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Abstract

We give what appears to be the first explicit, easily computable bound on the trans-
portation cost distance with respect to the weighted Hamming metric. The bound
follows from Kantorovich duality and a novel inequality, which amounts to bounding
the maximal value of certain linear programs and may be of independent interest. We
give two application to concentration of measure for dependent processes and pose
some open problems and directions for future work.
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1 Introduction

1.1 Background

In 1781, Gaspard Monge considered the following problem: soil is extracted from a number
of sites and is to be transported to various construction locations. Assuming a fixed cost for
transporting a unit of soil over a unit distance, the objective is to come up with a strategy
that minimizes the total cost of the operation.

This problem may be formalized as follows. First, let us normalize the total mass of
excavated soil to be one; thus, instead of transporting pounds of soil from excavation site
x to construction site y we may think in terms of percentages. Let (X,ρ) be a metric space
endowed with probability distributions µ and ν. We can use µ to model the distribution of
extracted soil at the excavation sites and ν to model the distribution of requisite soil at the
construction sites. The distance ρ plays the role of price: it costs ρ(x,y) to move a unit of
soil from location x to location y.

∗E-mail address: karyeh@cs.bgu.ac.il
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A transportation strategy is formalized by the notion of a coupling. A coupling of µ and
ν is defined to be any distribution π on X×X with marginals µ and ν, respectively:

µ(·) =
∫
X

π(·,dy) and ν(·) =
∫
X

π(dx, ·).

Intuitively, π(· | x) ≡ π(x, ·)/µ(x) is a distribution on X which corresponds to a prescription
of how to divide the unit mass at x among the different locations. The trivial coupling
(µ⊗ν)(x,y) = µ(x)ν(y) always allocates the unit weight at x according to ν— independently
of the location x. In general, many other couplings will exist, and we will denote their
collection by Π(µ,ν).

The cost associated with the coupling π is∫
X×X

ρ(x,y)π(dx,dy),

and the optimal transportation cost is the one realized by the most parsimonious coupling:

Tρ(µ,ν) = inf
π∈Π(µ,ν)

∫
X×X

ρ(x,y)π(dx,dy). (1.1)

The functional Tρ is easily verified to be a metric on the space of distributions on X.
It is known by a host of names, including transportation or earthmover distance, and occa-
sionally also bears the names of its various discoverers: Kantorovich, Monge, Rubinstein,
Wasserstein.

Villani [21, 22] provides a fascinating account of the several independent discoveries
of optimal transport and is an encyclopedic source on the subject. The other “founding
father” of optimal transport was Leonid Kantorovich, who provided a powerful dual char-
acterization of the transportation distance. Under suitable conditions [22, Theorem 5.10],
Kantorovich showed that

Tρ(µ,ν) = sup
‖ f ‖Lip≤1

(∫
X

f dµ−
∫
X

f dν
)
, (1.2)

where ‖·‖Lip is the Lipschitz semi-norm of f : X→ R with respect to ρ.
The significance of optimal transport extends far beyond optimal planning, spanning

such diverse fields as probability theory [13], statistics [20], computer science [1, 3, 6, 18,
7, 16] and analysis and PDEs [21].

1.2 Statement of results and related work

We prove an explicit, analytically computable estimate on Tρ for the case where ρ is an `1
sum of discrete metrics:

ρ(x,y) =
n∑

i=1

wi1 {xi,yi}, x,y ∈Ωn; (1.3)

the latter is also known as a “weighted Hamming” metric. This estimate, stated in Corollary
3.4, upper-bounds Tρ(µ,ν) by Ψ(µ−ν), where the Ψ functional is given by a simple closed-
form expression (2.1).
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Our transport inequality is a consequence of a novel linear programming inequality
proved in Theorem 2.2. Another simple consequence of the latter is a measure concentration
inequality (Corollary 3.2).

A special case of Theorem 2.2 (with wi ≡ 1) was proved in [9]; however, we were unable
to extend that proof to general w, which motivated the approach in this paper. The result we
obtain here is both much simpler and significantly more general.

This paper is organized as follows. The linear programming inequality is proved in
Section 2. In Section 3.1 we give an application of Theorem 2.2 to the Azuma-Hoeffding
method of bounded martingale differences to obtain a concentration inequality that is sen-
sitive to the Hamming weights w. In Section 3.2 we propose a way of combining our
inequality with Marton’s transportation technique to obtain other concentration inequali-
ties.

1.3 Notation

Throughout this paper, Ω will denote a finite set. Random variables are capitalized (X),
specified sequences (words) are written in lowercase (x ∈Ωn), the shorthand X j

i = (Xi, . . . ,X j)
is used for all sequences, and word concatenation is denoted using the multiplicative nota-
tion: x j

i xk
j+1 = xk

i . Similarly, if w ∈ Rn and 1 ≤ k ≤ ` ≤ n, then w`k = (wk, . . . ,w`) ∈ Rk−`+1.
Occasionally we will write the weighted Hamming metric (1.3) as ρw to emphasize its de-
pendence on w.

We use the indicator variable 1 {·} to assign 0-1 truth values to the predicate in {·}. The
ramp function is defined by (z)+ = z1 {z>0}. The positive reals are denoted by R+ = (0,∞).

The probability P and expectation E operators are defined with respect the measure
space specified in context.

2 Linear programming inequality

The statement of our main requires a few preliminary definitions.

2.1 Definitions

Fix a finite set Ω, n ∈ N and w ∈ Rn
+. We make the following definitions:

1. Fn denotes the set of all functions g :Ωn→ R (and F0 = R).

2. For f ∈ Fn, its Lipschitz constant with respect to ρw, denoted by ‖ f ‖Lip,w, is defined to
be the smallest c for which

| f (x)− f (y)| ≤ cρw(x,y), x,y ∈Ωn;

any f with ‖ f ‖Lip,w ≤ c is called c-Lipschitz.

3. For v ∈ [0,∞), define Φ+v
w,n ⊂ Fn to be the set of all f such that ‖ f ‖Lip,w ≤ 1 and

0 ≤ f (x) ≤ ‖w‖1+ v, x ∈Ωn;

we omit the +v superscript when v = 0, writing simply Φw,n. We use v as a “slack
variable” to make the induction proof go through; in the applications, it is always 0.
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4. The projection operator (·)′ takes g ∈ Fn to g′ ∈ Fn−1 by

g′(z) =
∑
x1∈Ω

g(x1z), z ∈Ωn−1;

for n = 1, g′ ∈ F0 is the scalar g′ =
∑

x1∈Ω g(x1).

5. For y ∈Ω, the y-section operator (·)y takes g ∈ Fn to gy ∈ Fn−1 by

gy(x) = g(xy), x ∈Ωn−1;

for n = 1, gy ∈ F0 is the scalar g(y).

6. The functional Ψw,n : Fn→ R is defined by Ψw,0(·) = 0 and

Ψw,n(g) = w1

∑
x∈Ωn

(g(x))++Ψwn
2,n−1(g′); (2.1)

when wi ≡ 1 we omit it from the subscript, writing simply Ψn. The letter Psi is a
mnemonic for “Positive Summation, Iterated.” Note that when g is non-negative, we
have Ψn(g) = ‖w‖1 ‖g‖1.

7. The finite-dimensional vector space Fn is equipped with the inner product

〈g,h〉 =
∑
x∈Ωn

g(x)h(x).

8. Two norms are defined on g ∈ Fn: the Φw-norm,

‖g‖Φ,w = sup
f∈Φw,n

|〈g, f 〉| (2.2)

and the Ψw-norm,

‖g‖Ψ,w = max
s=±1
Ψw,n(sg). (2.3)

Remark 2.1. For the special case wi ≡ 1, ρw is the unweighted Hamming metric used in
[9]. It is straightforward to verify that Φw-norm and Ψw-norm satisfy the vector-space norm
axioms for any w ∈ Rn

+; this is done in [9] for wi ≡ 1. Since we will not be appealing
to any norm properties of these functionals, we omit the proof. Note that for any y ∈ Ω,
the projection and y-section operators commute; in other words, for g ∈ Fn+2, we have
(g′)y = (gy)′ ∈ Fn and so we may denote this common value by g′y ∈ Fn:

g′y(z) =
∑
x1∈Ω

gy(x1z) =
∑
x1∈Ω

g(x1zy), z ∈Ωn.
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2.2 Statement and proof

The main result of this section is

Theorem 2.2. For all w ∈ Rn
+ and all g ∈ Fn, we have

‖g‖Φ,w ≤ ‖g‖Ψ,w .

Remark 2.3. This result is proved for wi ≡ 1 in [9]. However, the proof given there is
somewhat cumbersome and does not readily extend to the case of general w (in particular,
it is not clear how to define the corresponding sub-Lipschitz polytopes).

The key technical lemma is a decomposition of Ψw,n(·) in terms of y-sections.

Lemma 2.4. For all n ≥ 1, w ∈ Rn
+ and g ∈ Fn, we have

Ψw,n(g) =
∑
y∈Ω

Ψwn−1
1 ,n−1(gy)+wn

 ∑
x∈Ωn−1

gy(x)


+

 . (2.4)

Proof. We proceed by induction on n. To prove the n = 1 case, recall that Ω0 is the set
containing a single (null) word and that for g ∈ F1, gy ∈ F0 is the scalar g(y). Thus, by
definition of Ψw,1(·), we have

Ψw,1(g) = w1

∑
y∈Ω

(g(y))+ ,

which proves (2.4) for n = 1.
Suppose the claim holds for some n= ` ≥ 1. Pick any w ∈R`+1

+ and g ∈ F`+1 and examine

∑
y∈Ω

Ψw`1,`
(gy)+w`+1

∑
x∈Ω`

gy(x)


+

 = ∑
y∈Ω


w1

∑
x∈Ω`

(
gy(x)

)
+
+Ψw`2,`−1(g′y)

+w`+1

∑
x∈Ω`

gy(x)


+


=

∑
y∈Ω

Ψw`2,`−1(g′y)+w`+1

 ∑
u∈Ω`−1

g′y(u)


+

+w1

∑
z∈Ω`+1

(g(z))+ ,

(2.5)

where the first equality follows from the definition ofΨw`1,`
in (2.1) and the second one from

the straightforward identities∑
y∈Ω

∑
x∈Ω`

(
gy(x)

)
+
=

∑
z∈Ω`+1

(g(z))+

and ∑
x∈Ω`

gy(x) =
∑

u∈Ω`−1

g′y(u).

On the other hand, by definition we have

Ψw,`+1(g) = w1

∑
z∈Ω`+1

(g(z))++Ψw`+1
2 ,`

(g′). (2.6)
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To compare the r.h.s. of (2.5) with the r.h.s. of (2.6), note that the w1
∑

z∈Ω`+1 (g(z))+ term is
common to both and

∑
y∈Ω

Ψw`2,`−1(g′y)+w`+1

 ∑
u∈Ω`−1

g′y(u)


+

 = Ψw`+1
2 ,`

(g′)

by the inductive hypothesis. This establishes (2.4) for n = `+1 and proves the claim. �

Our main result, Theorem 2.2, is an immediate consequence of

Theorem 2.5. For all n ≥ 1, w ∈ Rn
+, v ∈ [0,∞) and g ∈ Fn, we have

sup
f∈Φ+v

w,n

〈g, f 〉 ≤ Ψw,n(g)+ v

∑
x∈Ωn

g(x)


+

. (2.7)

Proof. We will prove the claim by induction on n. For n = 1, pick any w1 ∈ R+, v ∈ [0,∞)
and g ∈ F1. Since by construction any f ∈Φ+v

w1,1
is w1-Lipschitz with respect to the discrete

metric on Ω, f must be of the form

f (x) = f̃ (x)+ ṽ, x ∈Ω,

where f̃ :Ω→ [0,w1] and 0≤ ṽ≤ v (in fact, we have the explicit value ṽ= (maxx∈Ω f (x)−w1)+).
Therefore,

〈g, f 〉 = 〈g, f̃ 〉+ ṽ
∑
x∈Ω

g(x). (2.8)

The first term in the r.h.s. of (2.8) is clearly maximized when f̃ (x) = w11 {g(x)>0} for all
x ∈ Ω, which shows that it is bounded by Ψw1,1(g). Since the second term in the r.h.s. of
(2.8) is bounded by v

(∑
x∈Ω g(x)

)
+, we have established (2.7) for n = 1.

Now suppose the claim holds for n = `, and pick any w ∈ R`+1
+ , v ∈ [0,∞) and g ∈ F`+1.

By the reasoning given above (i.e., using the fact that 0 ≤ f ≤ v+
∑`+1

i=1 wi and that f is 1-
Lipschitz with respect to ρw), any f ∈Φ+v

w,`+1, must be of the form f = f̃ + ṽ, where f̃ ∈Φw,`+1

and 0 ≤ ṽ ≤ v. Thus we write 〈g, f 〉 = 〈g, f̃ 〉+ ṽ
∑

x∈Ω`+1 g(x) and decompose

〈g, f̃ 〉 =
∑
y∈Ω

〈gy, f̃y〉, (2.9)

making the obvious but crucial observation that

f̃ ∈ Φw,`+1 =⇒ f̃y ∈ Φ
+w`+1

w`1,`
.

Then it follows by the inductive hypothesis that

〈gy, f̃y〉 ≤ Ψw`1,`
(gy)+w`+1

∑
x∈Ω`

gy(x)


+

. (2.10)
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Applying Lemma 2.4 to (2.10), we have

∑
y∈Ω

〈gy, f̃y〉 ≤
∑
y∈Ω

Ψw`1,`
(gy)+w`+1

∑
x∈Ω`

gy(x)


+

 = Ψw,`+1(g). (2.11)

This, combined with (2.9) and the trivial bound

ṽ
∑

x∈Ω`+1

g(x) ≤ v

 ∑
x∈Ω`+1

g(x)


+

proves the claim for n = `+1 and hence for all n. �

Remark 2.6. We have given a method for bounding

max
‖ f ‖Lip,w≤1

〈g, f 〉

for a given g ∈ RΩ
n
. Note that the function being maximized, F(·) = 〈g, ·〉 is linear in its

argument and its domain is the finitely generated, compact, convex polytope Φw,n ⊂ R
Ωn

—
hence the term “linear programming inequality.” We make no use of this simple fact and
therefore forgo its proof, but see [9, Lemma 4.4] for a proof of a closely related claim.

Remark 2.7. Although our technique bounds the value of a certain linear program, it ap-
parently gives no hint as to the form of the solution. We hope to address this gap in future
research. Another direction for future work is obtaining analogues of Theorem 2.2 for
non-Hamming metrics on Rn.

3 Applications

3.1 Azuma-Hoeffding martingale difference

This section assumes some familiarity with the notion of measure concentration; see Refer-
ences (in particular, [11, 12]) for introductory and survey material. Briefly, we shall concern
ourselves with the metric probability space (Ωn,ρw,P) where Ω is a finite set, w ∈ Rn

+, ρw is
the weighted Hamming metric defined in (1.3) and P is a (possibly non-product) probability
measure on Ωn. Our goal is to bound P{| f −E f | > t} for suitable f :Ωn→ R.

The method of martingale differences has been used to prove concentration of measure
results since the work of Hoeffding, Azuma, and McDiarmid; see the exposition and ref-
erences in [8, 9]. Let (Ωn,ρw,P) be as defined above and associate to it the (canonical)
random process X = (Xi)1≤i≤n, Xi ∈Ω, satisfying

P{X ∈ A} = P(A)

for any A ⊂Ωn.
For 1 ≤ i ≤ n, f :Ωn→ R and yi

1 ∈Ω
i, define the martingale difference

Vi( f ;yi
1) = E[ f (X) |Xi

1 = yi
1]−E[ f (X) |Xi−1

1 = yi−1
1 ]. (3.1)
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Let

V̄i( f ) = max
yi

1∈Ω
i

∣∣∣Vi( f ;yi
1)
∣∣∣ (3.2)

and

D2( f ) =
n∑

i=1

V̄2
i ( f ).

Then Azuma’s inequality [2] states that

P{| f −E f | > t} ≤ 2exp(−t2/2D2( f )) (3.3)

(see [11] for a modern presentation and a short proof of (3.3)).
In [9] and [8], a technique was developed for bounding the martingale difference Vi( f ;y)

in terms of the Lipschitz constant of f and mixing properties of the measure P. To this end,
the so-called η-mixing coefficients were introduced therein (see discussion ibid. regarding
the appearance of these coefficients in earlier work of Marton [14] and Samson [19]).

For 1 ≤ i < j ≤ n and x ∈Ωi, let

L(Xn
j |X

i
1 = x)

be the law (distribution) of Xn
j conditioned on Xi

1 = x. For y ∈Ωi−1 and z, ż ∈Ω, define

ηi j(y,z, ż) =
∥∥∥∥L(Xn

j |X
i
1 = yz)−L(Xn

j |X
i
1 = yż)

∥∥∥∥
TV
, (3.4)

where ‖·‖TV is the total variation norm, defined here, for a signed measure τ on a finite space
X by

‖τ‖TV = 1
2

∑
x∈X

|τ(x)| .

If τ is balanced in the sense of
∑

x∈X τ(x) = 0, we further have

‖τ‖TV =
∑
x∈X

(τ(x))+ . (3.5)

Additionally, define

η̄i j = max
y∈Ωi−1

max
z,ż∈Ω
ηi j(y,z, ż).

The main application of Theorem 2.5 to measure concentration is the following bound
on the martingale difference:

Theorem 3.1. Let Ω be a finite set, and let (Xi)1≤i≤n, Xi ∈ Ω be the random process asso-
ciated with the measure P on Ωn. Let ∆n be the upper-triangular n× n matrix defined by
(∆n)ii = 1 and

(∆n)i j = η̄i j, 1 ≤ i < j ≤ n. (3.6)
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Then, for all w ∈ Rn
+ and f :Ωn→ R, we have

n∑
i=1

V̄2
i ( f ) ≤ ‖ f ‖2Lip,w ‖∆nw‖22 , (3.7)

where V̄2
i ( f ) is defined in (3.2).

Remark: Since V̄i( f ) and ‖ f ‖Lip,w are both homogeneous functionals of f (in the sense
that T (a f ) = |a|T ( f ) for a ∈ R), there is no loss of generality in taking ‖ f ‖Lip,w = 1. Addi-
tionally, since Vi( f ;y) is translation-invariant (in the sense that Vi( f ;y) = Vi( f +a;y) for all
a ∈ R), there is no loss of generality in restricting the range of f to [0,diamρw(Ωn)]. In other
words, it suffices to consider f ∈ Φw,n. The proof will follow closely that of [9, Theorem
5.1]. The extension of this result to countable Ω is quite straightforward, along the lines of
[9, Lemma 6.1].

Proof. We must show that for any 1 ≤ i < n and f ∈ Φw,n,

V̄i( f ) ≤ wi+

n∑
j=i+1

w jη̄i j =

n∑
j=1

(∆n)i jw j = (∆nw)i, (3.8)

whence (3.7) follows immediately by squaring and summing over i. We begin by invoking
[9, Lemma 3.1], which bounds V̄i( f ) by a related functional:

V̄i( f ) ≤ max
yi−1∈Ωi−1,z,ż∈Ω

∣∣∣V̂i( f ;yi−1,z, ż)
∣∣∣ ,

where, for yi−1 ∈Ωi−1 and z, ż ∈Ω,

V̂i( f ;yi−1,z, ż) = E[ f (X) |Xi = yi−1z]−E[ f (X) |Xi = yi−1ż].

Next, we observe that the functional f 7→ V̂i( f ;yi−1,z, ż) is given by

V̂i( f ;yi−1,z, ż) =
〈
gyi−1,z,ż, f

〉
,

where gyi−1,z,ż ∈ Fn is defined by

gyi−1,z,ż(x) = 1 {xi−1=yi−1}

(
1 {xi=z}P(xn

i+1 |y
i−1z)−1 {xi=ż}P(xn

i+1 |y
i−1ż)

)
and P(xn

i+1 |y
i−1z) is a shorthand for P(Xn

i+1 = xn
i+1 |X

i−1
1 = yi−1z). We further notice that the

structure of gyi−1,z,ż implies that〈
gyi−1,z,ż, f

〉
=

〈
Tyi−1[gyi−1,z,ż],Tyi−1[ f ]

〉
,

where, for t ∈Ωi−1, the operator Tt : Fn→ Fn−i+1 is defined by

Tt[h](x) = h(tx), x ∈Ωn−i+1.

Applying Theorem 2.5, we get〈
Tyi−1[gyi−1,z,ż],Tyi−1[ f ]

〉
≤ Ψwn

i ,n−i+1(Tyi−1[gyi−1,z,ż]).
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Thus, in order to prove (3.8), it suffices to show that

Ψwn
i ,n−i+1(g(L)) ≤ wi+

n∑
j=i+1

w jη̄i j,

where L = n− i+1 and g(L) = Tyi−1[gyi−1,z,ż]. For ` = L,L−1, . . . ,2, define

g(`−1) = (g(`))′,

where (′) is the marginal projection operator defined in Section 2.1. Then g(`) ∈ F` and a
direct calculation shows that for i < j ≤ n,

g(n− j+1)(x) = P
{
Xn

j = x |Xi = yi−1z
}
−P

{
Xn

j = x |Xi = yi−1ż
}
, x ∈Ωn− j+1. (3.9)

Since g(n− j+1) is a difference of two probability measures on Ωn− j+1, we have by (3.5) that∥∥∥g(n− j+1)
∥∥∥

TV
=

∑
x∈Ωn− j+1

(
g(n− j+1)(x)

)
+
.

Together with (3.9), this immediately shows that for i < j ≤ n,∑
x∈Ωn− j+1

(
g(n− j+1)(x)

)
+
= ηi j(yi−1,z, ż). (3.10)

Now, from the definition of the Ψw,n functional (2.1), we see that

Ψwn
i ,n−i+1(g(L)) = wi

∑
x∈ΩL

(
g(L)(x)

)
+
+Ψwn

i+1,n−i(g(L−1)).

Continuing to unravel the recursion in (2.1) and combining with (3.10), we obtain (3.8).
�

Corollary 3.2. Let Ω be a finite set and P a measure on Ωn, for n ≥ 1. For any w ∈ Rn
+ and

f :Ωn→ R, we have

P{| f −E f | > t} ≤ 2exp

− t2

2‖ f ‖2Lip,w ‖∆nw‖22

 .
To place our results in context, let us recall some classic bounds. McDiarmid’s inequal-

ity [15] may be stated as

P{| f −E f | > t} ≤ 2exp

− 2t2

‖ f ‖2Lip,w ‖w‖
2
2

 , (3.11)

where P is a product measure. Marton’s result [13] states that if f :Ωn→ R is a 1-Lipschitz
function with respect to ρw, wi ≡ n−1, and P is a contracting homogeneous Markov chain
with Doeblin coefficient θ < 1 then

P
{∣∣∣ f −M f

∣∣∣ > t
}
≤ 2exp

−2n

t(1− θ)−
√

log2
2n

2 , (3.12)

where M f is a P-median of f .
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Remark 3.3. It may be shown via Markov’s contraction lemma [8, Lemma 4.1.1] that for
contracting Markov chains with Doeblin coefficient θ, we have

(∆n)i j ≤ θ
j−i

for 1 ≤ i < j ≤ n. Following [5], we use Young’s inequality to obtain

‖∆nw‖22 ≤ (1− θ)−2 ‖w‖22

for contracting Markov chains. Thus, we have that if f : Ωn→ R is a 1-Lipschitz function
with respect to any ρw, and P is a contracting (possibly inhomogeneous) Markov chain with
Doeblin coefficient bounded by θ < 1, then

P{| f −E f | > t} ≤ 2exp
− (1− θ)2t2

2‖w‖22

 . (3.13)

The contraction method is extended to more general processes in [10].
Note that (3.13) generalizes (3.12) (up to constants and decaying terms in the exponent)

both over the metrics (w ∈Rn
+ is arbitrary) and the class of measures (homogeneity and strict

contractivity are not required); see [8, 9] for details. Analogous results have recently been
obtained by [4] and [5]. Note further that all of our concentration results continue to hold if
the metric ρw defined in (1.3) is replaced by an `1 sum of arbitrary discrete metrics on Ω:

ρ̃(x,y) =
n∑

i=1

di(xi,yi), x,y ∈Ωn.

Taking wi = diam(Ω,di), it is easy to see that any function F : Ωn → R that is L-Lipschitz
with respect to ρ̃ is also L-Lipschitz with respect to ρw. Thus, Corollary 3.2 sharpens
Theorem 1 of [17], where the stronger γ-mixing assumption is made.

3.2 Marton’s transportation inequality

In [13], Marton developed the powerful transportation method for proving concentration
inequalities. Let Ωn be equipped with the metric ρ defined in (1.3). For two distributions
µ and ν on Ωn, define also the relative entropy (or Kullback-Leibler divergence) of ν with
respect to µ as

H(ν |µ) = Entµ

(
dν
dµ

)
=

∫
log

dν
dµ

dν

whenever ν� µ with Radon-Nikodým derivative dν
dµ .

The measure µ is said to satisfy a transportation inequality with constant a > 0 if

Tρ(µ,ν) ≤
1
a

[
1

2n
H(ν |µ)

]1/2

(3.14)

for every ν, where Tρ is defined in (1.1).
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This condition implies concentration for µ:

µ
{
x ∈Ωn :

∣∣∣ f −M f
∣∣∣ > t

}
≤ 2exp

−2n

at−

√
log2
2n

2 (3.15)

provided t ≥
√

log2/(2n), where M f is a µ-median of f (see [11] or [13] for a simple
derivation of this result).

A consequence of Kantorovich duality (1.2) is that to bound the transportation cost
Tρ(µ,ν) it suffices to bound sup‖ f ‖Lip≤1 〈µ− ν, f 〉. But this is precisely what Theorem 2.2
accomplishes:

Corollary 3.4. If Ω is a finite set equipped with the weighted Hamming metric ρ as in (1.3)
and µ,ν are distributions on Ωn, then

Tρ(µ,ν) ≤ Ψw,n(µ− ν).

The implications for concentration of measure are that in cases where bounding Tρ
directly (e.g., via coupling methods as in [13]) is difficult, one could attempt to prove an
inequality of the type

Ψw,n(µ− ν) ≤
1
a

[
1

2n
H(ν |µ)

]1/2

, (3.16)

which a fortiori would imply (3.14). This approach has the advantage that Ψw,n(µ − ν)
is readily computable by an explicit, closed-form formula, while bounding Tρ typically
involves discovering clever couplings. A drawback of this approach is that the resulting
bounds are likely to be cruder than direct methods.
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[21] Cédric Villani. Topics in optimal transportation, volume 58 of Graduate Studies in
Mathematics. American Mathematical Society, Providence, RI, 2003.

[22] Cédric Villani. Optimal Transport: Old and New, volume 338 of Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences].
Springer-Verlag, Berlin, 2009.


