)→L(X) is strongly continuous and Rα(0)x= x for all x ∈ X
and α ∈ (1,2).

(b) For x ∈ D(A), Rα(·)x ∈C([0,∞), [D(A)])
⋂

C1([0,∞),X), and

Dα
t Rα(t)x = ARα(t)x+

∫ t

0
B(t− s)Rα(s)xds, (2.3)

Dα
t Rα(t)x = Rα(t)Ax+

∫ t

0
Rα(t− s)B(s)xds, (2.4)

for every t ≥ 0.

The existence of an α-resolvent operator for problem (2.1)-(2.2) was studied in [16]. In
this work we have considered the same conditions in [15, 16].

(P1) The operator A : D(A)⊆ X→ X is a closed linear operator with [D(A)] dense in X. Let
α ∈ (1,2). For some φ0 ∈ (0, π2 ], for each φ < φ0 there is a positive constant C0 =C0(φ)
such that λ ∈ ρ(A) for each λ ∈

∑
0,αϑ = {λ ∈ C : λ , 0, |arg(λ)| < αϑ}, where ϑ = φ+ π

2
and ‖R(λ,A)‖ ≤ C0

|λ| for all λ ∈
∑

0,αϑ.

(P2) For all t ≥ 0, B(t) : D(B(t)) ⊆ X→ X is a closed linear operator, D(A) ⊆ D(B(t)) and
B(·)x is strongly measurable on (0,∞) for each x ∈ D(A). There exist b(·) ∈ L1

loc(R+)
such that b̂(λ) exists for Re(λ) > 0 and ‖B(t)x‖ ≤ b(t)‖x‖1 for all t > 0 and x ∈ D(A).
Moreover, the operator valued function B̂ :

∑
0, π2
→ L([D(A)],X) has an analytical

extension (still denoted by B̂) to
∑

0,ϑ such that ‖B̂(λ)x‖ ≤ ‖B̂(λ)‖‖x‖1 for all x ∈ D(A),
and ‖B̂(λ)‖ = O( 1

|λ| ), as |λ| → ∞.

(P3) There exists a subspace D ⊆ D(A) dense in [D(A)] and a positive constant C1 such
that A(D) ⊆ D(A), B̂(λ)(D) ⊆ D(A), and ‖AB̂(λ)x‖ ≤ C1‖x‖ for every x ∈ D and all
λ ∈

∑
0,ϑ.
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In the sequel, for r > 0 and θ ∈ (π2 ,ϑ),
∑

r,θ = {λ ∈ C : λ , 0, |λ| > r, |arg(λ)| < θ}, for Γr,θ,
Γi

r,θ, i = 1,2,3, are the paths Γ1
r,θ = {te

iθ : t ≥ r},Γ2
r,θ = {reiξ : −θ ≤ ξ ≤ θ},Γ3

r,θ = {te
−iθ : t ≥ r},

and Γr,θ =
⋃3

i=1Γ
i
r,θ, oriented counterclockwise. In addition, ρα(Gα) are the sets

ρα(Gα) = {λ ∈C : Gα(λ) := λα−1(λαI−A− B̂(λ))−1 ∈ L(X)}.

We now define the operator family (Rα(t))t≥0 by

Rα(t) =


1

2πi

∫
Γr,θ

eλtGα(λ)dλ, t > 0,

I, t = 0.
(2.5)

The following result has been established in [3, Theorem 2.1].

Theorem 2.2. Assume that conditions (P1)− (P3) are fulfilled. Then there exists a unique
α-resolvent operator for problem (2.1)-(2.2).

Theorem 2.3. [3, Lemma 2.5] The function Rα : [0,∞)→L(X) is strongly continuous and
Rα : (0,∞)→L(X) is uniformly continuous.

In what follows, we always assume that the conditions (P1)− (P3) are verified.
We consider now the non-homogeneous problem

Dα
t x(t) = Ax(t)+

∫ t

0
B(t− s)x(s)ds+ f (t), t ∈ [0,a], (2.6)

x(0) = x0, x′(0) = 0, (2.7)

where α ∈ (1,2) and f ∈ L1([0,a],X). In the sequel, Rα(·) is the operator function defined
by (2.5). We begin by introducing the following concept of a classical solution.

Definition 2.4. A function x : [0,a]→ X, 0 < a, is called a classical solution of (2.6)-(2.7)
on [0,a] if x ∈C([0,a], [D(A)])

⋂
C([0,a],X), gn−α ∗ x ∈C1([0,a],X), n = 1,2, the condition

(2.7) holds and Eq. (2.6) is verified on [0,a].

Definition 2.5. Let α ∈ (1,2); we define the family (Sα(t))t≥0 by

Sα(t)x :=
∫ t

0
gα−1(t− s)Rα(s)xds,

for each t ≥ 0.

Lemma 2.6. [3, Lemma 2.3] The function Rα(·) is exponentially bounded in L(X).

Lemma 2.7. [3, Lemma 3.9] If the function Rα(·) is exponentially bounded in L(X), then
Sα(·) is exponentially bounded in L(X).

Lemma 2.8. [3, Lemma 3.10] If the function Rα(·) is exponentially bounded in L(D(A)),
then Sα(·) is exponentially bounded in L(D(A)).

We now establish a variation of constants formula for the solutions of (2.6)-(2.7).
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Theorem 2.9. [3, Theorem 3.2] Let z ∈ D(A). Assume that f ∈ C([0,a],X) and x(·) is a
classical solution of (2.6)-(2.7) on [0,a]. Then

x(t) = Rα(t)z+
∫ t

0
Sα(t− s) f (s)ds, t ∈ [0,a]. (2.8)

It is clear from the preceding definition that Rα(·)z is a solution of problem (2.1)-(2.2)
on (0,∞) for z ∈ D(A).

Definition 2.10. Let f ∈ L1([0,a],X). A function x ∈ C([0,a],X) is called a mild solution
of (2.6)-(2.7) if

x(t) = Rα(t)z+
∫ t

0
Sα(t− s) f (s)ds, t ∈ [0,a].

The following results are proved in [3, 16].

Theorem 2.11. [3, Theorem 3.3] Let z ∈ D(A) and f ∈C([0,a],X). If f ∈ L1([0,a], [D(A)]),
then the mild solution of (2.6)-(2.7) is a classical solution.

Theorem 2.12. [3, Theorem 3.4] Let z ∈ D(A) and f ∈ C([0,a],X). If f ∈ W1,1([0,a],X),
then the mild solution of (2.6)-(2.7) is a classical solution.

In the next result we denote by (−A)ϑ the power of the operator −A, (see [26] for details).
From [26, Lemma 6.3], there exists a constant C such that ‖(−A)ϑ‖ ≤C for 0 ≤ ϑ ≤ 1.

Lemma 2.13. [15, Lemma 3.1] Suppose that the conditions (P1)-(P3) are satisfied. Let
α ∈ (1,2) and ϑ ∈ (0,1) such that αϑ ∈ (0,1), then there exists positive number C such that

‖(−A)ϑRα(t)‖ ≤ Certt−αϑ, (2.9)

‖(−A)ϑSα(t)‖ ≤ Certtα(1−ϑ)−1, (2.10)

for all t > 0.

Remark 2.14. [15, Remark 3.2] If B̂(λ)(−A)−ϑy = (−A)−ϑB̂(λ)y for y ∈ [D(A)]. We can see
that for ϑ ∈ (0,1) and x ∈ [D((−A)ϑ)] that

(−A)ϑRα(t)x = Rα(t)(−A)ϑx and (−A)ϑSα(t)x = Sα(t)(−A)ϑx,

if x ∈ [D((−A)ϑ)].

We will herein define the phase space B axiomatically, using ideas and notation de-
veloped in [23]. More precisely, B will denote the vector space of functions defined from
(−∞,0] into X endowed with a seminorm denoted as ‖ · ‖B and such that the following
axioms hold:

(A) If x : (−∞,σ+b)→ X, b > 0, σ ∈ R is continuous on [σ,σ+b) and xσ ∈ B, then for
every t ∈ [σ,σ+b) the following conditions hold:

(i) xt is in B.

(ii) ‖x(t)‖ ≤ H‖xt‖B.
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(iii) ‖xt‖B ≤ K(t−σ) sup{‖x(s)‖ : σ ≤ s ≤ t}+M(t−σ)‖xσ‖B,
where H > 0 is a constant; K,M : [0,∞)→ [1,∞), K(·) is continuous, M(·) is
locally bounded, and H,K,M are independent of x(·).

(A1) For the function x(·) in (A), the function t→ xt is continuous from [σ,σ+b) into B.

(B) The space B is complete.

Example 2.15. The Phase Space Cr ×Lp(g,X).
Let r ≥ 0, 1 ≤ p < ∞ and g : (−∞,−r] → R be a non-negative, measurable function

which satisfies the conditions (g−5)− (g−6) in the terminology of [23]. Briefly, this means
that g is locally integrable and there exists a non-negative, locally bounded function η(·) on
(−∞,0] such that g(ξ+θ)≤ η(ξ)g(θ) for all ξ ≤ 0 and θ ∈ (−∞,−r)\Nξ, where Nξ ⊆ (−∞,−r)
is a set with Lebesgue measure zero. The space Cr × Lp(g,X) consists of all classes of
functions ϕ : (−∞,0]→ X such that ϕ is continuous on [−r,0] and is Lebesgue measurable,
and g‖ϕ‖p is Lebesgue integrable on (−∞,−r). The seminorm in Cr ×Lp(g,X) defined by

‖ϕ‖B := sup{‖ϕ(θ)‖ : −r ≤ θ ≤ 0]}+
(∫ −r

−∞

g(θ)‖ϕ(θ)‖pdθ
)1/p

.

The space B = Cr × Lp(g,X) satisfies the axioms (A), (A1) and (B). Moreover, when r = 0

and p = 2, we can take H = 1, K(t) = 1+
(∫ 0
−t g(θ)dθ

)1/2
and M(t) = η(−t)1/2, for t ≥ 0 (see

[23, Theorem 1.3.8] for details).

For additional details concerning phase space we refer the reader to [23].

3 Existence Results

In this section we study the existence of mild solutions of the abstract fractional integro-
differential equations (1.1)-(1.2). Motivated by Definition (2.10), we consider the following
concept of mild solution.

Definition 3.1. A function u : (−∞,b]→ X, is called a mild solution of (1.1)-(1.2) on [0,b],
if u0 = ϕ; u|[0,b] ∈C([0,b] : X); the function τ→ ASα(t−τ) f (τ,uτ) and τ→

∫ τ

0 B(τ−ξ)Sα(t−
τ) f (ξ,uξ)dξ is integrable on [0, t) for all t ∈ (0,b] and for t ∈ [0,b],

u(t) = Rα(t)(ϕ(0)+ f (0,ϕ)+q(ut1 ,ut2 ,ut3 , · · · ,utn)(0))− f (t,ut)−
∫ t

0
ASα(t− s) f (s,us)ds

−

∫ t

0

∫ s

0
B(s− ξ)Sα(t− s) f (ξ,uξ)dξds+

∫ t

0
Sα(t− s)g(s,us)ds.

In the sequel we introduce the following assumptions.

(H1) The following conditions are satisfied.

(a) B(·)x ∈C(I,X) for every x ∈ [D((−A)1−ϑ)].
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(b) There is function µ(·) ∈ L1(I;R+), such that

‖B(s)Sα(t)‖L([D((−A)ϑ)],X) ≤ Mµ(s)tαϑ−1, 0 ≤ s < t ≤ b.

(H2) The function q : Bn→B is continuous and exist positive constants Li(q) such that

‖q(ψ1,ψ2,ψ3, · · · ,ψn)−q(ϕ1,ϕ2,ϕ3, · · · ,ϕn)‖ ≤
n∑

i=1

Li(q)‖ψi−ϕi‖B,

for every ψi,ϕi ∈ Br[0,B].

(H3) The function f (·) is (−A)ϑ-valued, f : I×B→ [D((−A)−ϑ)], the function g(·) is defined
on g : I×B→ X, and there exist positive constants L f and Lg such that for all (ti,ψ j) ∈
I×B,

‖(−A)ϑ f (t1,ψ1)− (−A)ϑ f (t2,ψ2)‖ ≤ L f (|t1− t2|+ ‖ψ1−ψ2‖B),

‖g(t1,ψ1)−g(t2,ψ2)‖ ≤ Lg(|t1− t2|+ ‖ψ1−ψ2‖B).

Remark 3.2. We can assume there exists M > 0 such that ‖Rα(t)‖ ≤ M and ‖Sα(t)‖ ≤ M for
all t ∈ [0,b]. In the rest of this section, Mb and Kb are the constants Mb = sups∈[0,b] M(s),
Kb = sups∈[0,b] K(s), Nq = sup{‖q(ψ1,ψt2 ,ψt3 , · · · ,ψtn)‖ : ψi ∈ Br[0,B]} and N(−A)ϑ f , N f , Ng

represent the supreme of the functions (−A)ϑ f , f and g on [0,b]×Br[0,B].

Theorem 3.3. Let conditions (H1), (H2) and (H3) be hold. If

ρ = (Mb+KbMH) ‖ ϕ ‖B +(Mb+KbM)Nq+Kb(M+1)N f

+KbN(−A)ϑ f M
bαϑ

αϑ

(
1+

∫ b

0
µ(ξ)dξ

)
+KbNgMb < r

and

Λ =max

Mb

Mb

n∑
i=1

Li(q)+Kbθ

 ,Kb

Mb

n∑
i=1

Li(q)+Kbθ


 < 1,

where

θ =

M
n∑

i=1

Li(q)+L f

(
‖(−A)−ϑ‖+

Mbαϑ

αϑ
+

Mbαϑ

αϑ

∫ b

0
µ(ξ)dξ

)
+MLgb

 .
Then there exists a mild solution of (1.1)-(1.2) on [0,b].

Proof. Consider the space S (b) = {x : (−∞,b]→ X : x0 ∈ B; x ∈C([0,b] : X)} endowed with
the norm

‖ x ‖S (b):= Mb ‖ x0 ‖B +Kb ‖ x ‖b .

Let Y = Br[0,S (b)], we define the operator Γ : Y → S (b) by

Γx(t) = Rα(t)(ϕ(0)+ f (0,ϕ)+q(xt1 , xt2 , xt3 , · · · , xtn)(0))− f (t, xt)

−

∫ t

0
ASα(t− s) f (s, xs)ds−

∫ t

0

∫ s

0
B(s− ξ)Sα(t− s) f (ξ, xξ)dξds

+

∫ t

0
Sα(t− s)g(s, xs)ds, for t ∈ [0,b],

(Γx)0 = ϕ+q(xt1 , xt2 , xt3 , · · · , xtn).
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Using an similar argument on the proof of Theorem 3.1 in [21], we will prove the Γ is
well defined. Next we will prove that Γ(Y) ⊂ Y.

Let x ∈ Y and t ∈ [0,b], we observe from axiom (A) of the phase space, we obtain that
‖ xt ‖B≤ Kb ‖ x ‖b +Mb ‖ x0 ‖B≤ r this implies that xt ∈ Br[0,B], and this case

‖Γx(t)‖ ≤ ‖Rα(t)‖(‖ϕ(0)‖+ ‖ f (0,ϕ)‖+ ‖q(xt1 , xt2 , xt3 , · · · , xtn)(0)‖)+ ‖ f (t, xt)‖

+

∫ t

0
M(t− s)αϑ−1‖(−A)ϑ f (s, xs)‖ds

+

∫ t

0

∫ s

0
µ(s− ξ)M(t− s)αϑ−1‖(−A)ϑ f (ξ, xξ)‖dξds

+

∫ t

0
M‖g(s, xs)‖ds

≤ M(H‖ϕ‖B+N f +Nq)+N f

+N(−A)ϑ f

∫ t

0
M(t− s)αϑ−1ds

+N(−A)ϑ f

∫ t

0

∫ s

0
µ(s− ξ)M(t− s)αϑ−1dξds

+MNg

∫ t

0
ds

≤ M(H‖ϕ‖B+N f +Nq)+N f +N(−A)ϑ f M
bαϑ

αϑ

+N(−A)ϑ f M
bαϑ

αϑ

∫ b

0
µ(ξ)dξ+NgMb. (3.1)

and

‖(Γx)0‖ ≤ ‖ϕ‖B+Nq. (3.2)

From (3.1)-(3.2), we have that

‖ Γx ‖S (b) ≤ Mb ‖ (Γx)0 ‖B +Kb ‖ Γx ‖b
≤ (Mb+KbMH) ‖ ϕ ‖B +(Mb+KbM)Nq+Kb(M+1)N f

+KbN(−A)ϑ f M
bαϑ

αϑ

(
1+

∫ b

0
µ(ξ)dξ

)
+KbNgMb

= ρ < r. (3.3)

which prove that Γx ∈ Y.
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In order to prove that Γ satisfies a Lipschitz condition, u,v ∈ Y. If t ∈ [0,b] we see that

‖Γu(t)−Γv(t)‖

≤ ‖Rα(t)(q(ut1 ,ut2 ,ut3 , · · · ,utn)(0)−q(vt1 ,vt2 ,vt3 , · · · ,vtn)(0))‖

+ ‖(−A)−ϑ‖‖(−A)ϑ f (t,ut)− (−A)ϑ f (t,vt)‖

+

∫ t

0
‖(−A)1−ϑSα(t− s)‖‖(−A)ϑ f (s,us)− (−A)ϑ f (s,vs)‖ds

+

∫ t

0

∫ s

0
‖B(s− ξ)Sα(t− s) f (ξ,uξ)− f (ξ,vξ)‖dξds

+

∫ t

0
‖Sα(t− s)‖‖g(s,us)−g(s,vs)‖ds

≤ M
n∑

i=1

Li(q)‖uti − vti‖B+ ‖(−A)−ϑ‖L f (Kb‖u− v‖b+Mb‖u0− v0‖B)

+L f (Kb‖u− v‖b+Mb‖u0− v0‖B)
∫ t

0
M(t− s)αυ−1ds

+L f (Kb‖u− v‖b+Mb‖u0− v0‖B)
∫ t

0

∫ s

0
µ(s− ξ)M(t− s)αϑ−1dξds

+MLg(Kb‖u− v‖b+Mb‖u0− v0‖B)
∫ t

0
ds

≤ Mb

M
n∑

i=1

Li(q)+L f

(
‖(−A)−ϑ‖+

Mbαϑ

αϑ
+

Mbαϑ

αϑ

∫ b

0
µ(ξ)dξ

)
+MLgb

‖u0− v0‖B

+Kb

M
n∑

i=1

Li(q)+L f

(
‖(−A)−ϑ‖+

Mbαϑ

αϑ
+

Mbαϑ

αϑ

∫ b

0
µ(ξ)dξ

)
+MLgb

‖u− v‖b

≤ Mbθ‖u0− v0‖B+Kbθ‖u− v‖b.

On the other hand, a simple calculus prove that

‖(Γu)0− (Γv)0‖ ≤

n∑
i=1

Li(q)(Mb‖u0− v0‖B+Kb‖u− v‖b).

Finally we see that

‖Γu−Γv‖S (b) ≤ Mb ‖ (Γu)0− (Γv)0 ‖B +Kb ‖ Γu−Γv ‖b

≤ Mb

Mb

n∑
i=1

Li(q)+Kbθ

‖u0− v0‖+Kb

Mb

n∑
i=1

Li(q)+Kbθ

‖u− v‖B

≤ Λ‖u− v‖S (b),

which infer that Γ is a contraction on Y . Clearly a fixed point of Γ is the unique mild solution
of the nonlocal problem (1.1)-(1.2). The proof is complete. �
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4 Applications

To complete this work, we study the existence of solutions for the partial integro-
differential system with nonlocal conditions. In the sequel, X = L2([0,π]), B =C0×Lp(g,X)
is the space introduced in Example 2.15 and A : D(A) ⊆ X → X is the operator defined by
Ax = x′′, with domain D(A) = {x ∈ X : x′′ ∈ X, x(0) = x(π) = 0}. The operator A is the in-
finitesimal generator of an analytic semigroup, ρ(A) = C \ {−n2 : n ∈ N} and for α ∈ (0,1)
and αϑ ∈ (π/2,π) there exists Mαϑ > 0 such that ‖ R(λ,A) ‖≤ Mαϑ | λ |

−1 for all λ ∈ Σαϑ and
the fractional power (−A)ν : D((−A)ν) ⊂ X→ X of A is given by (−A)νx =

∑∞
n=1 n2ν〈x,zn〉zn,

where D((−A)ν) = {x ∈ X : (−A)νx ∈ X}. Hence, A is sectorial of type and the properties
(P1) hold. We also consider the operator B(t) : D(A) ⊆ X → X, t ≥ 0, B(t)x = tδe−γtAx for
x ∈ D(A). Moreover, it is easy to see that conditions (P2) and (P3) in Section 2 are satisfied
with b(t) = tδe−γt and D = C∞0 ([0,π]), where C∞0 ([0,π]) is the space of infinitely differen-
tiable functions that vanish at ξ = 0 and ξ = π. Therefore, (2.1)-(2.2), has an associated
α-resolvent operators (Rα(t))t≥0 on X.

Consider the delayed fractional partial neutral integro-differential equation with nonlo-
cal conditions

∂α

∂tα

(
u(t, ξ)+

∫ t

−∞

∫ π

0
b(t− s,η,ξ)u(s,η)dηds

)
=
∂2

∂ξ2 u(t, ξ)+
∫ t

0
(t− s)δe−γ(t−s) ∂

2

∂ξ2 u(s, ξ)ds

+

∫ t

−∞

a0(s− t)u(s, ξ)ds, (t, ξ) ∈ I× [0,π], (4.1)

u(t,0) = u(t,π) = 0, t ∈ [0,b], u(θ,ξ) = φ(θ,ξ)+
n∑

i=0

Liu(ti+ ξ), θ ≤ 0, ξ ∈ [0,π]. (4.2)

where 0 < ti < b, Li, i = 1,2, . . .n, are fixed numbers and ∂α

∂tα = Dα
t , α ∈ (1,2).

In the sequel, we assume that ϕ(θ)(ξ) = φ(θ,ξ) is a function in B and that the following
conditions are verified.

(i) The functions a0 : R→ R are continuous and Lg :=
(∫ 0
−∞

(a0(s))2

g(s) ds
)1/2

<∞.

(ii) The functions b(s,η,ξ), ∂b(s,η,ξ)
∂ξ are measurable, b(s,η,π) = b(s,η, 0) = 0 for all (s,η)

and

L f :=max
{(∫ π

0

∫ 0

−∞

∫ π

0
g−1(θ)

( ∂i

∂ξi b(θ,η,ξ)
)2

dηdθdξ
)1/2

: i = 0,1
}
<∞.

Defining the operators f ,g : I×B→ X and q : Bn→B by

f (ψ)(ξ) =
∫ 0

−∞

∫ π

0
b(s,η,ξ)ψ(s,η)dηds,

g(ψ)(ξ) =
∫ 0

−∞

a0(s)ψ(s, ξ)ds,

q(ut1 ,ut2 , ...,utn)(ξ) =
n∑

i=0

Liu(ti+ ξ).
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Under the above conditions we can represent the system (4.1)-(4.2) into the abstract
system (1.1)-(1.2). Moreover, f ,g are bounded linear operators with ‖ f (·)‖L(B,X) ≤ L f ,
‖g(·)‖L(B,X) ≤ Lg and ‖q(·)‖L(B,X) ≤ Nq. Moreover, a straightforward estimation using (ii)
shows that f (I ×B) ⊂ D((−A)1/2) and ‖(−A)1/2 f ‖L(B,X) ≤ L f . By Lemma 2.13, there exists
Cη > 0 such that

‖b(t)ASα(t)‖L([D((−A)η)],X) ≤
Cη

tα(1−η)−1 ,

for η ∈ (0,1) and t > 0. Therefore, (H1), (H2) and (H3) are fulfill. The next result is a direct
consequence of Theorem 3.3.

Proposition 4.1. For b sufficiently small there exists a mild solution for the partial neutral
fractional integro-differential system with nonlocal condition (4.1)-(4.2).
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