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Abstract

We consider standard European as well as double-barrier European options for un-
derlyings that are given by the superposition of a Guassian and a compound Poisson
(jump) process with discrete values. We derive a formula for calculating such options
and furthermore show that as the barriers tengddq the value of the double-barrier

option tends asymptotically to that of the standard option. Numerical examples are
provided.
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1 Introduction

The problem of determining the price of a double barrier option when the stock price is
modeled by geometric Brownian motion is considered in [15, 18, 19, 25, 32, 37, 38]. In
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[18, 19, 32, 38] the approach is to solve the Black-Scholes parfigrdntial equation on

a strip of finite width. However, for many situations geometric Brownian motion is not an
adequate model for stock price, and in recent yeésg/lprocesses have come to be used as
models for logarithmic stock price. In this context European options [2, 10, 28, 29, 33, 34],
perpetual American options [6, 7, 30], and single barrier options [6, 7, 8, 30] have been
examined in detail. Recent papers concerning double barrier options uendeptocesses
include [4, 5, 9, 14, 35].

In [3] European double-barrier options were considered whose underlyingsaye L
processes formed by the superposition of a Gaussian and a compound Poisson process with
discrete values. The determination of the price of such options leads to a Black-Scholes
system which is perturbed by a Toeplitz matrix. On the basis of this observatiofiieative
algorithm was designed for the computation of the price.

This article is a continuation of the investigation in [3]. In the framework of that market
model, we derive a calculable formula (Theorem 4.2) for the value of the European option.
We further consider the asymptotics of the price of the double barrier option when the upper
and lower barriers tend teco. We construct and justify asymptotic expansions in which,
as might be expected, the main term is the price of the standard European option (without
barriers). Numerical examples are provided.

This problem was considered in [3] with barriers which were fixed. The algorithm
derived there was based on the calculation of eigenvalues and eigenvectors of a system of
differential equations. That algorithm iffective when the quotierg" /s~ of the barriers
(or logarithmically, the dierencex” — x~ in the notation of Section 2 below) is not very
large. In contrast, in the present work we consider the casé -ef~ large. We obtain and
justify asymptotic formulas whex — —co (s~ — 0) andxt — +oo (St — ).

It is well known that the problem of defining the option prigg,t) in the right way
can be delicate. Under our assumptions, we do not have a complete market. As a result,
in general an equivalent martingale measure (EMM), which is essential for the valuation
of options in this context, is not unique [6, p. 97]. A convenient EMM is produced by the
Esscher transform [6, pp. 98-99] with very little calculation. However, our formulas for
option evaluation can be used with any preferred EMM; naturally the results produced will
depend to some degree on this choice.

In Section 2 we give the necessary background details on the market model and de-
scribe the EMM. In Section 3 we describe the Black-Scholes system corresponding to the
knock-out double barrier option problem and give the existence result for this sySem.
tion 4 describes the problem of the European option (i.e. without barriers) and includes a
calculable formula for its exact solution. Section 5 is devoted to obtaining and justifying
the asymptotic expansion of the double barrier option price in the framework of the model.
Section 6 specializes the results for double barriers to the classical case for which the market
has no jumps. Finally, numerical aspects of the algorithm are discussed in Section 7.

1The classical Black-Scholesrinula, which refers specifically to put and call options, is technically ex-
cluded from our discussion since it involves a piyehich is not inL(R).
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2 Market Model

2.1 Notation and terminology

The mathematical setting will be that of a filtered probability sp&Le&, {F-}, P) on which
{X:}e>0 is the LEvy process [36, p. 202] specified by its characteristic expan@it

EP(ei‘fX‘r) - e_ﬂp(‘f)

|,u§+/l Z pje'ylf (2.1)

J_—OG

¥(é)

HereEP denotes the expected value taken with respect to the probability meRsiitee
parameters- i, A, Pj, ¥; are real numbers subject to the constraints0, i € R, 1>0, B >
0, 2 Pj = 1. We considefX}.>o under the assumption that we are given two absorbing
barriers, located at* wherex™ < x*. Let g(X) be the payff function, satisfyingy € L2(R).

We denote bylg the purchase date of the option, while the expiration dafe isTg +t.
Our objective is to compute the expected value of the discountedifpayty(Xr,) with
respect to an equivalent martingale measure (ENQMyr P under the condition that, is
known to be a given valurin the interval &, x*). Thus, we look for the quantity

U(x To, T1) = E|e 719 g(Xr,) Lo, b X1 = X,

wherel) denotes the characteristic function of a set and where the hittingstirmehe
random variable
=inf{r>0: X; € (—o0,X] Or X; € [X",00)}.

We think of T as being fixed. Then the quantiti(x, To, T1) is a function of onlyx and of
t = T1—To, and therefore we henceforth consider the function

U(X t) EQ[ —I’t g(XTo+t) 17]>To+t|(}~_l_o XTO = X]' (22)

Thus the valueSgu(x,t) may be interpreted as the price for a knock-out double-barrier
option. We interpret

as the market price of a stock at timmeThe market drift and volatility arg andg, while
the parameter is the rate of interest of the riskless asset (bond).tB0 and letXy = x.
At time T = 0 the holder pays the premiuafx,t) to the writer and at time =t receives
in return the payfi h(S;) := Sped™) from the writer provided that the barrier condition
X <X, <X, i.e., s <S;/Sp< s (wheres* = &), is maintained for alt € [0, t].

Our assumptions on the market say that

Xe = FWe+fir+ > Yi (2.4)
k=1

whereW, ~ N(0, v/7) is normalized Brownian motiory ¢haracterizes the drift\, is the
Poisson process at rate

koo
P(N; = §i) = (/”) e‘/”, k=0,12,..., (2.5)
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andYy,Y>,... are independent identically distributed random variables with
PMc=9)=0;, j=0+1+2... (2.6)

As was mentioned in the introduction, the choice of an EMM is a delicate matter which
can influence the option valuation in an incomplete market. In [12] a specific formula,
known as the Esscher transform, was introduced which is easy to calculate and which has
been used since in many investigations on option pricing, appearing in standard texts such
as [6]. In the present work it does not matter whether or not the Esscher transform is the
particular EMM chosen. We will simply assume tl@tis an EMM for P determined by
some parameters

o, 1A, PjLYj

satisfyingo >0,z €R, 1> 0, p; >0, 3 p; = 1, andy; = §;. The characteristic function®
of Q is given analogously to (2.1) by

2 & .
w2 = S -iug+a(1- ) piee). (27)

j:—oo

2.2 Almost-periodic part of Lévy process

Now we calculate the density functigrp(y) corresponding to the martingale meas@.e
According to the [Evy-Khintchine formula for the EMM [6, p. 105] we have that

1 M _ ;
pQ(y) = er e tWQ(f)'nydé‘:.

(o)

We denote byIw(R) the class of functions of the form

(o)

)= ) cid™t, feR, (2.8)

j=—c0

whereoj €R, ¢j € C, andXj7_, ICj| < co. This clasdIw(R) is called theclass of Wiener
almost-periodic functionand is an algebra of functions. Moreover, if the functiefa) is
analytic on a neighborhood of the closure of the range of the fund@n thenF(J(¢)) €
Iw(R) (see [26]).

The almost-periodic part of the characteristic expongt(t) of Q defined in (2.7) is
[17]

3@ =1 ) pie¥). yjeR, (2.9)
j=—c0
wherep; > 0, 352, pj = 1 andJp € Ilw(R). By the above remarks, we have a representa-
tion

(o)

e t0®) — Z Cj(t)eio-jf, oj €R, (2.10)

j=—o0

with codficients inl41(C), that is

2, el <. (2.11)

j=—o0
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Therefore we can write

PQ(y)

III Mg

&) f " o2 iy ds

Cj (t)e—(yt+y+0'j)2/(20'2t) %

j=—oo
[ ool g e () e

\/Q - N2 /(02 2
o (e Wty o)/ (202 f €2 de’.
— vszzw 10 e

I
Rl ¥+
Ms

SO

1 . _ 2 2 Zt)
pQly) = ——= ) cj(t)ye Wy, (2.12)
From this we can see that the meas@Qrbas the form

QA) = fA p(y)dy.

whereA is any Borel set oR, andpq is given by (2.12) and thus is absolutely continuous
with respect to Lebesgue measure.

3 The Generalized Black-Scholes Equation

We derive here the partial fiérental equation (heat equation) which describes solutions to
the option problem as a function gfandt.

Leto >0 andr > 0, and letu, 4, p; be the EMM market parameters wighas in (2.5),
(2.6). Letx™ < x* and writel* = (x~, x"); we will also abbreviatec* = min(x”|,|x*[) when
convenient.

3.1 Heat equation for Levy market

Consider the operatdk defined by
o2
(AH)(x) := —7f”(x)—,uf’(x)+rf(x)+/lf(x)

=4 P YL (x+Y). (3.1)

j=—c0

We think of A as an operator oh,(1*) with the (dense) domaifd(A) = C?(closl*). In [6]
it is shown that the function given by (2.2) satisfies the generalized Black-Scholes equation

w(xt)+ (Au)(x,t) =0, (xt)el*x(0,), (3.2)
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whereA is taken in the variablg, along with the boundary conditions
uix,0)=g(x), xel*, (3.3)
while for t > 0 the functionu(x,t) is continuous irxk € R and
u(x,t) =0, (x,t)e (1")°x(0,). (3.4)

Here (*)°:=R\ I* is the region outside the barrier.

More exactly, Theorem 2.13 of [6, p. 65] applies when tkey process satisfies the so-
called ACP condition [6, p. 59]. For us, wher 0, the remarks at the end of the previous
section show that the measupas absolutely continuous with respect to Lebesgue measure.
Therefore by Lemma 2.4 of [6], the ACP condition holds.

Condition (3.4) is in fact superfluous because we considas acting only oriy(1).

We may also write (3.2)—(3.4) in the form

W(xt) = %Zuxx(x, t) + puux(X,t) = (r + )u(x,t)

+A Z pju(x+yj, )1 (X+Yyj) (3.5)

j=—c0
on 1*x (0, e0) with boundary condition
u(x,0)=g(x) for xe I*, (3.6)
while we haveu(-,t) € C%(closl *) satisfying

u(x,t) = u(x",t) = 0 fort € (0, ). (3.7)

3.2 Associated Cauchy problem

Fort € [0, 00), we defineu(t) € Lo(1*) by (u(t)) (X) := u(x,t). Then problem (3.2)—(3.3) can
be interpreted as the Cauchy problem

S =-AEw). W0)=9 (3.8)

in which the operatoA is understood as having (dense) donﬂgtﬁclosl*), the subspace
of C?(closl*) of functions vanishing at*.

Theorem 3.1. Let A be the operatof3.1). Problem(3.8)is well-posed in the sense thaf
generates &-contraction semigroup and

~tA -t
le™"gll> < e ligll2-

The resolvent operatqil + A)~! is compact and hence the spectrum-éfconsists entirely
of isolated eigenvalues of finite algebraic multiplicity.
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Proof. Writing Dy = d/dx, we have

o2

-A== D2+ uDy—r1-1(1-V) (3.9)

where ¥ f)(x) := X ; p; f(x+Yj)L-(x+Yj). Clearly, the desired inequality will follow once
we have shown thabf/2)D2 + uDy — A(1- V) generates &°-contraction semigroup. By
[3, Theorem 2] and [16, Theorem 2.6.1], ittBoes to show thatA(1- V) is bounded and
dissipative. The boundedness is obvious. To showthét— V) is dissipative, leF denote
the Fourier transform,

(?f)(g):fo e ¥ f (x) dx

(¢ € R), and note that-1(1— V) can be written as- A7 JoF ~* with Jo(¢) defined by (2.9).
Since

—ARe( 1+ FIoF 1f, f)
AR F IpF 1, f) = —ARe(JoF 1 f, F71f)
<0

Re(-A(1-V)f, )

(recall that ReJp > 0), we see thatA(1- V) is dissipative.

Finally, since ¢-2/2)D2+uDy—r1 has compact resolvent and using [22, p. 187], we see
by (3.9) that-A differs from ¢-?/2)D2 + uDx —r1 by a bounded operator, and deduce that
—A must also have a compact resolvent [22, p. 214]. mi

Consider the non-homogeneous Cauchy problem corresponding to problem (3.8),
d. - ~ -
d—tu(t) =—(AU)(t)+ f(t), TO)=g, (3.10)

where for each, the functionf(t)(x) = f(t, X) is in Lo(1*), and f(t) varies continuously i
as an element df,(1).

Let (o(t) = e g be the solution of problem (3.8). Then by [24, Section 61] the solution
of (3.10) is unique and has the form

t
fi(t) = To(t) + fo to(t—7) f(r) dr.

This produces the function(x,t) = T(t)(x), which according to Theorem 3.1 satisfies the
following L»-estimate, which we will use in Section 5:

A

t
uG,0l < e gl + fo e I|f(, 1) dr

IA

t
e igllz + fo (. Dll2dr. (3.11)
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4 European Option with a Compound Poisson Component

In this section we derive a calculable formula (Theorem 4.2) for the value of a European
option on an underlying driven by aélvy process with jump discontinuities. Furthermore,
we prove growth estimates on the value of this option as a funcion of barriers tending
simultaneously taeco. These estimates will be needed to justify the asymptotic formulas
of sections 5 and 6.

4.1 Formula for European option

Consider the standard European style option (i.e., no barriers) in the particular case of the
time-r stock price of the form (2.3) wheps; is a Lévy process satisfying (2.4)—(2.6) with
characteristic exponent of the form (2.1). Analogously to (2.2) we look now for the quantity

Uso (X t) = E9L € " g(Xrgs0)ly, X7 = X] (4.2)

whereQ is an EMM for P. The valueSpu.(X,t) may be interpreted as the price of a
European option with paybg(x) at expiry datel'; = Tg+t. At time r = 0 the holder pays
a premium ofu(x,t) to the writer and at time = t receives in return the amount

h(S;) = Seed™0.

According to [6, Ch. 4, p. 105] the value (4.1) can be represented in the form

() = 5 f e VO g (e d (4.2)

[ee)

whered = ¥ gis again the Fourier transform gf We thus have that
Uo(x.1) = € (F e OFg)(x 1). (4.3)
Theorem 4.1. Let ge L»(R). Then for t> 0,

lIUeo (- DIy < €I,

and
xili—m(,o IIUOO("T)”Lz(U*)C) =0

uniformly in the intervak € [o,t] for anyro between 0 and t.

Proof. From the lévy-Khintchine forQ we have that Rg®(£) > 0 for all ¢ € R, conse-
quently e ¥ OF g|l, < [FdllL,. It is well known that|Fgll., = llgllL, for an arbitrary
functiong € L»(R), so the norm inequality oby(R) is verified. Consider now the function

a(r, X, x") 1= € "luao (-, DllLy(a4ye)

(wheret is ). This function is continuous im on the interval fo,t] by (4.3) and for any
fixed € [10,t],
lim a(r,x,x")=0.

Xt —+o00

Sincegis in L»(R), we have uniform convergence as claimed. O



48 R. Carrada, S. Grudsky, C. Palomino, R. M. Porter

Recalling (2.9),(2.10), we can now rewrite (4.2) as

Uso(X,1) = %rt i cj(t) I : g (e‘%ztfz)(ei(ﬂtﬂfj)fg(g))dg.

j=—00

By properties of the Fourier transform of the product, this becomes

U =€ Yo [ ole it oprie- e
] —00

where
1 o2
"o = o f Ve T gy
2
- e22:t e 7 gy
2 00
= zﬂ\/é\/fe_z%tf eV av,
(08 —00
S0

__ 1 ee
¥(€) - \/ﬁe :
Recall thatt is strictly positive in the above reasoning. We have proved the following
theorem, which shows how we can recougi(x,t) if we know the numbers; andc;(t).
But it is easy to see thatri} is the subgroup ok generated byy;}, while cj(t) is given by
the formula

N i
6i(f) = lim 5 [ N g M )-1oiE gg, (4.4)

Theorem 4.2. The fair price W,(x,t) of a European option with payog(x) under the Lévy
process Xis given by the formula

U (0t) = — gt > et f Q& +ut + o) e €/ g (4.5)

—=
o V2nt j=—o0
for xe R and t> 0, where the coficients g ando; are determined by2.10)and (4.4).
If the function §(¢) is a-periodic, i.e., if
Jo@) = A(1- ) pe@di), (4.6)
j=—c0

then €% js also a-periodic; that is, formula (4.5) takes the form

1 = e 2n 2 /(02
Uso(X 1) = ——e™ ci(t f +ut+ = e 97/ (20 g
0= e 3o [ aterus S ;

with a
¢ = = f & o(E)-ir/a)ie gz 4.7)
aJo i
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The rate of convergence of the series (2.11) under the condition (4.6) depends on prop-
erties of the functioo(¢). If Jo(¢) € CX[0, 2], that isJ(¢) € €°[0,a], then

lei®)l < Clil™.
If the associated functiody(2) := /l(l— 2 pjzj) is analytic in the annulus

{zeC: PSIZIS}},

i)

for some giverp, 0< p < 1, then in fact
i) < Cyp”!

for someC, > 0 depending op. WhenJp(¢) is a (trigonometric) polynomial of the form

N
Jo(§) = A(1- ) pel®r1¥), (4.8)

=N

thenjo(z) is analytic inC\ {0} and so the growth estimate of(t) holds for allp € (0, 1).
For the corresponding value of the European option in a market without jumps, see
eqguation (6.25) below.

4.2 Paydf with compact support

Now letg have compact support. Then it is possible to be more precise regarding the rate
of convergence in Theorem 4.1. This is because the Fourier trang(gjiis how an entire
function of exponential type (see [1]) whose derivatives are bounded and square-integrable
on horizontal lines:

X - 09(x+ip) € Loo(R) N L2(R) (4.9)

for everyp e R.

Theorem 4.3. Let g be a function in (R) and of compact support. If the almost-periodic
function $(¢) of (2.9) has bounded k-th derivative, then faf| large enough,

1o (- DllLa(ryey < Cr(X 17K+ IxH74) (4.10)

where G > 0 does not depend orfor t.
Letp > 0. If Jo(£) admits analytic continuation to the horizontal strip

{£eC: [Imé] <p}

in such a way that
sup ReJp(é) < oo, (4.11)
imél<p
then
Uoo (-, D)llL,aeye) < Cp (e_”'x_' + e‘p'x+'), (4.12)
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where C, does not depend on t or xx*.
If Jo(€) is an almost-periodic polynomial, i.e., if

M
o) =A(1- > pje¥i),
=M

then the estimate (4.12) holds for alb 0.

Proof. We have thag(¢) is an entire function and condition (4.9) holds, so whgf) has
boundedk-th derivative we can integrate (4.2) by paktSmes to obtain

— It 1 00 ~ ~ ® o
uw(x,t):%w I (e 050) e,

K .
where(e‘“/’Q(f)g(f))( ) € L>(R). Analogously to the proof of Theorem 4.1, one verifies state-
ment (4.10).

Now let (4.11) hold. Then it is possible to shift the contour of integration vertically in
(4.2), and we have fax> 0

eIt co+ip N
Uso(X,t) = o e WV Oeg) de
—oo+lp
_rt 00
- —ez; e f e WY 1ip) e

Thus according to (4.9) there is a bound
”uOO("t)HLz(X*',oo) < Cpe_pX+

for some constar@,.

One treats the case< 0 analogously and thus (4.12) is verified.Ji{¢) is an almost-
periodic polynomial, then (4.12) holds for evgry 0 and the last statement of the theorem
is proved. O

4.3 x-derivative of European option

Let us suppos&™ — x~ > 2 and decompose the intervdlof the barrier as the union of the
shortened interval
7= +Lx -1)

and the ends
(1= 1"\ 1} = (X, X"+ 1]U[x" - 1,x).

We will need estimates on tHe-norms of thex-derivative ofu.(x,t) on the setl()°, as
given in the results below.
Theorem 4.4. Let ge L»(R). Then for|x*| large enough, the European optior satisfies

(x:/2)*

0 exp—5z}  b(x¥)
HE(UW(X’T)HLZ(UDC)SCO[ v 7 L
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where G is a constant, X:= min(x~|,|x*|), and KX) is a function which does not depend
ont € (0,t], satisfying
lim b(x) = 0.

X—o00

Proof. From (4.5) one may calculate that

9 - 1 e N o ” ,
x (¢ — x)e €9/ g, (4.13)

Introduce the function
Foxo)i= [ f@e-e g

wheref € L,(R), and note that

* —(&— 0T 2 12
IFC Dl = L )| f f(£)(€ - e /27 g ")
1 —00

< A(n)+ A7)
where
xt/2 2
me = (| f(f)(f—X)e‘(‘f‘x)z/(z“zT)df‘ 0"
ane lJx/2
—(E-%)2/(20%7) Z 2
Ao(r) = HGIGERNER dé| dx)"".
e IR\

We bound the integraldy (), Ax(r) using the Cauchy-Buniakovski-Schwarz inequality.
First,

IA

% —(&- foaxs 12
A]_(T) “fHLZ(XT’%)(L*)c(ﬁ (f—X)Ze (E—X)2/(c> )df)dX)
1 Z

(X—%)/ VT 1/2
it [ ([ e ey
(1) " Jx=%5)/vr

IA

The integration endpointx X—g)/ vrand k- X—2+)/ 47 tend to+co. Applying the asymp-
totic Laplace method we have

|X_%| V2 /(2
A(r) < CirifII (R)f —=-e b
o (|;)°( VT
_ X
+|X 2 Ie_(x_x—/z)Z/(o.ZT))dX)l/Z
VT

A

172 X = U (o -1y/22120%0)
Car ALy (———e

+ue—((x*+1)/2)2/(2azr))
2
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whereC1, C, are constants that do not dependxemndz. Analogously,

1/2
2 2
Il e x f ( f (& - x)2e e ’)df)dx
LZ(R\( 22 )) (Ii)c R\(£ xt

2°2

. 1/2
3/4 s
T “f”LZ(R\(%,%)) (L*)c (]:oovze dv) dx)
1

\/573/4(1(0-)“ f HLZ(R\(%,%

Ax(7)

IA

IA

)’
where

d(O') — (f V2e—v2/(rz dV)l/z.
These bounds 0A; (1), Ax(7) give

X+ y - o T
IFC D@y < C[Tl/zllflle(R)(l—Zle (0 -1)/2F (2070

N @e—((x-+1)/2)2/(202r))

+ Al /2x/2) (4.14)
where the constar@ does not depend axnandr. Now recalling (4.13) we apply (4.14) to
f(¢) = 9(¢ —ut—oj)(é — x) for eachj to obtain the following estimate: if we denote

a(x,x* 1) = (@e—w—l/zf/(zwzr) N @e_<<x—+1>/2)2/(2027>)
b 9 - 2

then

[59)

(D lEi@NiglLmace, x*,7)

e

12 w9 < & e
aX O\ L2((|1)) - O'ST\/Z

C (o)
' 3734\ 2n jZoo GO NG+ G+ il 55

It is easy to show that the convergence of the seEiEs_m Icj(7)l is uniform inT € [0,t]. So

on the one hand .
D lG@I<M,
j:—oo
whereM does not depend on and on the other hand for amy> 0 there existdN = N(e)
not depending om such that
Z [cj(T)| <e.

lil>N
Thus we have that

9 cM o
I U Dl < ——=ldl@e al x",7)

o3t \V2r
f—M g
23 LR )

c -1t .
+ (r3r3/4\/§e 9L ) - €. (4.15)
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Here we have takex*| large enough such that fgif < N andxe R\ (X /2, x7/2),

X xt
t i)eR\(—,—).
X+ (ut+0) € R\ (. )
Therefore (4.15) implies the following estimate,

d a(x,x",7)  b(x*)
IIa—XUoo(X,T)IILz((q)C) < Co( . + s )

wherex* = min(x~|,|x[), Co is a constant not depending enand as required, we have
limy_,. b(x) = 0. This concludes the proof. mi

The analysis of Theorem 4.4 allows us to be more precise regarding the rate of conver-
gence when we impose additional conditionsggx) and Jo(¢). In particular the following
result holds.

Theorem 4.5. Let g be a function in &(R) and of compact support. If the almost-periodic
part Jo(¢) of the characteristic function of Q is periodic and has bounded k-th derivative,
k > 2, then for|x*| large enough,

(X' 12P/(20%7) 1 )

0
Ueo (6 TllLo(@17)) < Ck( XT * (x*)k-173/4

II&
where G does not depend on
If moreover, the functionpdé) admits analytic continuation in a horizontal strig :
[Im¢| < p} such that condition (4.11) holds, then
0 e—(x*/2)2/(20'2‘r) e—ﬁX*
II&Uoo(X,T)IILz((q)C) < Cﬁ( + 7

Xt
wherep < p is any positive number and;&loes not depend on

5 Asymptotics of Barrier Options

We now return to the question of barriers. In this section we will determine the asymptotics
of the option price as the barriex$ tend to+co for Lévy processes with jumps.

5.1 Auxiliary heat equation

By construction, the function,, defined by (4.1) or (4.2) solves the problem

%um(x,t)+(A>ouoo)(x,t) 0, (xt)eRx(0,), (5.1)
Uo(X,0) = g(x), (5.2)

where the operatdh., is defined analogously to (3.1) but without reference to barriers:

o2

—?f”(x)—,uf’(x)+rf(x)+/lf(x)—/l Z p; f(X+Yj)

j:—oo

(A )(¥)

(AH(X)+4 Z pi F(X+Y))Lge(X+Y;) (5.3)

j=—o0
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for xe R.
We think of A., as an operator ohy(R) with the (dense) domain

D(As) = C5(R) N La(R),

whereC3(R) is the set of the all functions having continuous first and second derivatives
belonging toL»(R).

Recall the set; introduced in Subsection 4.3. Let C*(R) have support suppc |*
and satisfyy(x) = 1 for all x in a neighborhood of cldg, so in particulan/®(x~ + 1) =
x®(x* —1)=0fork> 1. We introduce the dierence

Up(X, 1) := Uso (X, Dy (X) —u(x, 1), xel™, (5.4)

whereu(x,t) is the solution of problem (3.5)—(3.7). Since the application of barriers tends
to reduce the value of an option, one would naturally expectug(att) > 0.
Let us evaluate the corresponding heat equation operatas.f@y (3.2) and (5.3),

d d _
aUOWLAUO = (auoo)XJrA(UooX)’

note that the summatiol p;j U (X+Yj, )y (X+Y;j)1a-)c(x+Y;) has vanished, singgl(j-)c =0
identically. We expand the last term to obtain

02 02Uy N
A)(xt) = #Ue QU

5 o T (- Ao ) (%, O (¥)
2

U (1 O (0 + ' ()

=) Pileo(X-+ Y} (X +Y)).

In the light of this expression, since we consider problems (3.2)—(3.3) and (5.1)—(5.2) with
the samey(x), our auxiliary functiorug(x,t) solves by construction the problem

%UO(X, t) + Aug(x, 1) fr(x, 1) + fa(x, ) + f3(x, 1),

(%,1) € 1" x (0, 0), (5.5)
Up(x,0) = gi(x), xel”, (5.6)
Ug(X",t) = ug(x",t)=0, te(0,0), (5.7)

where we have abbreviated

(D) = 4 ) Pilke(x+YjD0(X+Y)) ~x ().
jm—eo S

fa(xt) = -um(x,t)(?("(x)+ﬂX'(x)), and

(et = o2

0¥ = 9 () -1).
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5.2 Asymptotics of auxiliary function

We will show thatfy, f,, f3, andg; havel,-norms tending to zero whext — co. It will
follow that the (unique) solution of problem (5.5)—(5.7) is small, see (3.10)—(3.11). More
exactly, we have the following result.

Theorem 5.1. If g € Lo(R), then the problen5.5}+5.7) has a unique solutionga This
solution satisfies
erLnloo”uO(X’ L, =0.

Proof. According to (3.11) and (5.5),

t
lluo(-, )ll2 < e_”||<_311||2+fO (G2 + 20, Dll2 + 1 f3(, 7)1l2) d7. (5.8)

From the definition ofy; it follows easily that limy=_,. ||g1ll> = 0. We proceed to estimate
f1(x, 1) as follows,

12001 <22 > pilluess Dliag- ey
j=—c0
where we have taken the norms over the shifted intervals
gy i { OV X DU -y ),y >0,
Yi) = (X, X +y)uU(x -1, x"-y;), yj<O0.
Lete > 0 be small. Then takBl = N(¢) large enough so that
21llua(-)ll2 Y pj <e.
ljI>N
Then we have
N
1102 <A D Pyl DllLoqey) + €
j=—N

According to Theorem 4.1, each term above of the sum tends to zero uniforiniytian
X* — +00, SO for|x*| large enough we have

If2( 2 < e+e=2¢

and thus ling_, .o || f1(-,D)ll2 = 0.

Next, taking into in account that the functioorq/2)y”’(X) + uy’(X) is bounded with
support in (7)¢ we have lin:_, . || f2(,7)ll2 = 0. Note that the convergence is uniform in
7 €[0,t].

Finally, we use Theorem 4.4 to estimate the last term in (5.8). Notingytlia} is
bounded with support in )¢, sayly’(x)| < M” we have

t
](; If3(-, 7)ll2dT

IA

t
ou
2807
oM j;lla—x(',T)IILz((I;)C)dT

1 (Y1 o2 U dr
2 = — - (X/2)7/(20%7) % e
a?CoM (X*fo —e dr+b(x )fo 73/4)

IA

IA

1 8to2/(x*)2 1 .
o-ZCoM’(— f —eVdv+ 4b(x*)t1/4)
xX* Jo \
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wherex* := min(|x~|,|x*|) andCy, b(x) are as in Theorem 4.4. This clearly tends to zero as
X* — oo, because (M)e 1V is integrable and the interval of integration degenerates. Thus
the proof is complete. O

Theorem 5.1 justifies that,(x,t) is the main term of the asymptotic expansiomEf,t).
Indeed, we have shown
U(X, 1) = Uso (X, 1) + O(X, 1) (5.9)

in theL,-sense, wher®(x,t) refers to (see (5.4))

—Ueo (%, ) (1 —x (X)) = Uo(%. 1).

Thus according to Theorem 4.1, for arbitrayg L>(R) and characteristic exponepf(¢)
of (2.1) we have that
lim ]|O(x,t)]l2 = 0. (5.10)
Xt —+o00

The rate of convergence in (5.10) depends on properties of the fungiignandyQ(¢).
Suppose that sumgx) is compact and that the functialag(¢) has bounded-th derivative,
for somek > 2. Then from Theorems 4.3 and 4.5,

I0C, D)l < da (k) (x) &),

whered; (k) is a constant that does not dependxorand x*. If furthermoreJy(£) admits
analytic continuation in a horizontal strfimé| < p} such that condition (4.12) holds, then

IO(, B2 < da(p)e** (5.11)

where the positive constands(p), dz do not depend ox™ andx*.

6 Asymptotics: Black-Scholes Case

We now consider the situation tha§(¢) = 0; that is, the characteristic exponent in (2.1)
(see (2.9)) with respect to the (unique) equivalent martingale measure can be reduced to the
form

0'2 . 0'2
pAO =& -ilr- Sk (6.1)

This is the classical Black-Scholes model. The results of Section 5 can be specialized to
this case, and from (5.9)—(5.10) we see thg(x,t) is the main term of the asymptotic
expansion for the function(x,t) in the sense of thé,-norm asx* — +co. Moreover, if
suppg(x) is compact, then by (5.11) the remainder tedfy, t) in (5.9) has the following
norm estimate,

IO, D2 < d, &7, (6.2)

whered, depends only on the half-widghof the band on whiclp(¢) is analytic, and not on
t. We apply a variant of thenethod of imagesee for example [17, 20, 21, 23]), considered
from the point of view of asymptotics.
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6.1 Exact solution for Black-Scholes equation

In the Black-Scholes context we may obtain more precise results since problem (3.2)—(3.4)
has an exact solution. We shall produce the complete asymptotic expansion.
Consider the problem (3.5)—(3.7). Singg¢) = 0 we have that (3.5) reduces to

o2

2
() = - U D) = (F = )Ux(xB) - ru(x ),
for (x,t) € 1" x (0, 0). Introduce the functiot (x,t) defined by
u(x t) =: éXAU(x.1), (6.3)

where )
N R S AT
= 2(1 02), B = 3 (l+02) . (6.4)

This function satisfies the following heat equation:

2

U ) = %Uxx(x,t), (1) € 1" x (0, 00), (6.5)
U(x,0) = gu(x), xel, (6.6)
Ux,t) = UXLH)=0, te(0,0), (6.7)
where
9e(X) 1= g(x)e™ . (6.8)

In analogy to (6.3), let us defind.(x,t) via U, (X, t) = €U (x,t). Observe that our

assumptionJp(¢) = 0 amounts to setting = 0 in (5.3). From this it follows thal,, is a

solution to problem (6.5)—(6.7) for alle R (rather than jusk € %), i.e., without barriers.
It is easy to see from (4.2) that

Us(X,t) = % f et TG () o, (6.9)

(5]

In analogy with (5.4) we introduce theftérence
Uo(X,t) := U (X, t) = U(X,1),

which solves the following problem:

2

Uor(xt) = %uo,xx(x,t), (x1) € 1" x (0, 0), (6.10)
Uo(x0) = 0, xel, (6.11)
Uo(X,t) = Uwn(X), te(0,c0), (6.12)
Uo(X",t) = Uwn(Xt), te(0,o00). (6.13)

We can write down the exact solution to problem (6.10)—(6.13) by using the Laplace trans-
form Vg of Ug,

Vo(x,w)::(LUO)(x,a)):f Uo(x,t)e “'dt, weC.
0
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Applying this transform to (6.10), (6.12)—(6.13) and taking into account (6.11) we find

2

%vo,xx(x,w)—wvo(x,w) - 0, xel’ (6.14)
Vo(X",w) = €'(w), (6.15)
Vo(X,w) = € (w), (6.16)

where

) o GW) 4,
6( ) : Zﬂfoo(o— v2+a))
:\[yu — £,0)0q () dE

in which we recall thay, was defined in (6.8) and we write for simplicity

WEw) = %qufﬁ@m (6.17)

taking the branch ofyw such that Re/w > 0. The problem (6.14)—(6.16) is an ordinary
differential equation with constant d&ieients and its (unique) continuous solution is

(€+ (w)- € (We @(th_)) g Vo(x=x7)
(1_ 20" @(X*—W))
(e’ () - €t (w)e™™ @(thf)) g Vol(x-x)
(1 P @(X*—X*))

Vo(X, a)) =

(6.18)

for x e I*. From this we recoveldg via the inverse Laplace transform,

joo
Uo(x) = 5 f " Vo(xw)e do,
—jco

which we can express by means of the geometric series

1 o2k V(¢ -x)
1 — e20" Vo(xt—x7) Z » w#0,

in the form
1 (™ b ) ,
- il Ry (o’ Vo - Ry (X’ Vw
Ug(xt) = k; - f_ (e + e (w)e R
—€ (w)e R Vo _ e+ () Rais (¥ \/B)etw dw (6.19)
for x € I*; this formula contains the abbreviations

Ri(¥ = (x=x)+k(x"—x),
R((® = (X"=x)+k(x"-x) (6.20)
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fork=0,1,... Inorderto calculate (6.19) we must evaluate the integrals

1 [l )
£ ._ + R (X) 0 Vo gt
Ky = 5 I e (w)e ! dw

: an f ([ e n@d)e O et

ico o~Re(Yo’ Vo-o'|E=xE | Vot+wt
.0 f dodé

(/.)

In these integrals, the lower indexof A+ is understood to agree with the signdf(w),
the upper withR (). Recall thaty(¢, w) i is deflned in (6.17). Let us write also

RE(%.€) 1= R (X) +1¢ = x|

with all four combinations of signs, and the lower indexeferring to the choice of*.
With this notation we arrive at

+ o’ 0 ico e_OJRik(Xaf) Votot
Ak = 1o I wga(f)( I N 75 dow) de. (6.21)

We now concentrate on the inner integral in (6.21). For the moment, keafixl the choice

of signs, as well as the values xft, and¢. With this value ofR;(x,£), the integrand is an

analytic function ofw in the complement of the semiaxie < 0}, and thus we can deform
the contour of integration-joo, ic0) to the double contour =T, UT_ where

o RE(XE)
ey
o'RE(%8) iy 2
R

Via the changes of variable = (¢’ Rt k(x £)/(2t) £iy/ vVt)? we obtain

do = 2 [T vy
oo \/C_U \/f 0 y

for —0(RE (% f))2
4 \/;eXp{ 4

207 PR
A; k= \/— € @ B;,k(x)

fioo —(7' R (X &) Vo+wt di (r'Z(Ri e )2

Thus (6.21) becomes

where we denote

BE (X) = f " o (6) e WP XRHEXP) g (6.22)
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In this notation the two appearancesxsfshare the same sign, which matches the lower
index ofBik(x), whose upper index matches thaRj{(x). With this, (6.19) can be rewritten
as

207 = _ 2 + 2
Uo(x,t) = MZ(G (1/(202t) (R4 (%) BJJ:,Zk(X)
k=0

+ e WRPNR’ B (x)
— e WP R WP BE (%)

—e WRrORL B, (X)) (6.23)

for x € I*. Taking into account the definition (6.3) we see that we have arrived at the
following result.

Theorem 6.1. The fair value (x, t) of the double-barrier option in the market model with
no jump discontinuities is equal to

U(X,t) = Uso (X, 1) — Ug(X, 1), (6.24)

where W, (x,t) = e”*#U(x,t) is the price of a European option (i.e. without barriers) as
given by(6.9), and w(x,t) = eX*PtUq(x,t) with Ug(x,t) given by(6.23)

Since we are working with a model with no jumps, the exact form of the solutigr, t)
can also be obtained directly from (4.5) by settilp@t) = O:

e rt

o V2nt
Formula (6.24) is the exact solution of problem (6.3),(3.6),(3.7).

o 2
Uso (X, 1) = I gle+1(r — %)) e 6%/ gg (6.25)

6.2 Asymptotic formula for barrier option in Black-Scholes model

We will now see that the expression (6.24) withy(x,t) given by the series (6.23) is an
asymptotic expansion of the functiaifx,t) asx* — +co. More precisely, the following
results hold. Recall the functiori& (x) in our analysis ofJo.

Theorem 6.2. Let ge L»(R), and let x be a fixed element df IFor fixed k and fixed signs
+, the valug6.22)satisfies

+ 1

as|x*|tend to infinity. If g LZ(R)OCS(R), wherecg(R) is the set of all continuous functions

onR vanishing at infinity, thei(6.22)satisfies

+ —ax*t g 1
BZ (X) = 20%te ng(gxg(u of = (X))). (6.27)
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If supp g< [a~,a*] and ge C%a",a*] then

+ —a Xt g(X )
Bf (x) = 20% R0 xp{ - 22t

—ala* - x*))} - (1+0(

——-(2a* - x*|RE(X) + |a* — x|

R ))) (6.28)

where the signs of*a x* agree with the lower index ofﬁ(x).

Note that wherx* — +co in such a way that the proportiod /(—x") is bounded above
and below, one may repla€¥1/R (x)) with O(1/x") in these asymptotic expansions.

Proof. From (6.22),

IBi’k(X)I

IA

|j|; X+|<\><| |j|; X+|>|><+ ()d ’
( L e o©)2dg)"?

( f e_ff_z’f(2|<f—xi|R§(X)+|§—><*I2)—2"f df)l/2
I X+|<|xi\

N f |g(f)|2df)
E—x*>

( f e%(Zlf—xilR;(x>+lf—xi'2)‘2”f df)l/z
£t |> X

+ 4 -’ 1/2
< gl s o (26 fo & AR g

o 1/2
+||g||L2(]R)(2€aX fx e 2 (€' IRE()+E12) - zgdg) '

2

IA

When we take into account that
b 10l ) =0

and note that according to the asymptotic theory (see for examplstdhdard Laplace
methodin [13] or [31])

00 _o'? 2)_
f T QR D208 g L € T (@R (9+a)-20a
a

1
7 Re R

for a> 0, we arrive at (6.26). f Analogously, formulas (6.27)—(6.28) are also obtained from
the asymptotic Laplace method [31]. O

Formulas (6.22)—(6.24) provide the main result of this section. Let us \agH)[e(, t) for
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the approximation foug(x,t) obtained by the firsi terms of (6.23),

N-1
u™M(x, 1) 277 (
° o Vrt k=0

e ﬁ (REK(X))Z B:,Zk(x) e ﬁ (R§k+1(x))2 B;,2k+1(x)

+ e 2z Ra0? B (¥ — & 57 Raa 00 Bf,zm(x)) . (6.29)

The following result specifies the rate of convergence of the series (6.29) when used as
an approximation of the functiom(x, t) introduced in equation (5.4).

Theorem 6.3. Let ge Lo(R). Then the serie§5.23)for Ug(x,t) converges absolutely for
every t> 0 and xe | *. Further, for|x*| syficiently large,

u(x B — () ~ UM (x B <

Cer (& BB ) + & T B () (6.30)

whereC is a constant¢ andg are given by6.3), and R (X) and Bik(x) are given by(6.20)
and (6.22)respectively.
In particular, for N= 0 we have

[U(X,1) —Uso(X, )] <
Gt (|Bj,0(x)|e‘27121'x‘x"2 + |Bj’o(x)|e_ﬁ'x+_xlz). (6.31)

Remark6.4. The estimate (6.31) is stronger than (6.2). Moreover, the estimates (6.30)—
(6.31) hold for fixedx € I *, while (6.2) is only ar_,-estimate.

7 Numerical Results

Concerning numerical aspects of the main theorems, we will limit the discussion to one
example which facilitates comparison to an existing formula: a fidynction correspond-

ing to a “supershare” type option, that is/K~)1k- k+] wheres = S; is the market value

of the stock and & K~ < K*. By the relation (2.3), the payiis expressed in terms of

the logarithmic independent variabke= log(s/So) asg(x) = (So/K™)€ 1jogk- ogk+]- TO
calculateu,,, the option value without barriers, we consider for simplicity a market with
no jumps, &ectively fixingA =0 in (2.9). For such a market the dheientsc;(t) vanish
whenj # 0, leaving only one term in the sum in (4.5). On the other hand, it is well known
[38] that the classical supershare valuaigfcan be calculated directly using the classical
Black-Scholes apparatus,

1o 9y 1es 9
2Erf(\/§) 2Erf(\/§)), (7.1)

where one defineg® = (1/(c Vt))(log(s/K*) +(r +02/2)t) and Erf¢) = (2/ v/r) f_io e’ de.

Uso (X, 1) = K—S_
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It is not difficult to work out an explicit formula for the double barrier supershare with
barriersX* = Spe*, by a standard application of separation of variables (see for example
[18, 19, 32, 38]). Taker andg as given by (6.4), write/’ = 1—«a and forj=1,2,..., define
the quantitieg; andl;j = 1;(x~,x") by 8j = jr/(x" —x~) and

1 Tk~ . et .
I = af2+/3]2(al(eak sin;(x" — k7)) — e’ sin(;(x" —k*))

—Bi(€”* cosj(x" —k")) - sin(@;j(x* - k"))

wherek* = log(K*/Sp). Then the supershare option with barrigtsis given by

2(s/K- a/e(l/Z)Ba'zt R _ )
( / X+)_ = Ze (1/2)0’251-2t|j3|n(8j(x_ X+)). (72)
j=1

u(x,t) =

This formula is valid whenx™ < 0 < k* < x*, the other cases not being of interest to us.

To investigate the asymptotic behavior we will assutne- —x*, and vary the value of
b = x* to define the barrier. Figure 1 showéx,t) as a function ob in the range 25 <
b < 1.0. In this exampleg- = 0.4,r =0.1, K~ = 0.8, K* = 1.2, and four values df. (These
graphs are produced equally by (6.29) or (7.2)). It is clearufitgnds to zero quite rapidly
asb — oo.

One may usegl) as an approximation akb, i.e., taking only the first summand of (6.29).
Since this series converges quite rapidly, this can provide an excellent approximation, as is
shown is Figure 2.

The relative portiofiug|/u can be used as an indication of tifeeet of barriers on option
value. When this is dficiently small as indicated by calculations such as given here, an
investor may consider it justified to exchange a European option for a double barrier option
with the same pay®.

. | . . | . . | . . L h= |gji‘

04 0.6 0.8 10
Figure 1. u(x,t) for supershare option evaluatedat O for t = 0.25 (highest), &, 0.75, 10
(lowest). Dotted lines mark the asymptotic valug(x,t), which does not depend on the barrier.
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1.00 S
0.95 _of

0.90

b=|zF|

0.5 0.6

‘ ‘ ‘ : )
1
0.2 0.3 0.4 05 0.6 gt 108Uy /u

Figure 2. Ratio uél)(o,t)/u(o,t) (left) and order of magnitude (right) for the four timesinder
consideration.
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