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Abstract

Orthogonal projectors on the subspateof homogeneous spherical polynomials of degreed on the subspace
PPN of spherical polynomials of degree< N are defined for functions on the unit sph&eand their derivativeds of

real degres are introduced by using the multiplier operators. A family of Hilbert spdtesf generalized functions
having fractional derivatives of real degreen Sis introduced, and some embedding theorems for functions from
HS® and Banach spacés’(S) andLP(0, T;X) on Sare given.

Non-stationary and stationary problems for barotropic vorticity equation (BVE) describing the vortex dynamics
of viscous incompressible fluid on a rotating sphBm@re considered. A theorem on the unique weak solvability of
nonstationary problem and theorem on the existence of weak solution to stationary problem are given, and a condition
guaranteeing the uniqueness of such steady solution is also formulated.

The asymptotic behaviour of solutions of nonstationary BVE-ase is studied. Particular forms of the external
vorticity source have been found which guarantee the existence of such boundgdnsatphase spac¥ that
eventually attracts all solutions to the BVE. It is shown that the asymptotic behaviour of the BVE solutions depends
on both the structure and the smoothness of external vorticity source. Sufficient conditions for the global asymptotic
stability of both smooth and weak solutions are also given.
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1 Introduction

Although the three-dimensional Euler and Navier-Stokes equations are the fundamental equations for the numeric
simulation of dynamics of atmosphere and global climatic processes, the shallow-water equations is also widely use
as a good approximation for the large-scale atmospheric motions, since the characteristic length scale of horizont
motions is much larger than that of vertical motions [21]. The shallow-water equations support both fast (gravity)
waves and slow (Rossby-Haurwitz) waves [6]. The barotropic vorticity equation (BVE) is obtained from the shallow
water model as a result of filtering the surface gravity waves. The unique weak solvability of the barotropic vorticity
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equation for ideal fluid on a sphere was shown by Szeptycki [33] under the conditions that the initial stream function
Wo(x) € W3(S)NILL>(S), the external vorticity sourcE(t,x) € L2(0,T; Wi(S)) NLL*(Q). Then there exists the unique
solutiony(t, x) such that

WY eL®(0,T;W5(S), APeL™(Q), yeL®(0,T;WxS)).

Using the theory of integral equations, the global existence, uniqueness and regularity properties of classical solt
tions of the vorticity equation was proved by Chern, Colin and Kaper [12, Theorems 1-3]. The Schauder fixed-point
theorem is used on a set defined byl#ter norms. Ben-Artzi [4] constructed for the Navier—Stokes flow a global-in-
time solution when the initial vorticity is integrable. Unlike Giga, Miyakawa and Osada [13] his proof does not appeal
to the Nash estimate, but relies on a simple property of the heat equation which makes it easy to prove the continuot
dependence of the solution on the initial vorticity. Brezis [5] proves the uniqueness of a continuous solLfiE&in
for the vorticity equation for planar Navier—Stokes flow provided that the solution is locally bounded.

The spacd.?(R?) is naturally associated with the Navier-Stokes equation, since it is the energy space, because thi
square of th&.2 norm ofu is the total (kinetic) energy of the fluid, which is nonincreasing with time. As it mentioned by
Gallagher and Gallay [12], the first mathematical result on the Cauchy problem is due to Leray [19] who proved that, for
any initial dataug € IL?(R?), the Navier-Stokes system has a unique global solutierC°(]0, +-),1L?(R?)) such that
u(-,0) = up and Ou € IL?((0, 4+),IL2(R?)). The unique solvability of two-dimensional Navier-Stokes equation with
a measure as initial vorticity was considered by Gallagher and Gallay [12] in which the authors study the uniquenes
of solutions to the Cauchy problem for the vorticity equation in the whole pRin@hen the initial vorticity is taken
from M(R?), the space of finite Radon measures. The existence of a global solution to the problem was establishe
earlier (Giga, Miyakawa and Osada [13], Kato [16]), but the uniqueness for an arbitrary finite Radon measure as initia
vorticity has been proved by Gallagher and Gallay [12]. To be precise, the authors prove that, any solution of the
2D Navier—Stokes equation, whose vorticity distribution is uniformly boundéd {iR?) for positive times is entirely
determined by the trace of the vorticitytat 0, which is a finite measure.

The analysis of classes of functions, in which there exists unique solution of the vorticity equation on a rotating
sphere, is of special theoretical interest. Such analysis becomes particularly important in the study of stability o
solutions. All known results on the unique solvability of 2D Navier-Stokes equations in a bounded domain of Euclidean
spaceR? differ mainly in (i) technique, (ii) spaces of generalized functions under consideration and (iii) procedure to
construct approximate solutions [3, 17, 20, 30, 34].

The vorticity equation considered here takes into account the Rayleigh friction of thecftwymthe term 2,
describing the rotation of sphere, the external vorticity source (fordi{g)x), and the turbulent viscosity term of
common formv(—A)St1y, wheres > 1 is an arbitrary real number. The case 1 corresponds to the classical form
used in Navier-Stokes equations (see Ladyzhenskaya [17], Temam [34, 35], Szeptycki [32, 33], Dymnikov and Filatoy
[7], llyin and Filatov [14, 15], while the case= 2 was considered by Simmons, Wallace and Branstator [22], Dymnikov
and Skiba [8-10], Skiba [28], etc. The turbulent term of such form for natural nunsher@pplied by Lions [20] for
studying the solvability of Navier-Stokes equations in a limited area by the artificial viscosity method.

Here we considered only real solutions. Note thasferl, Y, € W3(S), F € L2(0, T; W(S))nLL*(0,T;L?(S)) and
o = 0, the theorem on the existence and uniqueness of solytier.® (0, T; W3(S)) such that; € L*(0,T;L%(S))
and Ay € 1L2(0,T; W3(S)) was proved by Szeptycki ([33], Theorem 3.1). The rotation of sphere is not considered
by Szeptycki. It is also shown in [33] that if additionallypp € L=(S) and F € L°(Q) then Ay € L*(Q). The
unique solvability of generalized problem for stream functiofrom L2(0, T; W3(S)) NC(0, T; W3(S)), s= 1, 0 =0,

Wo € W3(S), F € L2(0,T; W, 1(S)) andR € IL2(0,T; W,%(S)) was proved by llyin and Filatov [14]V{3(S) are the
Sobolev spaces of the functions orthogonal to a constant on a sphere; see also Dymnikov and Filatov [7] and Ilyin an
Filatov [15]). The rotation of sphere was taken into account in [14]. The existence and uniqueness of BVE solution
(see below (4.1)) fos = 1 ands = 2 was proved in [29]. The unique solvability of nonstationary BVE for arbitrary
real numbers > 1,as well as the existence of weak solution to the stationary BVE, was shown in [23]. A condition
guaranteeing the uniqueness of such steady solution is also given in there. In the works [7, 14, 15], a function on th
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sphere is treated as the trace of the corresponding functii&i.afnlike this, in [23, 28, 29] and in the present work,
the functional spaces are introduced directly on the sphere.

The asymptotic behaviour of solutions of nonstationary BVE as~ is studied. Particular forms of the external
vorticity source have been found which guarantee the existence of such bounBed aghase spacé that eventually
attracts all solutions to the BVE. It is shown that the asymptotic behaviour of the BVE solutions depends on both the
structure and the smoothness of external vorticity source. Sufficient conditions for the global asymptotic stability of
both smooth and weak BVE solutions are also given.

2 Orthogonal Projectors and Fractional Derivatives

Let S= {x € R®: |x| = 1} be a unit sphere in the three-dimensional Euclidean space; we den@®(Bythe set of
infinitely differentiable functions o®and by

(1.9) = [ 10900ds @)

S

and

If]l = (f, £)*2 (2.2)

the inner product and norm i6*(S), respectively. Her& = (A, ) is a point on the sphereS= dAdpis an element
of sphere surfacey = sing; € [—1,1], @is the latitudeA € [0,2m) is the longitude and is the complex conjugate of
functiong.

It is known that spherical harmonics

2n+1(n—m)!
4t (n+m)!

1/2 _
o= | | “erwem™  nzo m<n

form orthogonal basis it (S):
<YnmaY|k> = Ominl

where

5. 1, if m=k
k=N 0, if m£k
is the Kronecker delta, and

(1—2)"™? gnm
onnl dprm

PA (1) = (2-1)"

is the associated Legendre function of degread zonal wavenumben.
Let n andm be integer,n > 0, and|m| < n. Each spherical harmoni" (A, ) is the eigenfunction of spectral
problem
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YT =X, Iml<n

corresponding to the eigenvalue

Xn=n(n+1)
of multiplicity 2n+ 1. Here
d d 1 2
A= 6u{(1 “)au] 1- 12 0A2 (@3)

is symmetric and positive definite Laplace operatoSon
For each integem > 0, the span of 8+ 1 spherical harmonicg!" (A, 1) (/M| < n) forms a generalized (2+ 1)-
dimensional eigenspace

Hn={W: —Ap =Xnl} (2.4)

corresponding t,. The subspackl, is invariant not only with respect to the Laplace operator but also to any trans-
formation of theSQ(3) group of rotations of sphere about arbitrary axis through its center.
In order to simplify notation we will also use a multi-index= (m,n) = (my, Ny) for the wavenumbefm, n):

a=(-mn) = (—Mg,Ng),

= S S . (2.5)
a%) nka:an

We now introduce operators of projection and fractional differentiation (fractional derivatives) of functions on the
sphere [23]. Sincé—A)kY e C*(S) for every € C*(S) and any naturak, then due to the formula

% i (n+21))° wpy"
ReImE—
the Fourier coefficientg™ = (, Y™ of Y tend to zero as — oo faster than the sequencgr for any degreé.
Definition 2.1. The completion ofC*(S) in the norm (2.2) is the Hilbert space
L*(S) = @p_gHn

being the direct orthogonal sum of subspaldgof generalized functions c&with inner product (2.1).



Asymptotic Behavior and Stability of Solutions to Barotropic Vorticity Equation on a Sphere 147

Definition 2.2. Let w be an angle between two unit radius-vectgrsx, corresponding to the pointg,x, € S. Then
X1 - Xp = cosw is the scalar product of vector andx,. A function z(X-y) depending only on the distanggx,y) =

arccogX-y) = w between two pointx andy of sphere is called the zonal function. The convolution of a function
W € L2(S) with a zonal functiorZ(X-y) € L2(S) is defined by

W20 = 7 [9y) Zx-9)dsy

(see [23]).

Letn > 0. Orthogonal projectoy, : L?(S) — H, of L?(S) on the subspadd, of homogeneous spherical polyno-
mials of degree is introduced by

Yo (W;X) = (2n4+1) (W= Py) (X). (2.6)

In order to show that (2.6) is really the projector we first prove that

M= 3 U

—Nn

and henceY,(y) € Hp. Indeed,

M S ¥ x) Y (x0)
oned, 2, o) WO

for two radius-vectors; andx; [23]. Therefore, due to Definition 2.2, and formulas (2.6) and (2.5) we have

NN = Y U

and henceYn(Ya (W) = Ya(W) for all functionsy € IL.2(S) [23]. For the sake of brevity we will sometimes write simply
Yn (W) instead ofYy (Y; x) .
Obviously, any function from subspakk is constant:

Yo(¥) = 7 [w(y) dS(y) = Const

LetN > 0 be an integer. We introduce finite dimensional subspBtieandP}) of spherical polynomials of degree
n <N as direct orthogonal sums of subspakigs

PN =N oHn, Py =N Hh={WeP":Yo(p)=0}.
Note that the Parseval-Steklov identities

Hwhgw&—gmww 2.7)
a(0 n=
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o0}

W)= Y weflo = 3 06 (W) )

a(0) n=

hold for any functionap, h € IL?(S). Due to (2.7), each functiai(x) € IL2(S) is represented by its own Fourier-Laplace
series

- SNWN=3 5 U

Definition 2.3. Let s> 0 andy(x) € C*(S). A spherical operatohs = (—A)%? of real ordersis defined by means of
equations
s/2

Yo (NS) = X “Ya (W) = [n(n+1)]%2Y, ()

valid for any natural numbenr.

Thus,A® is a multiplier operator which is completely defined by infinite set of muItipIica{tx?éz}ﬁ:O . We will
consider\S as a derivative of real orderof functions on a sphere, besides,

z XS/ZYn (W;x) Z XS/ZLIJO(YG (2.8)

In particular,A?" = (—A)" for any naturah, and operaton can be interpreted as the square root of nonnegative and
symmetric Laplace operator (2.3). It is well known that the main disadvantage of local deriv&i@as anda" /ou"

is that they depend on the choice of coordinate system (i.e., on sphere rotation). The new defivaiaprojectors

Y, are invariant with respect to any element of the gr&@3) of sphere rotations [23], and hence are free from this
disadvantage.

3 Hilbert Spaces

In this section we introduce a family of Hilbert spadé® of generalized functions (distributions) on sph&ehat
depends on a real paramesebesides, a functio € H® for somesif its sth fractional derivative belongs to the space

L2(S) [23].

Definition 3.1. We denote byC7 (S) the space of infinitely differentiable functions which are orthogonal to any constant
on the sphere:

Co(9) ={weC™(S: Yo (v) =0}.

Note that operatof® may be defined on functiorisy (S) by means of (2.8) for every real degree
Definition 3.2. For any reak, we introduce irCg (S) the inner product-, -) and normy|- || in the following way:

<qu h>s = </\Sw7/\sh> =

= z Xn (Ya (W), Y, z XaWaha,

=1 (D)
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Wlls = IA%W] = (W, )Y =

° 1/2 1/2
= { zlxﬁuvnw)uz} = { > \w} : (3.1)
n= a(l

Definition 3.3. Letsbe areal. The Hilbert spaces obtained by closing the spg¢8) in the norms (3.1) we denote as
HS.

For the sake of brevity we will keep the symbdls) and|-|| for the inner product and norm iH° (see (2.1) and
(2.2)). Itis shown in [1] that

Cy(SCH cHSCHCcH SCcH™' (3.2)

are continuous if &< s< r , and the dual spadél®)* coincides withH S foralls> 0.
Letsandr be real numbers. Operatdf : Cg(S) — Cg(S) is symmetric,

(N, h)s= (W, A'h)g
and hence, closable, that is it can be extended as operator acting on the wholE%pace
Definition 3.4. An elementz € H® is called therth derivativeA" Y of a functiony € HS if
(zh)g= (ZA\"h)q
holds for allh € C3 (S), whereA"h is defined by (2.8).

The following assertion establishes embedding estimates for functions of the fafr{ge (3.2)).

Lemma 3.5. [28]. Let s be real, > 0, andy € H'". Theny € H® and

[Wlls <272 Wllg,, (3.3)

Wl = IA"Wls-

Corollary 3.6. Let s and r be real numbers. The mappiNg H5"" —— HS is isometry and isomorphism. In particular,
atr=—2s, the operato\~25: HS— HS is isometric isomorphism.

Lemma 3.7. (Poincare inequality[29]). For anyy € H*,

W)l < 1/v2||0g| = 1/V2[Ay]. (3.4)
In fact, a more general assertion than Lemma 3.7 is valid:
Lemma 3.8. [28]. Letr,s and t be real numbers,« t , and a= v/2. Then for anyp € H5't,

AW < a [ Ayl (3.5)
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4 Barotropic Vorticity Equation

Let us consider the nonlinear nonstationary problem

%Aww(w,szm A V(—A)Y+F (4.1)

AP (0,x) = A (X) 4.2)

for the barotropic vorticity equation (4.1) describing the behavior of relative vortiiyt,x) in a viscous two-
dimensional incompressible rotating fluid on unit spHef23].

The problem takes into account a forcing (an external vorticity solf¢ex) and Rayleigh frictionoAy in the
planetary boundary layer. Equation (4.1) is written in a non-dimensional form using geographical coordinate systen
(A, 1) with the poleN being on the central axis of rotation of sph&eHereu is the stream functiomdy + 2y is the
absolute vorticity,

_0goh oypoh

is the Jacobian] (g, 2u) = 2y, is the term that takes into account the rotation of spherés the outward unit nor-

mal vector at each point of spheg and the symbols-” and "x” denote the scalar and vector product of vectors,
respectively. Besides,

_ 1 _oh o—5oh
Dh_(vl—uza_?\’ ! udu)

is the gradient oh, A is the spherical Laplace operator (2.3) and symbels, andy, denote partial derivatives af
with respect td, A andy, respectively. The velocity vector

V=T x0Oy

with components

— 1
u=— 1_U2llJu y V= ul'p)\

is solenoidal:

0-V =0.

We will consider the turbulent viscosity term of common fovi-A)S1, wheres > 1 is arbitrary real number
[23]. The cases= 1 corresponds to classical viscosity term in Navier-Stokes equations [7, 15, 17, 32-34], while the
cases= 2 was considered in [8-10, 22, 28]. The turbulent term of such form for natural nusiiseapplied in [20] for
proving the solvability of Navier-Stokes equations in a limited area by means of the method of artificial viscosity.
The equation (4.1) is obtained by applying the operatot to the equations of 2D fluid motions. Since the sphere
is a smooth manifold without edges, such a transformation has resulted in the factyhatafsolution of problem
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(4.1), (4.2) thenp + constis also the solution for angonst In order to eliminate this constant the problem (4.1), (4.2)
will be considered in classes of functions which are orthogonal to a constant on the sphere:

5 Properties of the Jacobian

We now study some properties of the Jacobian (4.3) which will be used in the following sections. Let all functions
under consideration be complex-valued. It is clear that

JW,h) =) , IW,y)=0. (5.1)

Let n be a natural number, amce a real number. Since

ANa(W) = X3 Yo ()

we obtain
J(Y,A\°p) =0
for any homogeneous spherical polynomjabf degreen (¢ € Hp). Obviously,

J(y,h)=0

for any zonal functiong)(x) = W(Z -X) andh(x) = h(Z - X), wherezis a pole of spher& Note that a smooth vector
field W x Oy is solenoidal, and due to (4.3),

J(,h) = O [h (7 x Oy)]. (5.2)
Suppose that a smooth vector fieldlefined orShas a compact suppdftC S that is,?(x) =0if x¢ K. Then
/ 0. X ds=0.
s
Using the theorem on the partition of unity, we obtain
/J(l]J, h) dS=0. (5.3)
s
It is easy to show that the relation

J(hd,9) = hJ(P,9) —PJI(g, h) (5.4)
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is valid for all continuously differentiable functionjs g andh on S. Integrating (5.4) ove and using (5.3) and (5.1)
we obtain that

(W, g).h) = (I(g,h),T) = —(I(W, h),7) (5.5)

holds for sufficiently smooth complex-valued functiopsg andhon S,
Let C be the set of complex numbers, andyet C*(S), ¢ : S— C. Then applying the gradient operator to the
superpositiorG(y) = Go U of two functions we get

06() = 55 GWICY,

and hence,

3w,6() = (77 x 09) - (22 00)

oy
at each poink € S Therefore, due to (5.5),
(3w, h.GW)) =0, (5.6)
Lemma 5.1. Let r be a real number, angy,h € C*(S). Then

Indeed, the first relation follows from (5.6). Further,
(3 )/\T>—/ T ] d / /2 9 (A /2g2dn | du=0

We used here the commutativity of operatﬁfsanda%. Indeed,

A2 M AT (™) = 2y

_ 0 rym
A NY,

" oA
for each basic function (spherical harmong).

Definition 5.2. We denote byLP(S) the completion of continuous functions on the spt@irethe norm

/p
Wlios = ( [ wPas)

Wl = sup vrai [Y(x)|
XES

if p=# o, and in the norm

if p= oo,
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Applying Schwarz inequality one can obtain from (4.3) that

1/2
1o, 1 = { [IoWRIan? s} < 100l 0Nl 58)

Lemma 5.3. [11]. Let1 < p < . For all functions g such thatAy € LP(S), the following norms are equivalent:

10U o) = IAWILp(s) -

We now give important results on continuous embeddings of functions from spa¢®sandH®.

Lemma5.4.[2]. Let p>1and 0<s< 2/p. Letr be suchthats 2(1/p—1/r), andy € LP(S). ThenA~sp € L'(S)
and

Iy

L' (S < C HwH]LP(S) .
In the particular case, that= 2 we have

Lemma 5.5. Let se (0,1). If number r is such thats- 1— 2/r then each functionp of H® belongs tdL"(S), and

[Wler s < Cllwlls-

Using Lemmas 5.4 and 5.5, and (3.1), we obtain
15Wl29 < CallAWllag < CollAW < C A7)
The last inequality and (5.8) imply the following result:

Lemma 5.6. Lety, h € H32. Then Jy, h) belongs tdL?(S), and
13w, Wl < c|[A¥2g| |A¥2].
By Lemma 5.6,(J(, h),g) is the continuous form iil®/? x H%? x HP. In particular,

(W, h[| < M[[Ag][|[|Ah]. (5.9)

6 Solvability of Barotropic Vorticity Equation

This section is devoted to the unique solvability of a generalized nonstationary BVE problem (4.1), (4.2). Except self-

interest, the analysis of classes of functions, in which there exists a solution of the problem, is particularly important i
the study of stability of solutions [24, 25]. The fluid dynamics stability has been studied by many researchers (see th

bibliography in [23]).
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Definition 6.1. Let p € [1,»). We denote byLP(0, T;X) the Banach space of measurable functigns(0,T) — X,
image of which is inX and such that

T 1/p
[Wlleeorx) = (/o ||lIJ(t)H§dt> < .

If p= oo then the normii.*(0,T;X) is defined by

[WllL=(01x) = sup vrai [[Y(t)|x
te(0,T)
HereafterQ = (0,T) x SandLP(Q) = LLP(0, T;LP(S)). The following assertion was proved in [23].

Theorem 6.2. [23]. Let s> 1, v > 0 and ¢ > 0. Suppose that initial field\)p € L?(S), and forcing Ft,x) €
IL2(0,T;H~S). Then nonstationary proble(d.1),(4.2) has unique weak solutiofi(t,x) € L.*(0,T;H?) such that

W(t,x) € L*(0,T;H%) NIL2(0,T; HS),

A € L2(0,T;H™S), AW (0,X) = Ao (X)
and
t t t
[ 1) — 0w, 0, 8w+ 20 0 (aw, ) dt—v [ (A2 Ay = [ (F by 61)
0 0 0
holds for all te (0,T) and he IL2(0, T; HS).
Remark6.3. Here we considered only real solutions, and therefore, used (5.5) in (6.1).

We now consider the stationary BVE for incompressible viscous fluid on a rotating sphere:

J (P, A +21) = —0APY +v(—A)ST P+ F(x). (6.2)

The existence of weak solution of equation (6.2) was proved in [23]. It was also proved in [23] that for a sufficiently
large turbulent diffusion coefficiem, equation (6.2) has unique solution. These results can be formulated as follows:

Theorem 6.4.[23]. Let s> 1,v > 0ando > 0. Suppose that the vorticity sourcé»j € HS. Then there exists at least
one weak solutioy(x) € HS+2 of equation(6.2) such that

v {(ASF2P, A%h) — o (A, h) + (I(P, h), AP+ 2u) = (F,h)

holds for all he HS. In addition, if
V2> 217 M [F (x)]|_s
then solutionp(x) is unique (here M is the constant fro{5.9)).

Remark6.5. The cases= 1 ando = 0 was considered in [14] (see also [7,15]). Bet 1 ands= 2 the Theorem 6.4
was proved in [28, 29].
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7 Asymptotic Behavior of BVE Solutions

In this section we study the asymptotic behavior of BVE solutions -as«. Evidently, the geometric structure of
the attractive set of the BVE depends on the form of external forcing [27]. We consider here such particular forms of
external vorticity source that there exists a boundedsieta phase spac¥, and the trajectories of all the solutions
of nonstationary problem (4.1), (4.2) are eventually attracteB.b§ome assertions are similar to well known results
obtained for solutions of two-dimensional Navier-Stockes equations in the case of a bounded domain in Euclidean spa
R2 [17].

First we suppose that forcing is steady. Due to Theorem 6.2, the opevatoxs— X which solve the problem
(4.1), (4.2) represent the bounded and point-dissipative semigroup [18]. Indeed the following more precise assertior
are valid.

Theorem 7.1. Let s> 1 in (4.1) and the steady vorticity source(k) € H", r > —1. Then every solutiog(t,x) of
problem(4.1), (4.2) will eventually be attracted by a bounded 8etf the phase spac€. Moreover,
. if F(x) € H" where r> 0thenX =H? and

B={beH: |y, <Cur.s)[Fl| (7.1)
Il. if F(x) € " where re (0,1] thenX =H* and
B={weH": [y, <Car,9) ||, (7.2)

The constants {r,s) and G(r,s) are determined by

—r arfl

, Co(r,9)

Ca(r,s)

:0+25v :0+25v

where a= /2 is the constant from lemma 3.8.

Proof. I. Suppose tha (x) € Hj andr > 0. Taking the inner product of equation (4.1) wikkp and using (5.7) we
obtain

(O, M) = —0 (A, A) +V (—2)% W, M) + (F, Ab)

= 0 (A, AY) — V|| AS 2|+ (F,Ap). (7.3)
Further, using (3.3) and (3.5), we estimate the teffAy) andv }|AS+2L|JH2 as

[(F,AQ)| < [IF[llag]| <a ™" [[F|, law]|
wherea = v/2, and

v [A2* 2 2 lap|?.
Then (7.3) implies

0
18]l 5 AW < —(0+2%) w2 +a~" I, flaw] .

If we divide the last inequality by{Ay|| then we obtain

0 _
5t 18Vl < —p Ayl +a " [|F |, (7.4)
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where

p=0+2%. (7.5)
It follows from (7.4) that

—r

[AQ(t)[| < [|Aw(0)||exp(—pt) + % [Fll; [1—exp(—pt)] (7.6)
and hence,

[W(t)]l, — Ca(r,9)|[F||, ast— oo.

Il. We now consider the case wherix) € H," andr € (0,1]. Taking the inner product of equation (4.1) with
and using (5.7) we get

(A, AW) = =0 [ A2 = v |[A* — (F ). (7.7)
The application of (3.3) and (3.5) {&, g) andv H/\S*quH2 gives
[(F,W)] < [ATTF | IAW] <& H|F|, [IAw]
wherea = /2, and
v|[AS)| > v2s A2,

Then (7.7) implies

0 0 _
s AWl = 110y < —pliAg]+aF,
wherep is defined by (7.5), or

r—1

AW < [AW(0)[| exp(—pt) + ap

IF] - [1— exp(—pt)] (7.8)

and hence,

W)y = Ca(r,S)[[F[|, ast— co.

The theorem is proved. O

Remark7.2 If solution ) belongs to the sdB at some moment of timg then, due to (7.6) and (7.8), it will belong
to B for all t > to. Hence all the steady and periodic solutions (if they exist) belong to thg. 98bviously, the seB
contains the maximal BVE attractor [35].

Remark7.3. Theorem 7.1 is also valid in the case when forck(g,X) is a periodic in time function from the space
C(0,w; Hy") wherewis the period. In order to prove this fact, we should only replace in (7.1) and (7.2) the fiBtns
and||F||_, by the norms max|F|, and max||F||_,, respectively.

te[0,w)] te[0,w)]
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8 Global Asymptotic Stability of BVE Solutions

In this section, the global asymptotic stability of BVE solutions is considered. A norm related with kinetic energy and
enstrophy of perturbations is introduced, and an equation describing the evolution of this norm is derived. Then twc
sufficient conditions for the global asymptotic stability of a BVE solution are obtained. These conditions differ in the
smoothness of the basic solution and ensure that the trajectories of all other BVE solutions will exponentially tend tc
the trajectory of basic solution as time tends to infinity.

In a bounded domain on the plane, a condition for the global asymptotic stability were earlier obtained bydSundstr
[31] for the basic flow, whose stream function had continuous derivatives up to the third order inclusive. The first
theorem proved here (theorem 8.4) generalizes this result to the flows on a rotating sphere, when the BVE contair
the linear drag term and the term of turbulent viscosity of more general form. However, the theorems 6.2 and 6.4 ol
the BVE solvability (see section 6) do not guarantee the existence of the solution whose third or higher derivatives ar
continuous. The second theorem proved here (theorem 8.5) gives the conditions for global asymptotic stability, in whicl
the requirements to the smoothness of basic solution is weakened and is in full accordance with the solvability theorem
Examples are given for a super-rotation flow and for the flow in the form of homogeneous spherical polynomial of degree
n.

We now analyse the stability of a solutidrit, A, 1) of BVE (4.1) with initial condition(y(0, A, ). Let {i(t,A, ) be
another solution of (4.1) with initial conditiogi(O, A, ). Then

2 00 +3(0.85) + 3. 40) + 238 +3 (0, 8y) = [0+ vAZlaY ©.1)
wheres> 1,v > 0 ando > 0, holds for the difference
WA, ) = Bt A, 1) — DA, W) (8.2)

of two solutions, besides,
lIJ(O,)\, U) = lTJ(O,}\, p—) - m(O,)\a p—)

at the initial moment. The function (8.2) represents a perturbation of the basic saJutitaking the inner product
(2.1) of equation (8.1) successively withandAy and using (5.5) and (5.7), we obtain two equations

%K(t) + (3 (Y, AP), 1)) 4+ 20K (t) +v H/\S*quH2 =0 (8.3)
200~ (0. 40), A7) + 200 (1) +v A2y = 0 (®.4)

for the kinetic energy
1
K =5 Ivwl?
and enstrophy

1
n(t) =5 oy’
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of perturbation.

It follows from (8.3) and (8.4) that the first Jacobian in (8.1) may change the perturbation ensf(opbut does
not affect the behavior of perturbation ened§yt). On the contrary, the second Jacobian in (8.1) has no effect on
the perturbation enstrophy(t) but may change the perturbation enetgft). Both the super-rotation term and the
non-linear term (the last two terms in the left part of (8.1)) have no influence on the behakir afndn (t).

Evidently, the zero solutiop = 0 (existing if F = 0) is globally asymptotically stable. Indeed, in this case the
nonlinear termgJ (Y, Aw), P)) and (J (Y, Ap),Ad)) in (8.3) and (8.4) are equal to zero, and hence, the perturbation
energy and enstrophy will be constant for a non-dissipative fmid (1 = 0) and will exponentially decrease otherwise.

Let now{) be a solution of general form, and letandq be non-negative real numbers, not equal to zero simultane-
ously. Then the functional

Wl = [G(p.g,w,1)]"2 (8.5)
where

G(p,,W,t) = G(t) = pK(t) +an(t) = 5 (p|DW|*+a[Aw|?) (8.6)

NI =

makes a norm in the space of perturbations on the sghere
Multiplying (8.3) and (8.4) byp andq, respectively, and combining the results, we obtain

0
= G(t) = —20G(t) = R(t) = vp||A*y||” —vq|A*2y||* 8.7)

where
By using (3.4) and (3.5) one can obtain

2 2
o [ [V R VAN ]| o VAT
Then the estimation of the last two terms in (8.7) leads to

26(t) < ~206(1) - R() (8.9)

with

p=0+2%

Example 8.1. The super-rotation basic flaviLet the basic solutiop belongs to the subspakh defined by (2.4). Such

a solution represents a super-rotation flow about some axis passing through the sphere center. Then, in the geograph
system of coordinates related to this axjis= (1) = CuwhereC is a constant, ang(t) defined by (8.8) is equal to

zero due to (5.7). Thus the super-rotation flow (about any axis of a sphere) is Liapunov steblgiiE 0, and is the

global attractor (asymptotically Liapunov stablepif- O [26].
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Example 8.2. The basic flow in the form of a homogeneous spherical polynoméaii(t,A,p) € H, for somen > 2,
that is,

P(t,A W) = Z PR ()Y (A, ). (8.10)

In particular, it may have the form of Legendre polynomial of degreé(p) = CR, (1) (zonal flow). Therd(y,Ag) =
for any initial perturbation of the subspakk, (W(0,A,p) € Hy), and due to (8.8)R(t) = 0. Thus, due to (8.1), any
perturbation oH, will never leaveH,,, and hencekH, is invariant set of perturbations to a polynomial flow (8.10). It
follows from (8.9) that

G(p,d,y,t) < G(p,q,Y,0) exp(—2pt)

and any initial perturbatio(0,A, n) of H, will exponentially tend to zero with time not leaviridy,. In other words,
the setH,, belongs to to the basin of attraction of solution (8.10).

Remarl8.3 The same resultis valid in the case when basic flgtyA, ) is a linear combination of the flows considered
in the examples 8.1 and 8.2. In particul@tt, A, ) may be a Rossby-Haurwitz wave [25].

We now obtain sufficient conditions for the global asymptotic stability of rather smooth BVE solution on the sphere
S when any solution perturbation tends to zerd as« (see below theorems 8.4 and 8.5). In the particular case when
s=1ando = 0, theorem 8.4 is analogous to the assertion proved by Sonugd1] for flows in a limited domain on
the plane.

First, assume that the basic solutipft, A, ) of equation (4.1) is rather smooth, such that two values

p = sup max \DAL]J(t A W| and g= sup max ]Dw(t AW (8.11)
t>0AWe t>0MAWeS

are finite. Let us estimate the inner product (8.8) by means of functional (8.6pwitllq defined by (8.11):
IR[ = [(I(pY —aAP, ), Ap)| < 2pq|| DY [Aw]| < 2,/paG(t).

Substitution of this inequality in equation (8.9) leads to

Theorem 8.4.Let s> 1,v > 0andc > 0. If the smooth solutiodi(t, A, 1) of equation(4.1)is such that the numbers p
and g defined by8.11)are finite, and
o+2%v > ./pq

then any perturbation afi(t, A, 1) will exponentially decrease with time in the no(&b).

Note that both Theorem 8.4 and asymptotic-stability condition by Suimid81] demand the uniform boundedness
of [DAJ(t, A, )| and|Od(t, A, 1) |. However, as it was mentioned earlier, the existence of BVE solutions has been proved
only in the classes of twice continuously differentiable streamfunctions. We now show that the restriction (8.11) on the
smoothness of basic solution can be weakened so as to agree with the requirements of the solvability theorems 6.2 ¢
6.4.

Indeed, let us consider a BVE solutidrit, A, 1) such that

p= sup max |[AQ(t,A\,)] and g= sup max |P(t,A, )] (8.12)
t>0MAWeS t>0MAWeS

are finite values. Let us estimgt(t)| using (3.4), (3.5) and-inequality

ab< ale? + L
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whereg >0 :

IR()| < 2pal|Dy| DAY = 2pa|| Ol {|A*w]| < 2pal| Oyl [[wll; =

= (vPallwlly) (2v/Pallwlls) < 20E°G(t) + %1 (S (8.13)

Further, it follows from (8.6), (8.7) and Lemma 3.5 that

0
~6(t) < ~206(1) R(t) ~vpl|WlZ., ~va W,

< —20G(t) — 22" WG(t) — R(t) — va W],

< —2pG(t) —R(t) —vaa'®|y|3 (8.14)

wherea = v/2. Combining (8.14) with (8.13) and puttire§ = pa® /v we eliminate the two terms containitig||3.
The resulting inequality leads to

Theorem 8.5. Let s> 1, v > 0 ando > 0. If a solution{i(t,A, ) of equation(4.1)is such that the numbers p and q
defined by(8.12)are finite, and
V(o +2%) > 2(5-1/2pq (8.15)

then any perturbation afi(t, A, 1) will exponentially decrease with time in the no(&b).

Remark8.6. Evidently that in the case of a steady solutibf, ), p andq in (8.15) are defined as

= max |[AP(A and = max |P(A )
p Mes\ IOWN] q (W)es\w( W)

According to conditions (8.12), only the first two derivatives of the basic solufi@m\, 1) should be continuous
functions, and hence, these conditions can be applied to a wider class of solutions to equation (4.1).
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