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Universidad Nacional Autónoma de Ḿexico
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Abstract

Orthogonal projectors on the subspaceHn of homogeneous spherical polynomials of degreen and on the subspace
PN of spherical polynomials of degreen≤ N are defined for functions on the unit sphereS, and their derivativesΛs of
real degreesare introduced by using the multiplier operators. A family of Hilbert spacesHs of generalized functions
having fractional derivatives of real degrees on S is introduced, and some embedding theorems for functions from
Hs and Banach spacesLp(S) andLp(0,T;X) onSare given.

Non-stationary and stationary problems for barotropic vorticity equation (BVE) describing the vortex dynamics
of viscous incompressible fluid on a rotating sphereSare considered. A theorem on the unique weak solvability of
nonstationary problem and theorem on the existence of weak solution to stationary problem are given, and a condition
guaranteeing the uniqueness of such steady solution is also formulated.

The asymptotic behaviour of solutions of nonstationary BVE ast → ∞ is studied. Particular forms of the external
vorticity source have been found which guarantee the existence of such bounded setB in a phase spaceX that
eventually attracts all solutions to the BVE. It is shown that the asymptotic behaviour of the BVE solutions depends
on both the structure and the smoothness of external vorticity source. Sufficient conditions for the global asymptotic
stability of both smooth and weak solutions are also given.
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Keywords: Incompressible viscous fluid on a rotating sphere, unique solvability, asymptotic behavior, asymptotic
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1 Introduction

Although the three-dimensional Euler and Navier-Stokes equations are the fundamental equations for the numerical
simulation of dynamics of atmosphere and global climatic processes, the shallow-water equations is also widely used
as a good approximation for the large-scale atmospheric motions, since the characteristic length scale of horizontal
motions is much larger than that of vertical motions [21]. The shallow-water equations support both fast (gravity)
waves and slow (Rossby-Haurwitz) waves [6]. The barotropic vorticity equation (BVE) is obtained from the shallow
water model as a result of filtering the surface gravity waves. The unique weak solvability of the barotropic vorticity
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equation for ideal fluid on a sphere was shown by Szeptycki [33] under the conditions that the initial stream function
ψ0(x) ∈W2

2(S)∩L∞(S), the external vorticity sourceF(t,x) ∈ L2(0,T;W1
2(S))∩L∞(Q). Then there exists the unique

solutionψ(t,x) such that

ψ ∈ L∞(0,T;W2
2(S)), Δψ ∈ L∞(Q), ψt ∈ L

∞(0,T;W1
2(S)).

Using the theory of integral equations, the global existence, uniqueness and regularity properties of classical solu-
tions of the vorticity equation was proved by Chern, Colin and Kaper [12, Theorems 1-3]. The Schauder fixed-point
theorem is used on a set defined by Hölder norms. Ben-Artzi [4] constructed for the Navier–Stokes flow a global-in-
time solution when the initial vorticity is integrable. Unlike Giga, Miyakawa and Osada [13] his proof does not appeal
to the Nash estimate, but relies on a simple property of the heat equation which makes it easy to prove the continuous
dependence of the solution on the initial vorticity. Brezis [5] proves the uniqueness of a continuous solution inL1(R2)
for the vorticity equation for planar Navier–Stokes flow provided that the solution is locally bounded.

The spaceL2(R2) is naturally associated with the Navier-Stokes equation, since it is the energy space, because the
square of theL2 norm ofu is the total (kinetic) energy of the fluid, which is nonincreasing with time. As it mentioned by
Gallagher and Gallay [12], the first mathematical result on the Cauchy problem is due to Leray [19] who proved that, for
any initial datau0 ∈ L2(R2), the Navier-Stokes system has a unique global solutionu∈ C0([0,+∞),L2(R2)) such that
u(∙,0) = u0 and∇u ∈ L2((0,+∞),L2(R2)). The unique solvability of two-dimensional Navier-Stokes equation with
a measure as initial vorticity was considered by Gallagher and Gallay [12] in which the authors study the uniqueness
of solutions to the Cauchy problem for the vorticity equation in the whole planeR2 when the initial vorticity is taken
from M(R2), the space of finite Radon measures. The existence of a global solution to the problem was established
earlier (Giga, Miyakawa and Osada [13], Kato [16]), but the uniqueness for an arbitrary finite Radon measure as initial
vorticity has been proved by Gallagher and Gallay [12]. To be precise, the authors prove that, any solution of the
2D Navier–Stokes equation, whose vorticity distribution is uniformly bounded inL1(R2) for positive times is entirely
determined by the trace of the vorticity att = 0, which is a finite measure.

The analysis of classes of functions, in which there exists unique solution of the vorticity equation on a rotating
sphere, is of special theoretical interest. Such analysis becomes particularly important in the study of stability of
solutions. All known results on the unique solvability of 2D Navier-Stokes equations in a bounded domain of Euclidean
spaceR2 differ mainly in (i) technique, (ii) spaces of generalized functions under consideration and (iii) procedure to
construct approximate solutions [3, 17, 20, 30, 34].

The vorticity equation considered here takes into account the Rayleigh friction of the formσΔψ, the term 2ψλ
describing the rotation of sphere, the external vorticity source (forcing)F(t,x), and the turbulent viscosity term of
common formν(−Δ)s+1ψ, wheres> 1 is an arbitrary real number. The cases= 1 corresponds to the classical form
used in Navier-Stokes equations (see Ladyzhenskaya [17], Temam [34, 35], Szeptycki [32, 33], Dymnikov and Filatov
[7], Ilyin and Filatov [14, 15], while the cases= 2 was considered by Simmons, Wallace and Branstator [22], Dymnikov
and Skiba [8-10], Skiba [28], etc. The turbulent term of such form for natural numberss is applied by Lions [20] for
studying the solvability of Navier-Stokes equations in a limited area by the artificial viscosity method.

Here we considered only real solutions. Note that fors= 1, ψ0 ∈W2
2(S), F ∈L2(0,T;W1

2(S))∩L∞(0,T;L2(S)) and
σ = 0, the theorem on the existence and uniqueness of solutionψ ∈ L∞(0,T;W2

2(S)) such thatψt ∈ L∞(0,T;L2(S))
and Δψ ∈ L2(0,T;W1

2(S)) was proved by Szeptycki ([33], Theorem 3.1). The rotation of sphere is not considered
by Szeptycki. It is also shown in [33] that if additionallyΔψ0 ∈ L∞(S) and F ∈ L∞(Q) then Δψ ∈ L∞(Q). The
unique solvability of generalized problem for stream functionψ from L2(0,T;W2

2(S))∩C(0,T;W1
2(S)), s= 1, σ = 0,

ψ0 ∈W3
2(S), F ∈ L2(0,T;W−1

2 (S)) andFt ∈ L2(0,T;W−2
2 (S)) was proved by Ilyin and Filatov [14] (Wn

2(S) are the
Sobolev spaces of the functions orthogonal to a constant on a sphere; see also Dymnikov and Filatov [7] and Ilyin and
Filatov [15]). The rotation of sphere was taken into account in [14]. The existence and uniqueness of BVE solution
(see below (4.1)) fors= 1 ands= 2 was proved in [29]. The unique solvability of nonstationary BVE for arbitrary
real numbers≥ 1,as well as the existence of weak solution to the stationary BVE, was shown in [23]. A condition
guaranteeing the uniqueness of such steady solution is also given in there. In the works [7, 14, 15], a function on the
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sphere is treated as the trace of the corresponding function ofR3. Unlike this, in [23, 28, 29] and in the present work,
the functional spaces are introduced directly on the sphere.

The asymptotic behaviour of solutions of nonstationary BVE ast → ∞ is studied. Particular forms of the external
vorticity source have been found which guarantee the existence of such bounded setB in a phase spaceX that eventually
attracts all solutions to the BVE. It is shown that the asymptotic behaviour of the BVE solutions depends on both the
structure and the smoothness of external vorticity source. Sufficient conditions for the global asymptotic stability of
both smooth and weak BVE solutions are also given.

2 Orthogonal Projectors and Fractional Derivatives

Let S= {x ∈ R3 : |x| = 1} be a unit sphere in the three-dimensional Euclidean space; we denote byC∞(S) the set of
infinitely differentiable functions onSand by

〈 f ,g〉 =
∫

S

f (x)g(x)dS (2.1)

and

‖ f‖ = 〈 f , f 〉1/2 (2.2)

the inner product and norm inC∞(S), respectively. Herex = (λ,μ) is a point on the sphere,dS= dλdμ is an element
of sphere surface,μ= sinφ; μ∈ [−1,1], φ is the latitude,λ ∈ [0,2π) is the longitude andg is the complex conjugate of
functiong.

It is known that spherical harmonics

Ym
n (λ,μ) =

[
2n+1

4π
(n−m)!
(n+m)!

]1/2

Pm
n (μ)eimλ , n≥ 0, |m| ≤ n

form orthogonal basis inC∞(S):
〈

Ym
n ,Yk

l

〉
= δmkδnl

where

δmk =

{
1, if m= k
0, if m 6= k

is the Kronecker delta, and

Pm
n (μ) =

(
1−μ2

)m/2

2nn!
dn+m

dμn+m

(
μ2−1

)n

is the associated Legendre function of degreen and zonal wavenumberm.
Let n andm be integer,n ≥ 0, and|m| ≤ n. Each spherical harmonicYm

n (λ,μ) is the eigenfunction of spectral
problem
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−ΔYm
n = χnY

m
n , |m| ≤ n

corresponding to the eigenvalue

χn = n(n+1)

of multiplicity 2n+1. Here

−Δ = −
∂
∂μ

[
(
1−μ2) ∂

∂μ

]

−
1

1−μ2

∂2

∂λ2 (2.3)

is symmetric and positive definite Laplace operator onS.
For each integern ≥ 0, the span of 2n+ 1 spherical harmonicsYm

n (λ,μ) (|m| ≤ n) forms a generalized (2n+ 1)-
dimensional eigenspace

Hn = {ψ : −Δψ = χnψ} (2.4)

corresponding toχn. The subspaceHn is invariant not only with respect to the Laplace operator but also to any trans-
formation of theSO(3) group of rotations of sphere about arbitrary axis through its center.

In order to simplify notation we will also use a multi-indexα ≡ (m,n) ≡ (mα,nα) for the wavenumber(m,n):

α ≡ (−m,n) ≡ (−mα,nα) ,

Yα ≡Ym
n , χα ≡ χn = n(n+1),

∑
α(k)

≡
∞

∑
n=k

n

∑
m= −n

. (2.5)

We now introduce operators of projection and fractional differentiation (fractional derivatives) of functions on the
sphere [23]. Since(−Δ)kψ ∈ C∞(S) for everyψ ∈ C∞(S) and any naturalk, then due to the formula

(−Δ)k ψ =
∞

∑
n=1

n

∑
m= −n

[n(n+1)]k ψm
nYm

n

the Fourier coefficientsψm
n = 〈ψ,Ym

n 〉 of ψ tend to zero asn→ ∞ faster than the sequence 1/nk for any degreek.

Definition 2.1. The completion ofC∞(S) in the norm (2.2) is the Hilbert space

L2(S) = ⊕∞
n=0Hn

being the direct orthogonal sum of subspacesHn of generalized functions onSwith inner product (2.1).
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Definition 2.2. Let ω be an angle between two unit radius-vectors~x1, ~x2 corresponding to the pointsx1,x2 ∈ S. Then
~x1 ∙ ~x2 = cosω is the scalar product of vectors~x1 and~x2. A function z(~x ∙~y) depending only on the distanceρ(x,y) =

arccos(~x ∙~y) = ω between two pointsx andy of sphere is called the zonal function. The convolution of a function
ψ ∈ L2(S) with a zonal functionZ(~x ∙~y) ∈ L2(S) is defined by

(ψ∗z)(x) =
1
4π

∫

S
ψ(y) Z(~x ∙~y)dS(y)

(see [23]).

Let n ≥ 0. Orthogonal projectorYn : L2(S) 7→ Hn of L2(S) on the subspaceHn of homogeneous spherical polyno-
mials of degreen is introduced by

Yn (ψ;x) = (2n+1)(ψ∗Pn)(x) . (2.6)

In order to show that (2.6) is really the projector we first prove that

Yn(ψ;x) =
n

∑
m= −n

ψm
nYm

n (x)

and hence,Yn(ψ) ∈ Hn. Indeed,

Pn (~x1 ∙~x2) =
4π

2n+1

n

∑
m= −n

Ym
n (x1) Ym

n (x2)

for two radius-vectors~x1 and~x2 [23]. Therefore, due to Definition 2.2, and formulas (2.6) and (2.5) we have

Yn(ψ;x) =
n

∑
m= −n

ψm
nYm

n (x)

and hence,Yn(Yn(ψ)) = Yn(ψ) for all functionsψ ∈ L2(S) [23]. For the sake of brevity we will sometimes write simply
Yn(ψ) instead ofYn(ψ;x) .

Obviously, any function from subspaceH0 is constant:

Y0 (ψ) =
1
4π

∫

S
ψ(y) dS(y) = Const.

Let N> 0 be an integer. We introduce finite dimensional subspacesPN andPN
0 of spherical polynomials of degree

n≤ N as direct orthogonal sums of subspacesHn:

PN = ⊕N
n=0Hn, PN

0 = ⊕N
n=1Hn =

{
ψ ∈ PN : Y0(ψ) = 0

}
.

Note that the Parseval-Steklov identities

‖ψ‖2 = ∑
α(0)

|ψα|
2 =

∞

∑
n=0

‖Yn (ψ)‖2 (2.7)
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〈ψ,h〉 = ∑
α(0)

ψαhα =
∞

∑
n=0

〈Yn (ψ) ,Yn (h)〉

hold for any functionsψ,h∈ L2(S). Due to (2.7), each functionψ(x) ∈ L2(S) is represented by its own Fourier-Laplace
series

ψ(x) =
∞

∑
n=0

Yn(ψ;x) ≡
∞

∑
n=0

n

∑
m= −n

ψm
nYm

n (x) .

Definition 2.3. Let s> 0 andψ(x) ∈ C∞(S). A spherical operatorΛs = (−Δ)s/2 of real orders is defined by means of
equations

Yn (Λsψ) = χs/2
n Yn (ψ) = [n(n+1)]s/2Yn(ψ)

valid for any natural numbern.

Thus,Λs is a multiplier operator which is completely defined by infinite set of multiplicators{χs/2
n }∞

n=0 . We will
considerΛs as a derivative of real orders of functions on a sphere, besides,

Λsψ(x) =
∞

∑
n=1

χs/2
n Yn(ψ;x) ≡ ∑

α(1)

χs/2
α ψαYα (x) . (2.8)

In particular,Λ2n = (−Δ)n for any naturaln, and operatorΛ can be interpreted as the square root of nonnegative and
symmetric Laplace operator (2.3). It is well known that the main disadvantage of local derivatives∂n/∂λn and∂n/∂μn

is that they depend on the choice of coordinate system (i.e., on sphere rotation). The new derivativesΛs and projectors
Yn are invariant with respect to any element of the groupSO(3) of sphere rotations [23], and hence are free from this
disadvantage.

3 Hilbert Spaces

In this section we introduce a family of Hilbert spacesHs of generalized functions (distributions) on sphereS, that
depends on a real parameters, besides, a functionψ ∈Hs for somes if its sth fractional derivative belongs to the space
L2(S) [23].

Definition 3.1. We denote byC∞
0 (S) the space of infinitely differentiable functions which are orthogonal to any constant

on the sphere:
C∞

0 (S) = {ψ ∈ C∞(S) : Y0 (ψ) = 0} .

Note that operatorΛs may be defined on functionsC∞
0 (S) by means of (2.8) for every real degrees.

Definition 3.2. For any reals, we introduce inC∞
0 (S) the inner product〈∙, ∙〉s and norm‖∙‖s in the following way:

〈ψ,h〉s = 〈Λsψ,Λsh〉 =

=
∞

∑
n=1

χs
n 〈Yn(ψ) ,Yn(h)〉 ≡ ∑

α(1)

χs
αψαhα,
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‖ψ‖s = ‖Λsψ‖ = 〈ψ,ψ〉1/2
s =

=

{
∞

∑
n=1

χs
n‖Yn(ψ)‖2

}1/2

≡

{

∑
α(1)

χs
α |ψα|

2

}1/2

. (3.1)

Definition 3.3. Let sbe a real. The Hilbert spaces obtained by closing the spaceC∞
0 (S) in the norms (3.1) we denote as

Hs.

For the sake of brevity we will keep the symbols〈∙, ∙〉 and‖∙‖ for the inner product and norm inH0 (see (2.1) and
(2.2)). It is shown in [1] that

C∞
0 (S) ⊂Hr ⊂Hs ⊂H0 ⊂H−s ⊂H−r (3.2)

are continuous if 0< s< r , and the dual space(Hs)∗ coincides withH−s for all s> 0 .
Let s andr be real numbers. OperatorΛr : C∞

0 (S) 7→ C∞
0 (S) is symmetric,

〈Λrψ,h〉s = 〈ψ,Λrh〉s ,

and hence, closable, that is it can be extended as operator acting on the whole spaceHs.

Definition 3.4. An elementz∈ Hs is called therth derivativeΛrψ of a functionψ ∈Hs if

〈z,h〉s = 〈z,Λrh〉s

holds for allh∈ C∞
0 (S), whereΛrh is defined by (2.8).

The following assertion establishes embedding estimates for functions of the familyHs (see (3.2)).

Lemma 3.5. [28]. Let s be real, r> 0 , andψ ∈Hs+r . Thenψ ∈Hs and

‖ψ‖s ≤ 2−r/2‖ψ‖s+r (3.3)

‖ψ‖s+r = ‖Λrψ‖s.

Corollary 3.6. Let s and r be real numbers. The mappingΛr :Hs+r 7−→Hs is isometry and isomorphism. In particular,
at r = −2s , the operatorΛ−2s :H−s 7−→Hs is isometric isomorphism.

Lemma 3.7. (Poincare inequality,[29]). For anyψ ∈H1,

‖ψ‖ ≤ 1/
√

2‖∇ψ‖ = 1/
√

2‖Λψ‖ . (3.4)

In fact, a more general assertion than Lemma 3.7 is valid:

Lemma 3.8. [28]. Let r,s and t be real numbers, r< t , and a=
√

2. Then for anyψ ∈Hs+t ,

‖Λrψ‖s ≤ ar−t
∥
∥Λtψ

∥
∥

s (3.5)
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4 Barotropic Vorticity Equation

Let us consider the nonlinear nonstationary problem

∂
∂t

Δψ+J(ψ,Δψ+2μ) = −σΔψ+ν(−Δ)s+1ψ+F (4.1)

Δψ(0,x) = Δψ0 (x) (4.2)

for the barotropic vorticity equation (4.1) describing the behavior of relative vorticityΔψ(t,x) in a viscous two-
dimensional incompressible rotating fluid on unit sphereS [23].

The problem takes into account a forcing (an external vorticity source)F(t,x) and Rayleigh frictionσΔψ in the
planetary boundary layer. Equation (4.1) is written in a non-dimensional form using geographical coordinate system
(λ,μ) with the poleN being on the central axis of rotation of sphereS. Hereψ is the stream function,Δψ + 2μ is the
absolute vorticity,

J(ψ,h) =
∂ψ
∂λ

∂h
∂μ

−
∂ψ
∂μ

∂h
∂λ

= (−→n ×∇ψ) ∙∇h (4.3)

is the Jacobian,J(ψ,2μ) = 2ψλ is the term that takes into account the rotation of sphere,−→n is the outward unit nor-
mal vector at each point of sphereS, and the symbols ”∙” and ”×” denote the scalar and vector product of vectors,
respectively. Besides,

∇h =

(
1

√
1−μ2

∂h
∂λ

,
√

1−μ2 ∂h
∂μ

)

is the gradient ofh, Δ is the spherical Laplace operator (2.3) and symbolsψt , ψλ andψμ denote partial derivatives ofψ
with respect tot, λ andμ, respectively. The velocity vector

−→v = −→n ×∇ψ

with components

u = −
√

1−μ2ψμ , v =
1

√
1−μ2

ψλ

is solenoidal:

∇ ∙−→v = 0.

We will consider the turbulent viscosity term of common formν(−Δ)s+1ψ, wheres> 1 is arbitrary real number
[23]. The cases= 1 corresponds to classical viscosity term in Navier-Stokes equations [7, 15, 17, 32-34], while the
cases= 2 was considered in [8-10, 22, 28]. The turbulent term of such form for natural numberss is applied in [20] for
proving the solvability of Navier-Stokes equations in a limited area by means of the method of artificial viscosity.

The equation (4.1) is obtained by applying the operatorcurl to the equations of 2D fluid motions. Since the sphere
is a smooth manifold without edges, such a transformation has resulted in the fact that ifψ is a solution of problem
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(4.1), (4.2) thenψ+constis also the solution for anyconst. In order to eliminate this constant the problem (4.1), (4.2)
will be considered in classes of functions which are orthogonal to a constant on the sphere:

Y0 (ψ) = 0 , Y0 (F) = 0.

5 Properties of the Jacobian

We now study some properties of the Jacobian (4.3) which will be used in the following sections. Let all functions
under consideration be complex-valued. It is clear that

J(ψ,h) = −J(h,ψ) , J(ψ,ψ) = 0. (5.1)

Let n be a natural number, andr be a real number. Since

ΛsYn(ψ) = χs/2
n Yn(ψ) ,

we obtain

J(ψ,Λsψ) = 0

for any homogeneous spherical polynomialψ of degreen (ψ ∈ Hn). Obviously,

J(ψ,h) = 0

for any zonal functionsψ(x) = ψ(−→z ∙~x) andh(x) = h(−→z ∙~x), wherez is a pole of sphereS. Note that a smooth vector
field−→n ×∇ψ is solenoidal, and due to (4.3),

J(ψ,h) = ∇ ∙ [h (−→n ×∇ψ)] . (5.2)

Suppose that a smooth vector field
−→
X defined onShas a compact supportK ⊂ S, that is,

−→
X (x) = 0 if x /∈ K. Then

∫

S
∇ ∙

−→
X dS= 0.

Using the theorem on the partition of unity, we obtain

∫

S
J(ψ,h) dS= 0. (5.3)

It is easy to show that the relation

J(hψ,g) = hJ(ψ,g)−ψJ(g,h) (5.4)
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is valid for all continuously differentiable functionsψ, g andh on S. Integrating (5.4) overSand using (5.3) and (5.1)
we obtain that

〈J(ψ, g),h〉 =
〈
J( g,h),ψ

〉
= −

〈
J(ψ, h),g

〉
(5.5)

holds for sufficiently smooth complex-valued functionsψ, g andh onS.
Let C be the set of complex numbers, and letψ ∈ C∞(S), ψ : S→ C. Then applying the gradient operator to the

superpositionG(ψ) = G◦ψ of two functions we get

∇G(ψ) =
∂

∂ψ
G(ψ)∇ψ ,

and hence,

J(ψ,G(ψ)) = (−→n ×∇ψ) ∙ (
∂G
∂ψ

∇ψ)

at each pointx∈ S. Therefore, due to (5.5),

〈
J(ψ, h),G(ψ)

〉
= 0. (5.6)

Lemma 5.1. Let r be a real number, andψ,h∈ C∞(S). Then

〈
J(ψ, h),ψr

〉
= 0 ,

〈
J(ψ, μ),Λrψ

〉
= 0. (5.7)

Indeed, the first relation follows from (5.6). Further,

〈
J(ψ, μ),Λrψ

〉
=
∫ 1

−1

[∫ 2π

0

∂ψ
∂λ

Λrψdλ
]

dμ=
1
2

∫ 1

−1

[∫ 2π

0

∂
∂λ

(Λr/2ψ)2dλ
]

dμ= 0.

We used here the commutativity of operatorsΛr and ∂
∂λ . Indeed,

Λr ∂
∂λ

Ym
n = Λr(imYm

n ) = imχr/2
n Ym

n =
∂

∂λ
ΛrYm

n

for each basic function (spherical harmonic)Ym
n .

Definition 5.2. We denote byLp(S) the completion of continuous functions on the sphereS in the norm

‖ψ‖Lp(S) =

(∫

S
|ψ|pdS

)1/p

if p 6= ∞, and in the norm
‖ψ‖L∞(S) = sup

x∈S
vrai |ψ(x)|

if p = ∞.
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Applying Schwarz inequality one can obtain from (4.3) that

‖J(ψ, h)‖ =

{∫

S
|∇ψ|2 |∇h|2 dS

}1/2

≤ ‖∇ψ‖L4(S) ‖∇h‖L4(S) . (5.8)

Lemma 5.3. [11]. Let1 < p < ∞. For all functions ψ such thatΛψ ∈ Lp(S), the following norms are equivalent:

‖∇ψ‖Lp(S) � ‖Λψ‖Lp(S) .

We now give important results on continuous embeddings of functions from spacesLp(S) andHs.

Lemma 5.4. [2]. Let p> 1 and 0 < s< 2/p. Let r be such that s= 2(1/p−1/r), andψ ∈ Lp(S). ThenΛ−sψ ∈ Lr(S)
and

∥
∥Λ−sψ

∥
∥
Lr (S) ≤C‖ψ‖Lp(S) .

In the particular case, thatp = 2 we have

Lemma 5.5. Let s∈ (0,1). If number r is such that s= 1−2/r then each functionψ ofHs belongs toLr(S), and

‖ψ‖Lr (S) ≤C‖ψ‖s.

Using Lemmas 5.4 and 5.5, and (3.1), we obtain

‖∇ψ‖L4(S) ≤C1‖Λψ‖L4(S) ≤C2‖Λψ‖1/2 ≤C
∥
∥
∥Λ3/2ψ

∥
∥
∥ .

The last inequality and (5.8) imply the following result:

Lemma 5.6. Let ψ,h∈H3/2. Then J(ψ, h) belongs toL2(S), and

‖J(ψ, h)‖ ≤C
∥
∥
∥Λ3/2ψ

∥
∥
∥
∥
∥
∥Λ3/2h

∥
∥
∥ .

By Lemma 5.6,〈J(ψ,h),g〉 is the continuous form inH3/2×H3/2×H0. In particular,

‖J(ψ, h)‖ ≤ M ‖Δψ‖‖Δh‖ . (5.9)

6 Solvability of Barotropic Vorticity Equation

This section is devoted to the unique solvability of a generalized nonstationary BVE problem (4.1), (4.2). Except self-

interest, the analysis of classes of functions, in which there exists a solution of the problem, is particularly important in
the study of stability of solutions [24, 25]. The fluid dynamics stability has been studied by many researchers (see the
bibliography in [23]).
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Definition 6.1. Let p ∈ [1,∞). We denote byLp(0,T;X) the Banach space of measurable functionsψ : (0,T) → X,
image of which is inX and such that

‖ψ‖Lp(0,T;X) =

(∫ T

0
‖ψ(t)‖p

Xdt

)1/p

< ∞.

If p = ∞ then the norm inL∞(0,T;X) is defined by

‖ψ‖L∞(0,T;X) = sup
t∈(0,T)

vrai ‖ψ(t)‖X.

Hereafter,Q = (0,T)×SandLp(Q) = Lp(0,T;Lp(S)). The following assertion was proved in [23].

Theorem 6.2. [23]. Let s≥ 1, ν > 0 and σ ≥ 0. Suppose that initial fieldΔψ0 ∈ L2(S), and forcing F(t,x) ∈
L2(0,T;H−s). Then nonstationary problem(4.1),(4.2)has unique weak solutionψ(t,x) ∈ L∞(0,T;H2) such that

ψ(t,x) ∈ L∞(0,T;H0)∩L2(0,T;Hs),

Δψt ∈ L
2(0,T;H−s) , Δψ(0,x) = Δψ0 (x)

and ∫ t

0
[〈Δψt ,h〉−〈J(ψ,h),Δψ+2μ〉+σ〈Δψ,h〉]dt−ν

∫ t

0

〈
Λs+2ψ,Λsh

〉
dt =

∫ t

0
〈F,h〉dt (6.1)

holds for all t∈ (0,T) and h∈ L2(0,T;Hs).

Remark6.3. Here we considered only real solutions, and therefore, used (5.5) in (6.1).

We now consider the stationary BVE for incompressible viscous fluid on a rotating sphere:

J(ψ,Δψ+2μ) = −σΔψ+ν(−Δ)s+1ψ+F(x). (6.2)

The existence of weak solution of equation (6.2) was proved in [23]. It was also proved in [23] that for a sufficiently
large turbulent diffusion coefficientν, equation (6.2) has unique solution. These results can be formulated as follows:

Theorem 6.4. [23]. Let s≥ 1, ν > 0 andσ ≥ 0. Suppose that the vorticity source F(x) ∈H−s. Then there exists at least
one weak solutionψ(x) ∈Hs+2 of equation(6.2)such that

ν
〈
Λs+2ψ,Λsh

〉
−σ〈Δψ,h〉+ 〈J(ψ,h),Δψ+2μ〉 = 〈F,h〉

holds for all h∈H−s. In addition, if

ν2 > 21−sM ‖F(x)‖−s

then solutionψ(x) is unique (here M is the constant from(5.9)).

Remark6.5. The cases= 1 andσ = 0 was considered in [14] (see also [7,15]). Fors= 1 ands= 2 the Theorem 6.4
was proved in [28, 29].
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7 Asymptotic Behavior of BVE Solutions

In this section we study the asymptotic behavior of BVE solutions ast → ∞. Evidently, the geometric structure of
the attractive set of the BVE depends on the form of external forcing [27]. We consider here such particular forms of
external vorticity source that there exists a bounded setB in a phase spaceX, and the trajectories of all the solutions
of nonstationary problem (4.1), (4.2) are eventually attracted byB. Some assertions are similar to well known results
obtained for solutions of two-dimensional Navier-Stockes equations in the case of a bounded domain in Euclidean space
R2 [17].

First we suppose that forcing is steady. Due to Theorem 6.2, the operatorsVt : X → X which solve the problem
(4.1), (4.2) represent the bounded and point-dissipative semigroup [18]. Indeed the following more precise assertions
are valid.

Theorem 7.1. Let s≥ 1 in (4.1) and the steady vorticity source F(x) ∈ Hr , r ≥ −1. Then every solutionψ(t,x) of
problem(4.1), (4.2)will eventually be attracted by a bounded setB of the phase spaceX. Moreover,
I. if F (x) ∈Hr where r≥ 0 thenX =H2 and

B = {ψ ∈H2 : ‖ψ‖2 ≤C1(r,s)‖F‖r , (7.1)

II. if F (x) ∈H−r where r∈ (0,1] thenX =H1 and

B = {ψ ∈H1 : ‖ψ‖1 ≤C2(r,s)‖F‖−r . (7.2)

The constants C1(r,s) and C2(r,s) are determined by

C1(r,s) =
a−r

σ+2sν
, C2(r,s) =

ar−1

σ+2sν

where a=
√

2 is the constant from lemma 3.8.

Proof. I. Suppose thatF(x) ∈ Hr
0 andr ≥ 0. Taking the inner product of equation (4.1) withΔψ and using (5.7) we

obtain

〈Δψt ,Δψ〉 = −σ〈Δψ,Δψ〉+ν
〈
(−Δ)s+1ψ,Δψ

〉
+ 〈F,Δψ〉

= −σ〈Δψ,Δψ〉−ν
∥
∥Λs+2ψ

∥
∥2

+ 〈F,Δψ〉 . (7.3)

Further, using (3.3) and (3.5), we estimate the terms〈F,Δψ〉 andν
∥
∥Λs+2ψ

∥
∥2

as

|〈F,Δψ〉| ≤ ‖F‖‖Δψ‖ ≤ a−r ‖F‖r ‖Δψ‖

wherea =
√

2, and

ν
∥
∥Λs+2ψ

∥
∥2

≥ 2sν‖Δψ‖2 .

Then (7.3) implies

‖Δψ‖
∂
∂t

‖Δψ‖ ≤ −(σ+2sν)‖Δψ‖2 +a−r ‖F‖r ‖Δψ‖ .

If we divide the last inequality by‖Δψ‖ then we obtain

∂
∂t

‖Δψ‖ ≤ −ρ‖Δψ‖+a−r ‖F‖r (7.4)
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where

ρ = σ+2sν. (7.5)

It follows from (7.4) that

‖Δψ(t)‖ ≤ ‖Δψ(0)‖exp(−ρt)+
a−r

ρ
‖F‖r [1−exp(−ρt)] (7.6)

and hence,

‖ψ(t)‖2 →C1(r,s)‖F‖r as t → ∞.

II. We now consider the case whenF(x) ∈ H−r
0 andr ∈ (0,1]. Taking the inner product of equation (4.1) withψ

and using (5.7) we get

〈Λψt ,Λψ〉 = −σ‖Λψ‖2−ν
∥
∥Λs+1ψ

∥
∥2

−〈F,ψ〉 . (7.7)

The application of (3.3) and (3.5) to〈F,ψ〉 andν
∥
∥Λs+1ψ

∥
∥2

gives

|〈F,ψ〉| ≤
∥
∥Λ−rF

∥
∥‖Λrψ‖ ≤ ar−1‖F‖−r ‖Λψ‖

wherea =
√

2, and

ν
∥
∥Λs+1ψ

∥
∥2

≥ ν2s‖Λψ‖2 .

Then (7.7) implies

∂
∂t

‖Λψ‖ ≡
∂
∂t

‖∇ψ‖ ≤ −ρ‖Λψ‖+ar−1‖F‖−r

whereρ is defined by (7.5), or

‖Λψ(t)‖ ≤ ‖Λψ(0)‖exp(−ρt)+
ar−1

ρ
‖F‖−r [1−exp(−ρt)] (7.8)

and hence,

‖ψ(t)‖1 →C2(r,s)‖F‖−r as t → ∞.

The theorem is proved.

Remark7.2. If solution ψ belongs to the setB at some moment of timet0 then, due to (7.6) and (7.8), it will belong
to B for all t > t0. Hence all the steady and periodic solutions (if they exist) belong to the setB. Obviously, the setB
contains the maximal BVE attractor [35].

Remark7.3. Theorem 7.1 is also valid in the case when forcingF(t,x) is a periodic in time function from the space
C(0,ω;H−r

0 ) whereω is the period. In order to prove this fact, we should only replace in (7.1) and (7.2) the norms‖F‖r
and‖F‖−r by the norms max

t∈[0,ω]
‖F‖r and max

t∈[0,ω]
‖F‖−r , respectively.
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8 Global Asymptotic Stability of BVE Solutions

In this section, the global asymptotic stability of BVE solutions is considered. A norm related with kinetic energy and
enstrophy of perturbations is introduced, and an equation describing the evolution of this norm is derived. Then two
sufficient conditions for the global asymptotic stability of a BVE solution are obtained. These conditions differ in the
smoothness of the basic solution and ensure that the trajectories of all other BVE solutions will exponentially tend to
the trajectory of basic solution as time tends to infinity.

In a bounded domain on the plane, a condition for the global asymptotic stability were earlier obtained by Sundström
[31] for the basic flow, whose stream function had continuous derivatives up to the third order inclusive. The first
theorem proved here (theorem 8.4) generalizes this result to the flows on a rotating sphere, when the BVE contains
the linear drag term and the term of turbulent viscosity of more general form. However, the theorems 6.2 and 6.4 on
the BVE solvability (see section 6) do not guarantee the existence of the solution whose third or higher derivatives are
continuous. The second theorem proved here (theorem 8.5) gives the conditions for global asymptotic stability, in which
the requirements to the smoothness of basic solution is weakened and is in full accordance with the solvability theorems.
Examples are given for a super-rotation flow and for the flow in the form of homogeneous spherical polynomial of degree
n.

We now analyse the stability of a solutioñψ(t,λ,μ) of BVE (4.1) with initial conditionψ̃(0,λ,μ). Let ψ̂(t,λ,μ) be
another solution of (4.1) with initial condition̂ψ(0,λ,μ). Then

∂
∂t

Δψ+J(ψ,Δψ̃)+J(ψ̃,Δψ)+2
∂ψ
∂λ

+J(ψ,Δψ) = −[σ+νΛ2s]Δψ (8.1)

wheres≥ 1, ν > 0 andσ ≥ 0, holds for the difference

ψ(t,λ,μ) = ψ̂(t,λ,μ)− ψ̃(t,λ,μ) (8.2)

of two solutions, besides,

ψ(0,λ,μ) = ψ̂(0,λ,μ)− ψ̃(0,λ,μ)

at the initial moment. The function (8.2) represents a perturbation of the basic solutionψ̃. Taking the inner product
(2.1) of equation (8.1) successively withψ andΔψ and using (5.5) and (5.7), we obtain two equations

∂
∂t

K(t)+ 〈J(ψ,Δψ), ψ̃)〉+2σK(t)+ν
∥
∥Λs+1ψ

∥
∥2

= 0 (8.3)

∂
∂t

η(t)−〈J(ψ,Δψ),Δψ̃)〉+2ση(t)+ν
∥
∥Λs+2ψ

∥
∥2

= 0 (8.4)

for the kinetic energy

K(t) =
1
2
‖5ψ‖2

and enstrophy

η(t) =
1
2
‖Δψ‖2
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of perturbation.
It follows from (8.3) and (8.4) that the first Jacobian in (8.1) may change the perturbation enstrophyη(t) but does

not affect the behavior of perturbation energyK(t). On the contrary, the second Jacobian in (8.1) has no effect on
the perturbation enstrophyη(t) but may change the perturbation energyK(t). Both the super-rotation term and the
non-linear term (the last two terms in the left part of (8.1)) have no influence on the behavior ofK(t) andη(t).

Evidently, the zero solutioñψ = 0 (existing if F ≡ 0) is globally asymptotically stable. Indeed, in this case the
nonlinear terms〈J(ψ,Δψ), ψ̃)〉 and〈J(ψ,Δψ),Δψ̃)〉 in (8.3) and (8.4) are equal to zero, and hence, the perturbation
energy and enstrophy will be constant for a non-dissipative fluid (σ = μ= 0) and will exponentially decrease otherwise.

Let nowψ̃ be a solution of general form, and letp andq be non-negative real numbers, not equal to zero simultane-
ously. Then the functional

‖ψ‖G = [G(p,q,ψ, t)]1/2 (8.5)

where

G(p,q,ψ, t) ≡ G(t) = pK(t)+qη(t) =
1
2
(p‖∇ψ‖2 +q‖Δψ‖2) (8.6)

makes a norm in the space of perturbations on the sphereS.
Multiplying (8.3) and (8.4) byp andq, respectively, and combining the results, we obtain

∂
∂t

G(t) = −2σG(t)−R(t)−νp
∥
∥Λs+1ψ

∥
∥2

−νq
∥
∥Λs+2ψ

∥
∥2

(8.7)

where

R(t) = 〈J(ψ,Δψ), pψ̃−qΔψ̃〉 . (8.8)

By using (3.4) and (3.5) one can obtain

−
∥
∥Λs+1ψ

∥
∥2

≤−2s‖∇ψ‖2 , −
∥
∥Λs+2ψ

∥
∥2

≤−2s‖Δψ‖2 .

Then the estimation of the last two terms in (8.7) leads to

∂
∂t

G(t) ≤−2ρG(t)−R(t) (8.9)

with

ρ = σ+2sν

Example 8.1.The super-rotation basic flow. Let the basic solutioñψ belongs to the subspaceH1 defined by (2.4). Such
a solution represents a super-rotation flow about some axis passing through the sphere center. Then, in the geographical
system of coordinates related to this axis,ψ̃ ≡ ψ̃(μ) = Cμ whereC is a constant, andR(t) defined by (8.8) is equal to
zero due to (5.7). Thus the super-rotation flow (about any axis of a sphere) is Liapunov stable ifσ = μ = 0, and is the
global attractor (asymptotically Liapunov stable) ifρ > 0 [26].
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Example 8.2. The basic flow in the form of a homogeneous spherical polynomial. Let ψ̃(t,λ,μ) ∈ Hn for somen≥ 2,
that is,

ψ̃(t,λ,μ) = Yn(ψ̃) ≡
n

∑
m=−n

ψm
n (t)Ym

n (λ,μ). (8.10)

In particular, it may have the form of Legendre polynomial of degreen : ψ̃(μ) =CPn (μ) (zonal flow). ThenJ(ψ,Δψ) = 0
for any initial perturbation of the subspaceHn (ψ(0,λ,μ) ∈ Hn), and due to (8.8),R(t) ≡ 0. Thus, due to (8.1), any
perturbation ofHn will never leaveHn, and hence,Hn is invariant set of perturbations to a polynomial flow (8.10). It
follows from (8.9) that

G(p,q,ψ, t) ≤ G(p,q,ψ,0) exp(−2ρt)

and any initial perturbationψ(0,λ,μ) of Hn will exponentially tend to zero with time not leavingHn. In other words,
the setHn belongs to to the basin of attraction of solution (8.10).

Remark8.3. The same result is valid in the case when basic flowψ̃(t,λ,μ) is a linear combination of the flows considered
in the examples 8.1 and 8.2. In particular,ψ̃(t,λ,μ) may be a Rossby-Haurwitz wave [25].

We now obtain sufficient conditions for the global asymptotic stability of rather smooth BVE solution on the sphere
S, when any solution perturbation tends to zero ast → ∞ (see below theorems 8.4 and 8.5). In the particular case when
s= 1 andσ = 0, theorem 8.4 is analogous to the assertion proved by Sundström [31] for flows in a limited domain on
the plane.

First, assume that the basic solutionψ̃(t,λ,μ) of equation (4.1) is rather smooth, such that two values

p = sup
t ≥ 0

max
(λ,μ)∈S

|∇Δψ̃(t,λ,μ)| and q = sup
t ≥ 0

max
(λ,μ)∈S

|∇ψ̃(t,λ,μ)| (8.11)

are finite. Let us estimate the inner product (8.8) by means of functional (8.6) withp andq defined by (8.11):

|R(t)| = |〈J(pψ̃−qΔψ̃,ψ),Δψ〉| ≤ 2pq‖∇ψ‖‖Δψ‖ ≤ 2
√

pqG(t).

Substitution of this inequality in equation (8.9) leads to

Theorem 8.4. Let s≥ 1, ν > 0 andσ ≥ 0. If the smooth solutioñψ(t,λ,μ) of equation(4.1) is such that the numbers p
and q defined by(8.11)are finite, and

σ+2sν >
√

pq

then any perturbation of̃ψ(t,λ,μ) will exponentially decrease with time in the norm(8.5).

Note that both Theorem 8.4 and asymptotic-stability condition by Sundström [31] demand the uniform boundedness
of |∇Δψ̃(t,λ,μ)| and|∇ψ̃(t,λ,μ)|. However, as it was mentioned earlier, the existence of BVE solutions has been proved
only in the classes of twice continuously differentiable streamfunctions. We now show that the restriction (8.11) on the
smoothness of basic solution can be weakened so as to agree with the requirements of the solvability theorems 6.2 and
6.4.

Indeed, let us consider a BVE solutioñψ(t,λ,μ) such that

p = sup
t ≥ 0

max
(λ,μ)∈S

|Δψ̃(t,λ,μ)| and q = sup
t ≥ 0

max
(λ,μ)∈S

|ψ̃(t,λ,μ)| (8.12)

are finite values. Let us estimate|R(t)| using (3.4), (3.5) andε-inequality

ab≤ a2ε2 +
b2

4ε2
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whereε > 0 :

|R(t)| ≤ 2pq‖∇ψ‖‖∇Δψ‖ = 2pq‖∇ψ‖
∥
∥Λ3ψ

∥
∥≤ 2pq‖∇ψ‖‖ψ‖3 =

= (
√

pq‖ψ‖1)(2
√

pq‖ψ‖3) ≤ 2qε2G(t)+
pq
ε2 ‖ψ‖2

3 . (8.13)

Further, it follows from (8.6), (8.7) and Lemma 3.5 that

∂
∂t

G(t) ≤−2σG(t)−R(t)−νp‖ψ‖2
s+1−νq‖ψ‖2

s+2

≤−2σG(t)−2s+1νG(t)−R(t)−νq‖ψ‖2
s+2

≤−2ρG(t)−R(t)−νqa1−s‖ψ‖2
3 (8.14)

wherea =
√

2. Combining (8.14) with (8.13) and puttingε2 = pas−1/ν we eliminate the two terms containing‖ψ‖2
3 .

The resulting inequality leads to

Theorem 8.5. Let s≥ 1, ν > 0 and σ ≥ 0. If a solutionψ̃(t,λ,μ) of equation(4.1) is such that the numbers p and q
defined by(8.12)are finite, and

ν(σ+2sν) > 2(s−1)/2pq (8.15)

then any perturbation of̃ψ(t,λ,μ) will exponentially decrease with time in the norm(8.5).

Remark8.6. Evidently that in the case of a steady solutionψ̃(λ,μ), p andq in (8.15) are defined as

p = max
(λ,μ)∈S

|Δψ̃(λ,μ)| and q = max
(λ,μ)∈S

|ψ̃(λ,μ)| .

According to conditions (8.12), only the first two derivatives of the basic solutionψ̃(t,λ,μ) should be continuous
functions, and hence, these conditions can be applied to a wider class of solutions to equation (4.1).
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