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Abstract

We prove estimates for certain square functions of solutions to divergence form linear
parabolic equations. The estimates are related to singularity and mutual absolute con-
tinuity of caloric measure with respect to surface measure of non-cylindrical domains.
The square functions and the results included here are adapted from works on elliptic
equations.

AMS Subject Classification: 42B25, 28A15, 35K20

Keywords: Multiplicative Square Function, caloric measure, A∞ class, non-cylindrical do-
mains

1 Caloric measure, square functions and statement of the main
theorems

Let Ω ⊂ Rn+1 be an open bounded set, n ≥ 3. Consider operators of the form

Lu = div(A(X, t)∇u(X, t))−
∂u
∂t

(X, t) (1.1)

where (X, t) ∈Rn×R, and A(X, t) = (ai, j(X, t)) is a symmetric matrix of real-valued functions
that satisfies a standard ellipticity condition of the form

λ1|ξ|
2 <

∑
i, j

ai j(X, t)ξiξ j < λ2|ξ|
2 (1.2)

for certain 0 < λ1 < λ2 and every ξ = (ξ1, . . . , ξn) ∈ Rn. Also, here and throughout this paper
∇u denotes the gradient of u with respect to space variables X only.

Solutions to Lu= 0 are understood in the weak sense, but we assume that the coefficients
are of class C∞. Still, we obtain estimates depending at most on the ellipticity constants
∗E-mail address: rnoriega@uaem.mx
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λ1, λ2, dimension n, and the size or other geometric constants of Ω, and hence standard
limit arguments may be applied to conclude estimates that hold when the coefficients are
measurable and bounded.

The parabolic distance between (X, t), (Y, s) ∈ Rn+1 is defined by

δ(X, t;Y, s) ≡ dist(X, t;Y, s) = |X−Y |+ |t− s|1/2,

and by extension we define the parabolic distance between subsets of Rn+1 as

δ(A; B) = inf{δ(X, t;Y, s) : (X, t) ∈ A, (Y, s) ∈ B}.

We will use as framework a type of time-varying domainΩ that we call starlike parabolic
Lipschitz cylinder. This is properly defined later in the bulk of the paper, and at this point
we introduce this terminology to continue with a basic description of the contents of this
paper.

A bounded starlike parabolic Lipschitz cylinder ΩT will have the property that for each
0 < t < T the level domains Ω(t) = Ω∩ {(Y, s) : s = t} ⊂ Rn are starlike Lipschitz domains.
Moreover, the boundary ofΩT can be roughly described as a bottom part (Ω(t) with t = 0), a
lateral part S T (locally given by patches of sufficiently regular graphs), and a top part (Ω(t)
for t = T , T > 0).

It is then clear that ΩT is regular in the Perron-Wiener-Brelot sense, and so it makes
sense to define the parabolic measure associated to L on S T , denoted by ω(X,t)

L for (X, t) ∈Ω,
as the unique Borel measure supported on S T such that

u f (X, t) =
∫
∂pΩ

f (Y, s)dω(X,t)
L (Y, s) (1.3)

is the Perron-Wiener-Brelot solution of the Dirichlet problem Lu = 0 on ΩT , u|S T = f for f
continuous and supported on S T . Observe that in particular u(X,0) = 0 for every X in the
bottom of ΩT .

This definition makes sense for the particular case of the heat operator ∆− ∂/∂t, ob-
tained by taking the identity matrix in (1.1). In this case it is customary to refer to the
corresponding parabolic measure as the caloric measure.

A basic property of parabolic measure is that for any Borel set E ⊂ S T , the measure
ω(X,t)(E), as a function of (X, t) can be viewed as a solution to Lu = 0 with boundary data
χE . Hence a Harnack principle can be applied, and assuming that there is a point X0 ∈ R

n

such that (X0, t) ∈ ΩT for every 0 < t < T , ω(X,t) is absolutely continuous with respect to
ω ≡ ω(X0,3T/2).

In other words, the Radon-Nikodým derivative K(X, t;Y, s)= (dω(X,t)/dω)(Y, s), for (X, t) ∈
ΩT , also called the kernel function, is a well defined element in L1(S T ,dω) as a function of
the variable (Y, s) ∈ S T , and we can rewrite (1.3) as

u f (X, t) =
∫
∂pΩ

K(X, t;Y, s) f (Y, s)dω(Y, s). (1.4)

Denote by σ the surface measure, defined for any Borel set F ⊂ Rn+1 by

σ(F) =
∫

F
dσtdt,



66 J. Rivera-Noriega

where σt is the (n−1)-dimensional Hausdorff measure of Ft ≡ F ∩Rn×{t}, and dt denotes
integration with respect to 1-dimensional Hausdorff measure.

The question of determining whether the parabolic measure is absolute continuity with
respect to σ on S T , even for the case of the heat operator is far from trivial (see e.g. [8, 7]
and references therein). And it turns out that a special mutual absolute continuity arises
when studying initial Lp Dirichlet problems for the equation Lu = 0, and it takes the form
of an A∞ weight property (see [10]), as we now recall briefly.

Let E ⊂ Rn+1 be a Borel set such that σ restricted to E is locally finite. For instance, E
could be the graph of a continuous function of (x, t) ∈ Rn−1×R, or E = S T . We say that the
parabolic measure ω is in the class A∞(E,σ) if for every ε > 0 there exists δ > 0 such that

σ(F)
σ(∆)

< δ implies
ωL(F)
ωL(∆)

< ε

for every Borel set F ⊂ ∆, and every surface cube (defined in the bulk of the paper) ∆ ⊂ E,
with ∆ ⊂ E (to shorten notation we write ∆ b E in this case). By the well-known general
theory of Muckenhoupt weights, it turns out that this defines a uniform mutual absolute
continuity between ωH and σ on E.

Now we state the results, grouping them according to the square function they use.

The result using the Area Integral operator

A first theorem we prove in this paper, is an appropriate adaptation of a recent result that
we extract from [3]. This is a criterion to verify that the A∞ property between caloric and
surface measure holds. Actually, it is related to solvability of an initial Dirichlet problem,
where the datum belongs to BMO(S T ,dσ).

In those results for elliptic equations a Carleson measure condition related to the area
integral is used. In our case we start defining for (Q, s) ∈ S and a suitable function F :Ω→R
the parabolic area integral

SF(Q, s) =
(∫
Γ(Q,s)

|∇F(X, t)|2δ(X, t)−ndXdt
)1/2

.

Here, for (Q, s) ∈ ∂Ω and α > 0 the non-tangential approach region as a cone-like set with
axis contained in Ω(s), pointing towards the interior of Ω, and denoted by Γα(Q, s). The
precise definition is given in the bulk of the paper. Also we use the notation δ(X, t) =
dist(X, t;∂Ω), for (X, t) ∈Ω.

We continue introducing more notation required in this and subsequent sections. A
point (Q, s) ∈ S T may be viewed as (Q, s) = (q0,q, s) and q0 is recalled as the graph coor-
dinate depending (q, s) ∈ Rn−1 ×R. Given a surface cube ∆ ≡ ∆r(Q, s), whose closure is
contained in S T , we define the Carleson regions

Ψ(∆) = Ψr(Q, s) ≡ {(x0, x, t) ∈Ω : |x−q|+ |t− s|1/2 < r, |x0−q0| < N0)}.

Here N0 > 0 is a fixed constant that may depend on the constants of Ω and dimension n ≥ 3.
For a locally integrable function f : S → R, and ∆ b S T , set f∆ =

∫
∆

f dσ/σ(∆) and
define

‖ f ‖∗ ≡ sup
∆⊆S T

1
σ(∆)

∫
∆

| f − f∆|2dσ.
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Then we denote by BMO(S ,dσ) the class of locally integrable functions (modulo constants)
for which ‖ f ‖∗ <∞.

For any Borel measure µ definde on S the weighted BMO space on S , denoted by
BMO(S ,dµ), is defined through the property

‖ f ‖∗,µ ≡ sup
∆⊆S T

1
µ(∆)

∫
∆

| f − f∆|2dµ <∞.

Theorem 1.1. Let L be an operator as in (1.1) as described above. Suppose that there exists
a constant B> 0, depending at most on the size and geometric constants of Ω, the ellipticity
constants of L, and dimension, such that for every continuous function f : S T → R one has

sup
∆⊆S T

 1
σ(∆)

∫
Ψ(∆)
|∇u(X, t)|2δ(X, t)dXdt+ sup

Ψ(∆)
|u|2

 ≤ B‖ f ‖∗ (1.5)

where u is the solution to Lu = 0 with u = f on S T . Then ω ∈ A∞(dσ).

We note that it is well known that the integral in the expression in the left-hand side of
(1.5) is related to the integral

∫
∆

[Su]2dσ by Fubini’s Theorem.
When trying to adapt the argument for elliptic equations some issues particularly related

to parabolic equations as (1.1) were evident, and so we included details of this adaptation
in Section 3.

The result using the Multiplicative Square Function

Based on techniques and results for harmonic functions in [6], where the multiplicative
square function is originally introduced, we prove parabolic versions of two of their results.

The non-tangential maximal function of F :Ω→ R defined for (Q, s) ∈ ∂Ω is defined as

NαF(Q, s) = sup{|F(X, t)| : (X, t) ∈ Γα(Q, s)}. (1.6)

Given u a positive bounded solution to Lu = 0 on a starlike parabolic Lipschitz cylinder
Ω, define for (Q, s) ∈ ∂Ω the parabolic multiplicative square function of u as

Mu(Q, s) =
(∫
Γ(Q,s)

|∇u(X, t)|2

|u(X, t)|2
δ(X, t)−ndXdt

)1/2

, (1.7)

where as before, for (X, t) ∈ Ω we set δ(X, t) = dist(X, t;∂Ω). Observe that for positive
bounded solutions to Lu = 0 one hasMu = S logu.

This definition is a straightforward adaptation for parabolic setting of a definition from
[6] where it is introduced for harmonic functions.

Theorem 1.2. Let ν be a positive Borel measure defined on S T , and define for (X, t) ∈ ΩT

the caloric extension of ν as

u(X, t) =
∫

S T

K(X, t;Y, s)dν(Y, s),

where K(X, t;Y, s) is the kernel function in (1.4). Then ν is singular with respect to ω if and
only ifMu(Q, s) =∞ for ω almost every (Q, s) ∈ S T .
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Theorem 1.3. With the definitions introduced in Theorem 1.2 above, and assuming that
Mu ∈ Lp0(S ;dω) for some p0 > 1, there exists a contant C =C(n,λ)> 0 such that exp(CMu) ∈
L1(S T ,dω) implies that ω and ν are mutually absolutely continuous.

The arguments proving these theorems are in Section 4. An interesting feature of the
proof of Theorem 1.3 is the use of distributional (good-λ) inequalities relatingMu and the
non-tangential maximal function N logu for solutions u to Lu = 0. This feature is originally
present in the case of harmonic functions in [6], and it takes a good part of this paper. The
proof of of the aforementioned distributional inequality is in Section 5.

2 Basic background definitions

In this and subsequent sections we retain notations and definitions already introduced in the
previous section. We now continue introducing notions related to the so called parabolic
homogeneity of the euclidean space Rn+1. If the time variable t is irrelevant in the argu-
mentation, we use the notation X, Y, etc. to denote points in Rn+1. Otherwise we adopt the
notation (X, t) ∈ Rn×R.

The parabolic distance between (X, t), (Y, s) ∈ Rn+1 has been already defined by

δ(X, t;Y, s) = |X−Y |+ |t− s|1/2 ≡ ‖X−Y, t− s‖.

This last expression defines what we call the parabolic norm of points in Rn+1, and it may
also be applied to points (x, t) ∈ Rn−1×R.

Given (X, t) ∈ Rn ×R ≡ Rn+1, denote by Cr(X, t) the cylinder {(Y, s) ∈ Rn+1 : |X − Y | <
r, |t − s| < r2}. The parabolic cylinder of radius r > 0 and centered at (X, t) is defined as
Cr(X, t) = {(Y, s) ∈ Rn+1 : |X − Y | < r, 0 < t − s < r2}. The parabolic ball of radius r > 0
centered at (X, t) is Qr(X, t) = {(Y, s) ∈ Rn+1 : δ(X, t;Y, s) < r}.

The parabolic boundary of an open connected set Ω ∈ Rn+1, denoted by ∂pΩ, consists
of points (Q, s) ∈ ∂Ω such that for every r > 0 one has Cr(Q, s) \Ω , ∅.

We now describe the “good graphs” considered in previous works [8, 7], and adopt the
convention that points in Rn+1 may be denoted by (x0, x, t) ∈ R×Rn−1 ×R, to stress that in
graph coordinates x0 is the variable depending on (x, t).

A function ψ : Rn −→ R is a Lip(1,1/2) function with constant A0 > 0 if for (x, t), (x, s) ∈
Rn, |ψ(x, t)−ψ(y, s)| ≤ A0‖x−y, t− s‖. The function ψ is called a parabolic Lipschitz function
with constant A1 if it satisfies the following two conditions:

• ψ satisfies a Lipschitz condition in the space variable

|ψ(x, t)−ψ(y, t)| ≤ A1|x− y| uniformly on t ∈ R, (2.1)

• For every interval I ⊆ R, every x ∈ Rn,

1
|I|

∫
I

∫
I

|ψ(x, t)−ψ(x, s)|2

|s− t|2
dtds ≤ A1 <∞. (2.2)



Parabolic Square Functions and Caloric Measure 69

This last condition can be recalled as a BMO-Sobolev scale in the t-variable. It roughly
states that a half order derivative of ψ(x, t) with respect to t variable is in BMO. See [7] for
details.

A basic parabolic Lipschitz domain is a domain of the form

Ω(ψ) = {(x0, x, t) ∈ R×Rn−1×R : x0 > ψ(x, t)}

for some parabolic Lipschitz function ψ.
Let Ω ⊂ Rn+1 be a region such that ∂pΩ = ∂Ω and let A1,r0 > 0. Define

Z = {(x0, x, t) ∈ R×Rn−1×R : |xi| < r0, i = 1,2, . . . ,n−1, |x0| < 2nA1r0, t ∈ R}.

Here, x ∈ Rn−1 is viewed as the (n− 1)-tuple x = (x1, x2, . . . , xn−1). We denote by 2Z the
concentric double ofZ, and set diamΩ = sups∈R diamΩ(s), where Ω(s) = {(X, t) ∈Ω : t = s}.

We say that Ω is an infinite starlike parabolic Lipschitz cylinder with constants A1, r0,
if there exist {Zi : i = 1,2, . . . ,N} which are obtained from Z through rigid motions in the
space variables, and parabolic Lipschitz functions {ψi : i = 1,2, . . . ,N} with constant A1,
defined on the transformation of Rn through the same rigid motion defining Zi, and such
that the following conditions hold:

• 2Zi∩∂Ω = {(x0, x, t) : x0 = ψi(x, t)}∩2Zi, i = 1,2, . . . ,N;

• 2Zi∩Ω = {(x0, x, t) : x0 > ψi(x, t)}∩2Zi, i = 1,2, . . . ,N;

• ∂Ω is covered by
N⋃

i=1
Zi;

• AnyZi intersects only two of the otherZ j;

• Ω(t) is a bounded starlike Lipschitz domain for every t ∈ R;

• There exists X0 ∈ R
n and ρ0 > 0 such that Bρ0(X0)×R ⊂Ω.

Each pair (Zi,ψi) is referred to as a local coordinate cylinder of Ω.
Define the surface cubes ∆ρ(Q, s) ≡Cρ(Q, s)∩S , for ρ > 0 and (Q, s) ∈ S . For shortness

sake, given (X, t) ∈Ω we write δ(X, t) = δ(X, t;∂Ω). Now set

Γ̃α(Q, s) = {(X, t) ∈Ω : δ(X, t; Q, s) ≤ (1+α)δ(X, t)}

and denote by Γα(Q, s) the non-tangential region defined as the truncation of Γ̃α(Q, s) at
height ρ(Q) ≡ |Q−X0|+ρ0/2. That is

Γα(Q, s) = Γ̃α(Q, s)∩Cρ(Q)(Q, s).

In the definitions of the square functionsM and S we may include the aperture of the
cone used in their definition as a subscript. Also there is some truncated versions of these
functionals obtained by substituting Γα(Q, s) by Γr

α(Q, s) = Γ(Q, s)∩Cr(Q, s), r > 0. We
write a superscript to take this truncation into account. This way we may writeMr

αu or Sr
αu

and both expressions have now a precise meaning.
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If Ω is an infinite starlike parabolic cylinder, for T > 0 we define the bounded parabolic
cylinder of height T as ΩT = {(X, t) ∈ Ω : 0 < t < T }. We denote the lateral boundary of ΩT

by S T ≡ ∂pΩT ∩ ∂Ω. Given a surface cube ∆ ≡ ∆r(Q, s), with (Q, s) = (q0,q, s) ∈ S T and
∆ b S T , the Carleson region above ∆ is

Ψ(∆) = Ψr(Q, s) ≡ {(x0, x, t) ∈Ω : |x−q|+ |t− s|1/2 < r, |x0−q0| < N0)},

with N0 = 2nA1. And with this choice of N0 we also set

A(∆) =Ar(Q, s) ≡ (q0+2N0r,q, s+2r2), A(∆) =Ar(Q, s) ≡ (q0+2N0r,q, s−2r2).

Note that N0 has been chosen so that bothA(∆) andA(∆) are inΩ, and in fact ∂Ψ(∆)\∂Ω⊂
Ω.

For ΩT as described above the parabolic measure associated to L, denoted by ω(X,t)
L (·)

for (X, t) ∈Ω, is the unique Borel measure supported on S T such that

u f (X, t) =
∫
∂pΩ

f (Y, s)dω(X,t)
L (Y, s)

is the solution, in the Perron-Wiener-Brelot sense, of the Dirichlet problem Lu = 0 on ΩT ,
u|S T = f for f continuous and supported on S T . Observe that in particular u(X,0) = 0 for
every X ∈Ω(0). We denote by ω the parabolic measure ωL(·,ΞT ), where ΞT ≡ (X0,3T/2).

Throughout this work, at several stages, we make use of some basic properties of so-
lutions and parabolic measure for the operator L. Some of these properties are in [10] and
references therein.

Also, we adopt a standard notation that the constants in a sequence of inequalities may
change from line to line, as long as they do not interfere with the main idea.

We also write A . B if A ≤ CB with a constant C > 0 that may depend on dimension
n, the ellipticity constants λ1, λ2, the constants of the infinite starlike parabolic Lipschitz
cylinder A1, r0, and diamΩ. Similarly A ≈ B means A . B and B . A hold simultaneously.
We may retain the notation if the dependance on a constant is different, and it will be
explicitly stated when needed.

3 Proof of Theorem 1.1

For completeness, we include a sketch of the adaptations of the argument in [3]. Fix two
surface cubes ∆ ≡ ∆r(Q0, s0) and ∆′ ≡ ∆r(Q′0, s

′
0), ∆,∆′ b S T , with dist(∆,∆′) ≈ r, 0 < r < r0.

By assumption, if f is continuous on S T , and Lu = 0 on ΩT satisfies u = f on S T then∫
Ψ(∆′)
|∇u(X, t)|2δ(X, t)dXdt+σ(∆′) sup

Ψ(∆′)
|u|2 ≤ B‖ f ‖∗σ(∆′).

Suppose then that f ≥ 0 is continuous and supported in ∆.
The key step is now to prove the following lemma. Once this is established, the A∞

property of parabolic measure can be obtained by adapting the argument in [3, p. 85-86].
We recall this argument after proving the following
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Lemma 3.1. Retain notations and definitions from the previous paragraphs. There exists a
constant c > 0 such that for every (Q, s) ∈ ∆′

1
ω(∆)

∫
∆

f dω ≤ c
Sru(Q, s)+ sup

Ψ(∆′)
|u|2

 . (3.1)

Proof. Let (Q, s) ∈ ∆′ and set Γ j ≡ Γ j(Q, s) ≡ Γ(Q, s)∩Cr/2 j(Q, s) \Cr/2 j+1(Q, s) Let G(X, t)
denote the Green’s function of L over ΩT with pole at ΞT . More generally, G(X, t;Y, s)
denotes Green’s function for L on ΩT .

Claim (Poincare-type inequality). Let Γ∗j denote the concentric dilation of Γ j by a factor
3/4. Then

1
(2− jr)n+2

∫
Γ∗j

|u(X, t)|2dXdt .
∫
Γ j

|∇u(X, t)|2δ(X, t)−ndXdt+
1

2 jα

 sup
Ψ(∆′)
|u|2

 . (3.2)

Proof of (3.2). The estimate one needs is

|u(X, t)|2 .
∫
Γ j

|∇u(Z, τ)|2δ(Z, τ)−ndZdτ+
1

2 jα sup
Ψ(∆′)
|u|2 for (X, t) ∈ Γ∗j . (3.3)

By Green’s identity

u2(X, t) .
∫
∂pΓ j

u2(Z, τ)dω(X,t)
j (Z, τ)−

∫
Γ j

g j(X, t;Y, s)L(u2)(Y, s)dYds

where g j denotes Green’s function for L on Γ j, and ω j is the parabolic measure on ∂Γ j.
Since Lu2 = 2uLu−2〈A∇u,∇u〉 then by boundary Hölder continuity of u on ∂pΩT \∆ (see
e.g. [5] and references therein) and maximum princple

|u(X, t)|2 .
∫
Γ j

G(X, t;Y, s)|∇u(Y, s)|2dYds+
(
δ(X, t)

r

)α
sup
Ψ(∆′)
|u|2.

Using the comparison between Green’s function and parabolic measure (see e.g. [10, Lem-
mata 2.8 and 2.9]) we obtain the Claim, since δ(X, t) ≈ 2− jr. �

Let Γ̃ j denote the image of Γ j under the following transformation:

A(x0, x, t) =
(
x0+2N0(6r), x, t+2(6r)2

)
.

Now observe that the comparison principle [10, Lemma 3.4] implies that

u(A(∆))

G(A(∆))
.

u(X, t)
G(X, t)

for every (X, t) ∈ Γ̃ j. (3.4)

Note that by (3.2)

sup
Ψ(∆′)
|u|2+

∑
j

∫
Γ j

|∇u(X, t)|2δ(X, t)−ndXdt &
∑

j

1
(2− jr)n+2

∫
Γ∗j

|u(X, t)|2dXdt.
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Applying Carleson type estimate [10, Lemma 2.5] and (3.4) for (X, t) ∈ Γ j

u(X, t) &
u(A(∆))

G(A(∆))
G(X, t) &

u(A(∆))

G(A(∆′))
G(X, t)

by backward Harnack princple. Hence∑
j

1
(2− jr)n+2

∫
Γ∗j

|u(X, t)|2dXdt &
∑

j

1
(2− jr)n+2

u(A(∆))

G(A(∆′))

∫
Γ∗j

|G(X, t)|2dXdt.

Now we apply the backward Harnack principle as follows: choose A j ∈ Γ j such that
‖A j− (Q, s)‖ ≈ 2− jr and we get G(X, t) ≈G(A j) for every (X, t) ∈ Γ j. This way we obtain

sup
Ψ(∆)
|u|2+

∫
Γr(Q,s)

|∇u(X, t)|2δ(X, t)−ndXdt &
u2(A(∆))

G2(A(∆′))

∑
j

G2(A j).

Applying again the backward Harnack principle we obtain G(A j−1) < C0G(A j) for cer-
tain C0 > 1. Therefore G(A(∆′)) ≤C j

0G(A j), and as a consequence

u2(A(∆)) .
∫
Γr(Q,s)

|∇u(X, t)|2δ(X, t)−ndXdt+ sup
Ψ(∆)
|u|2. (3.5)

On the other hand

u(A(∆)) =
∫
∆

f (Z, τ)dωA(∆)(Z, τ) =
∫
∆

f (Y, s) K(A(∆);Z, τ)dω(Z, τ).

Since

K(A(∆);Z, τ) = lim
ε→0

ωA(∆)(∆ε(Z, τ))
ω(∆ε(Z, τ))

and
ωA(∆)(∆ε(Z, τ))
ω(∆ε(Z, τ))

&
1

ω(∆)
we obtain

u(A(∆)) &
1

ω(∆)

∫
∆

f dω. (3.6)

Putting together (3.5) and (3.6) we obtain

sup
Ψ(∆)
|u|2+

∫
Γr(Q,s)

|∇u(Y, s)|2δ(Y, s)−ndYds &
1

ω(∆)

∫
∆

f dω

and the lemma follows. �

For completeness we now recall the argumentation that leads from Lemma 3.1 to the
A∞ property of parabolic measure with respect to surface measure.

First of all, observe that Lemma 3.1 implies(
1

ω(∆)

∫
∆

f dω
)2

≤C2
0‖ f ‖

2
∗ (3.7)

with an appropriate constant C0 > 0, and where ∆ is a surface cube or radius r > 0. Let E ⊂
be an open set and let ε > 0 be a given constant.
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Assume that σ(E)/σ(∆) < η for a constant η > 0 to be determined. Let h = χE and
consider Mh denote the Hardy-Littlewood maximal function of h, with respect to σ, and
considering surface cubes with parabolic homogeneity. Note that in particular, for (X, t) <
2∆ on has Mh(X, t) < σ(E)/σ(∆) < η.

Then, for a δ > 0 to be soon determined, the function f =max{0,1+ δMh} satisfies the
following properties:

f ≥ 0, ‖ f ‖∗ < δ, f ≡ 1 on E.

For any δ we can now choose an η > 0 such that f ≡ 0 on ∂pΩT \2∆. Using an approxi-
mation of identity, one can find a family { fa}a>0 such that

• For each a > 0, fa is continuous supported in 3∆ and it satisfies ‖ fa‖∗ ≤C1‖ f ‖∗;

• fa converges to f in Lp.

Since f ≥ 1 then by (3.7)

ω(E)
ω(3∆)

≤
1

ω(3∆)
lim

a→0+

∫
3∆

fadω ≤C0‖ f ‖∗

independently from η.
So we choose δ > 0 so that 2C0C1δ < ε and use doubling property of parabolic measure

to conclude that ω(E)/ω(∆) <C2ε. The theorem now follows.

4 Proof of the results using the Multiplicative Square Function

All throughout this and subsequent sections we assume thatΩ is an infinite starlike parabolic
Lipschitz cylinder with constants A1 and r0. Recall that given a Borel measure ν on S T , we
defined its caloric extension by

u(X, t) =
∫

S T

K(X, t; Q, s)dν(Q, s),

where the kernel function K(X, t; Q, s) is the Radon-Nikodým derivative (dω(X,t)/dω)(Q, s),
(Q, s) ∈ S T .

Proof of Theorem 1.2. Let

A =

(Q, s) ∈ S T : lim
(X,t)→(Q,s)

NT

u(X, t) > 0

 , B = {(Q, s) ∈ S T :Mαu(Q, s) <∞} .

Cover S T with a finite family of surface cubes Ci = Cr0/2(Zi, τi)∩ ∂Ω, (Zi, τi) ∈ ∂Ω, i =
1,2, . . .N, with finite overlapping, and set Ai = A∩Ci, Bi = B∩Ci.

Lemma 4.1. For every 1 ≤ i ≤ N, Ai and Bi only differ in a set of ω zero measure.

Note that this lemma implies Theorem 1.2 at once. �
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Before proceeding with the proof of Lemma 4.1, we recall some constructions and
results related to the parabolic version of the “Main Lemma” from [2] (see [1, p. 572] and
[10, p. 207]).

Proposition 4.2. Given a surface cube ∆ ≡ ∆r(Q0, s0) ⊂ S T , with r < r0/2, and a non-empty
closed set E ⊂ ∆, define for a,b > 0

Φ ≡ Φ(∆,E,α) = Γα(E)∩Cr(a,b),

where Γ(E) ≡
⋃

(Q,s)∈E

Γα(Q, s) and Cr(a,b) =
{
(X, t) : |X−Q0| < ar, |t− s0| < br2

}
.

Then there is a choice of a and b such that

(i) Φ= Ω̃∩{(X, t) : |t− s0|< br2}, where Ω̃ is a parabolic Lipschitz cylinder with constants
Ã1 and r̃0 depending on A1 and α.

(ii) There exists Ξ∆ = (ξ∆, s0+br2) such that δ(Ξ∆;∂pΦ)≥ cr for certain uniform constant
c > 0.

(iii) If we write (Q, s) = (q0,q, s), with q = (q1,q2, . . . ,qn−1), the set

∂Φ∩{(x0, x, t) : |t− s0|< (2r)2, |xi−q0
i |< 2r, i= 1,2, . . . ,n−1, |x0−q0|< 4

√
n(A1+ Ã1)r)}

coincides with the set {(P, t)+ ϕ̃(P, t)ê0 : (P, t) ∈ ∆2r(Q0, s0)}, where ê0 is the canoni-
cal (n+ 1)-dimensional vector in the direction of x0, and ϕ̃ : S T → R is a parabolic
Lipschitz function.

We define SΦ = ∂Ω̃∩{(X, t) : |t− s0| < br2} and recall it as the lateral boundary of Φ.

Proof. This result is essentially proved in [1, p. 572], except that the parabolic Lipschitz
cylinder in (i) is only a Lip(1,1/2) cylinder, and the parabolic Lipschitz function ϕ̃ in (iii) is
only a Lip(1,1/2) function. So, we sketch the idea to get the parabolic Lipschitz property in
both (i) and (iii) as consequence of [11, Proposition 3.4] and the fact that parabolic Lipschitz
functions are Lip(1,1/2) functions.

We first observe that one may recall Ω̃ roughly as Ω itself, except that there is a change
in the local coordinate cylinder containing (Q0, s0). Denoting by (Z0,ψ0) this coordinate
cylinder, one must substitute ψ0(x, t) by ψ̃0(x, t) ≡ ψ0(x, t)+ c0(α)δ((ψ0(x, t), x, t); E), where
c0(α) is a constant depending only on the aperture α.

Now we observe that the proof of [11, Proposition 3.4] is flexible enough to imply
that δ((ψ0(x, t), x, t); E) is a parabolic Lipschitz function, exploiting the fact that E is lo-
cally given by a parabolic Lipschitz function, that δ((ψ0(x, t), x, t); E) is Lip(1,1/2), and that
parabolic Lipschitz functions are Lip(1,1/2) functions.

The assertion in (iii) follows by taking ϕ̃ = ψ̃0. �

Proposition 4.3. Let ∆ ≡ ∆r(Q, s) ⊂ S ∩
{
(X, t) : T0 < t < T0+R2

0

}
, for certain T0,R0 > 0,

and set ω ≡ ω
(X0,T0+2R2

0)
Ω

. Let Φ =Φ(∆,E,α) be as defined above, for some closed set E ⊂ ∆,
and set ν = ωΞ∆

Φ
. Then there exists constants c1, c2 and κ such that for F ⊂ S ∩∂Φ one has

c1(ν(F))1/κ ≤
ω(F)
ω(∆)

≤ c2(ν(F))κ.
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This is proved for the case of the heat equation in [1, Lemma 2.10], and as observed in
[10], the proof therein also is applicable to the more general parabolic equation Lu = 0 and
the parabolic measure associated to it.

In the course of the proof, a measure ν̃ is defined for F ⊂ ∆3r(Q0, s0) as

ν̃(F) = ν(F ∩E)+
∞∑
j=1

ω(F ∩∆ j)
ω(∆ j)

ν(∆̃ j) (4.1)

where {∆ j} is a Whitney decomposition of ∆3r(Q0, s0)\ (S ∩∂Φ) in surface cubes satisfying
δ(∆ j; E) ≈ r j, ∆ j ∩∆k = ∅ if j , k; also ∆̃ is the canonical projection of ∆ ⊂ S onto SΦ. It
has also been observed in [1, Lemma 2.10] that ν̃ coincides with ν on Borel subsets of E.

Proof of Lemma 4.1. We first prove that ω-almost every point in Ai is in Bi.
To shorten notations, we set ∆ = Ci, and let ∆0 = C3ri/4(Zi, τi) be a dilation of ∆. Let

E ⊂ Ai be a closed set for which

1
ε
> lim

(X,t)→(Q,s)
NT

u(X, t) > ε, for certain ε > 0, and every (Q, s) ∈ E.

Let D = Φ(∆0,E,α) and let ωD denote the parabolic measure on D with pole at Ξ∆.
Observe that the pole of this measure is not on Ξ∆0 . Note that Proposition 4.3 implies that
if F ⊂ ∆∩ ∂D is such that ωD(F) = 0 then ω(F) = 0. In particular this property holds for
F ⊂ E. Hence it suffices to prove that ωD almost every element in Ai is in Bi.

For β > α, we now observe that by Harnack’s inequality and maximum principle, one
can find positive constants C1 and C2 depending on β and ε such that

inf{u(X, t) : (X, t) ∈ Γβ(Q, s)} >C1, sup{u(X, t) : (X, t) ∈ Γβ(Q, s)} <C2,

for every (Q, s) ∈ E, and where Γβ(Q, s) denotes the non-tangential region of aperture β.
Renormalizing u we can therefore assume ε < u(X, t) < 1/ε for every (X, t) ∈ Γα(E).

By Fubini’s theorem∫
E

[Mαu]2 dωD =

∫
E

∫
Γ(Q,s)

|∇u(X, t)|2

|u(X, t)|2
δ−n(X, t)dXdtdωD(Q, s) (4.2)

.

∫
D
Ψ(X, t)

|∇u(X, t)|2

|u(X, t)|2
δ−n(X, t)dXdt, (4.3)

where Ψ(X, t) = ωD(∆αδ(X,t)(X̃, t̃)), and (X̃, t̃) is the canonical projection of (X, t) ∈ D onto
SΦ.

Now using an estimate between caloric measure and Green’s function in [10, Lemma
2.9] we obtain

Ψ(X, t) . δ(X, t)nGD(X, t;A(X̃, t̃)).

Here GD denotes the Green’s function on D. Therefore by Harnack’s inequality∫
E

[Mαu]2 dωD .
1
ε2

∫
D

GD(X, t;Ξ∆)|∇u(X, t)|2dXdt.
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Since L[(u − k)2] = 2〈A∇u,∇u〉 for any constant k, then ellipticity, Green’s identity and
Harnack’s principle yield∫

E
[Mαu]2 dωD .

1
ε2 sup

{
|u(X, t)−u(Ξ∆)|2 : (X, t) ∈ ∂D \E

}
.

1
ε4 .

ThereforeMu(Q, s) <∞ for ωD-almost every (Q, s) ∈ E.
Now we prove that ω-almost every point in Bi is in Ai arguing by contradiction. This

time we let E ⊂ Bi be a closed set where u is non-tangentially bounded, and where both of
the next conditions hold:

Mu(Q, s) ≤ 1 and lim
(X,t)→(Q,s)

NT

u(X, t) = 0, for every (Q, s) ∈ E.

Again by Proposition 4.3 we can assume ωD(E) > 0. Suppose that logu is non-tangentially
bounded on D from above. This may be done for instance by considering a subset of E if
necessary.

Now we apply Green’s identity to obtain

logu(X0)+
∫

D
GD(X0;Y, s)L[logu(Y, s)]dYds =

∫
∂pD

logudωD,

where X0 ∈ D is to be chosen. Since ωD(E) > 0 and we have assumed that logu is non-
tangentially bounded from above, the term in the right-hand-side is not bounded. Hence
we can focus on proving that the integral in the left-hand-side is finite, and so get the
contradiction.

Choose X0 =A(∆). A direct computation proves that |L logu| . |∇u|2/u2, and using the
estimate between Green’s function and caloric measure in [10, Lemma 2.8] we have∫

D
GD(X0; X, t)L[logu(X, t)]dXdt .

∫
D

GD(A(∆); X, t)
|∇u(X, t)|2

|u(X, t)|2
dXdt

.

∫
D
Ψ(X, t)

|∇u(X, t)|2

|u(X, t)|2
δ−n(X, t)dXdt

≈

∫
E

∫
Γ(Q,s)

|∇u(X, t)|2

|u(X, t)|2
δ−n(X, t)dXdtdωD(Q, s) =

∫
E

[Mαu]2 dωD ≤ 1

where in the second to last estimate we use Harnack’s inequality and Fubini’s theorem. �

In order to prove Theorem 1.3 we need a distributional inequality relatingMu and the
non-tangential maximal function of logu. First, recalling the definition of the BMO spaces
in page 66, we state a version of [9, Lemma 2.1] needed for the proof of such a distributional
inequality.

Lemma 4.4. If f ∈ L1
loc(S ,dω) and ‖ f ‖∗,ω . 1 then for γ > 1

ω{(Q, s) ∈ S : f (Q, s) > γ} ≤Ce−cγω{(Q, s) ∈ S : f (Q, s) > 1}.

The same distributional inequality is obtained under the assumption that f ∈ Lq
loc(S ,dω)

for some q > 0. This is a consequence of John-Nirenberg’s inequality.
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Theorem 4.5. Let u be a solution of Lu = 0 in Ω, and let 0 < α < β. Assume that β is chosen
so that ΞT ∈ Γβ(Q, s) for all (Q, s) ∈ S T . Then there are constants C,c > 0 such that for
γ >C and t > 0

ω
{
(Q; s) ∈ S T : Nα logu(Q, s) > γt, [Mβu(Q, s)]2 ≤ t, MχGt (Q, s) ≤ 1/2

}
≤

≤Ce−γcω{(Q, s) ∈ S T : Nα logu(Q, s)} (4.4)

where Gt = {(Q, s) ∈ S :Mβu(Q, s) > t} and MχGt is the Hardy-Littlewood maximal function
of χGt .

We postpone the proof of this theorem to Section 5. Assuming momentarily this result
we can proceed with the

Proof of Theorem 1.3. Recall that ν is a Borel measure on ∂Ω and that its caloric extension
is

u(X, t) =
∫

S T

K(X, t; Q, s)dν(Q, s).

Now define for (Q, s) ∈ ∂Ω

M(Q, s) = sup
{
ν(∆)
ω(∆)

,
ω(∆)
ν(∆)

}
, N(Q, s) = sup

∣∣∣∣∣logk+ log
ν(∆)
ω(∆)

∣∣∣∣∣ ,
where k ∈R is a constant to be chosen, and the supremum in either case is taken over surface
balls ∆ b ∂Ω centered at (Q, s). Hence it is enough to prove thatM ∈ L1(S T ,dω), and since
eN ≈M, then we focus on proving eN ∈ L1(S T ,dω)

Using standard estimates for the kernel function, contained for instance in [10, p. 216],
we obtain

u(Q∆) ≥C0
ν(∆)
ω(∆)

(4.5)

for certain constant C0 > 0, and where Q∆ ∈ ΩT is taken in Γ(Q, s), and is such that its
distance to S T and (Q, s) are both proportional to the radius of ∆. Note that (4.5) implies
N ≤ N logu pointwise by taking k =C0 and so∫

S T

(eN−1)dω = γ
∫ ∞

0
eγλω{Q ∈ S T : N(Q) > γλ}dλ ≤

≤ γ

∫ ∞

0
eγλω{Q ∈ S T : N logu(Q) > γλ}dλ ≡ A.

Now by Theorem 4.5, with ε > 0 to be chosen,

A ≤ γ
∫ ∞

0
eγλω{Q ∈ S T : N logu(Q) > γλ, [Mu(Q)]2 ≤ ελ}dλ+

+γ

∫ ∞

0
eγλω{Q ∈ S T : [Mu(Q)]2 > ελ}dλ (4.6)

≤Cγ
∫ ∞

0
eγλe−cγ/εω{Q ∈ S T : N logu(Q) > γλ}dλ+

∫
S T

[
exp

(
γM2u
ε

)
−1

]
dω ≡ I+ II.
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Observe that if ε < c/` with ` > 1 large

I =
[∫ 1

0
+

∫ ∞

1

]
eγλe−cγ/εω{Q ∈ S T : N logu(Q) > γλ}dλ

. γ

∫ 1

0
ω{Q ∈ S T : N logu(Q) > γλ}dλ+ e−`γγ

∫ ∞

1
eγλω{Q ∈ S T : N logu(Q) > γλ}dλ.

If ` is chosen large enough we can hide the second term in the left side of (4.6), thus
obtaining

A . γ
∫ ∞

0
ω{Q ∈ S T : N logu(Q) > γλ}dλ+

∫
S T

[
exp

(
γM2u
ε

)
−1

]
dω.

All in all ∫
S T

(eN−1)dω .
∫

S T

(N logu)dω+
∫

S T

[
exp

(
γM2u
ε

)
−1

]
dω.

Now we know that an estimate as (4.4) implies as in [1, p. 583]∫
S T

(N logu)dω ≤
(∫
∆

(Nα logu)p0dω
)1/p0

.

.

(∫
∆

|Mαu|p0dω+ω(∆)|u(Ar(Q0, s0))|p0

)1/p0

<∞

with the p0 > 1 in the hypothesis of Theorem 1.3. The conclusion of the theorem follows.
�

5 Distributional inequalities for multiplicative square function:
Proof of Theorem 4.5

We retain notations from Section 4. Without loss of generality we assume t = 1 and define

Fu = {(Q, s) ∈ S : [Mβu(Q, s)]2 ≤ 1, MχG ≤ 1/2}, W = Γβ0(Fu), β0 = (α+β)/2,

Nu(Q, s) = sup{| logu(X, t)| : (X, t) ∈ Γα(Q, s)∩W}, (Q, s) ∈ S .

Note thatNu(Q, s) ≤ Nα logu(Q, s) for (Q, s) ∈ S , and thatNu(Q, s) = Nα logu(Q, s) for
(Q, s) ∈ Fu. Therefore, if we prove

Nu ∈ BMO(S ,dω); (5.1)

Nu ∈ Lq
loc(S ,dω) for certain q > 0, (5.2)

then Lemma 4.4 would imply the theorem.
In order to prove (5.2) we later in this section prove a version of Theorem 4.5, which is

local, and where there is no exponential decay in the right-hand-side of the inequality.
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Theorem 5.1. Let ∆ ≡ ∆r(Q0, s0) ⊂ S , and for α > 0 large enough, let β > α. Suppose that
there exists P∗ ∈ S , with dist(P∗; (Q0, s0)) . r such that Nα logu(P∗) ≤ t. Then, given λ and
γ > 1 there exists δ = δ(α,β,λ,γ) and θ > 0 such that

λω
{
(Q, s) ∈ ∆ : Nr

α logu(Q, s) > γt, [Mr
βu(Q, s)]2 ≤ δt, MωχGδt (Q, s) ≤ θ

}
≤ ω(∆). (5.3)

where as before Gt =
{
(Q, s) ∈ S :Mβu(Q, s) > t

}
.

This theorem also implies as in [1, p. 583]∫
∆

|Nα logu|p0dω .
∫
∆

|Mαu|p0dω+ω(∆)|u(Ar(Q0, s0))|p0 <∞

for the same p0 > 0 for which, by the hypothesis of Theorem 1.3,Mαu ∈ Lp0
loc(S ,dω). Hence

(5.2) holds with q = p0.
To prove (5.1) assuming Theorem 5.1, we use the idea from [9, p. 260], as developed

in [4]. Let r > 0 so small that 0 < 20r < r0, and let ∆ = ∆r(Q0, s0), with (Q0, s0) ∈ S . Define
now the regions

Gτr(Q, s) = {(X, t) ∈ Γα(Q, s)∩W : δ(X, t) ≥ τr},

Gτr(Q, s) = {(X, t) ∈ Γα(Q, s)∩W : δ(X, t) < τr},

where the constant τ > 0 is chosen so that the region Φ(∆,Fu,α) \ (Bρ0(X0)×R) contains
Gτr(Q, s) for every (Q, s) ∈ E. Define also the maximal functions

Ñ ru(Q, s) = sup{| logu(X, t)| : (X, t) ∈ Gτr(Q, s)},

Ñru(Q, s) = sup{| logu(X, t)| : (X, t) ∈ Gτr(Q, s)}.

Consider now the following estimate of the interior local oscillation of logu.

Lemma 5.2. Let u be a positive solution to Lu = 0 on Ω, and given (Q0, s0) ∈ ∂Ω∩{t : −1 <
t < T +1, } let (X0, t0) ∈ Γα(Q0, s0). Choose ρ > 0 such that 0 < 10ρ < r0, ρ ≈ d(X0, s0) and
C2ρ(X0, t0) ⊂ Γ(Q0, s0). Then for every (X, t) ∈ Cρ(X0, t0)

| logu(X, t)− logu(X0, t0)| .
∫
C2ρ(X0,t0)

|∇u(Y, s)|2

|u(Y, s)|2
δ(Y, s)−ndYds.

Assuming this lemma we explain how to finish the proof of (5.1) following an idea from
[4]. Define

Ñu(Q, s) = sup{| logu(X, t)− logu(ξ∆, s0)| : (X, t) ∈ Gτr(Q, s)} for (Q, s) ∈ S T .

Claim 1. There exists a constant C > 0 such that for (Q, s) ∈ ∆

|Ñ ru(Q, s)−Ñ ru(Q0, s0)| ≤C.

Claim 2. Let κ > 0 be the constant in Proposition 4.3. Then

ω{(Q, s) ∈ ∆ : Ñu(Q, s) > λ} . λ−2κω(∆).
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Since the Claim 2 is the heart of the matter in the proof of Theorem 5.1, we defer the
proof of this claim until that theorem is proved.

Claim 1 is proved with an argument similar to that in [4, p. 288-289] (which is essen-
tially in [2, p. 104]) once Lemma 5.2 is established. For completeness, and since we refer
to this construction later on, we sketch the main idea to prove Claim 1.

Let Q ∈ ∆ and X ∈ Γr
α(Q). Take P ∈ Fu such that X ∈ Γβ0(P) and set ρ = δ(X).

• If δ(X)≤ r0/20 then there is X ∈ Γr
α(Q0, s0) with δ(X)≈ δ(X) and such that X ∈ Γβ0(P).

We now can construct a sequence of points {X j : j = 1, . . . , `} such that, setting ρ̃ ≡ δ0ρ

for certain δ0 depending on the constant A1 of Ω, one has

X1 = X, X` = X, Cρ̃(X j) ⊂ Γβ0(P),

δ(X j) ≈ ρ,
∥∥∥X j−X j+1

∥∥∥ ≤ ρ̃/2, j = 1, . . . , `.

Now by Lemma 5.2, for any j∣∣∣logu(X j)− logu(X j+1)
∣∣∣ . ∫

Cρ̃(X j)

|∇u(X, t)|2

|u(X, t)|2
δ(X, t)−ndXdt ≤ [Mβu(P)]2 ≤ 1

since P ∈ Fu. This implies that

| logu(X)| ≤ | logu(X)|+ c (5.4)

with a constant C > 0 that depends on A1, α and β.

• If δ(X) > r0/20 then we can still construct a sequence of points {X j : j = 1, . . . , `}, this
time satisfying

X1 = X, X` = ΞT , Cρ̃(X j) ⊂ Γβ0(P), ‖X j−X j+1‖ ≤ ρ̃/2 j = 1, . . . , `.

Again by Lemma 5.2 we obtain

| logu(X)| ≤ | logu(ΞT )|+ c (5.5)

again with a constant C > 0 that depends on A1, α and β.

Estimates (5.4) and (5.5) imply

| logu(X)| ≤ Ñ ru(Q0, s0)+ c

for every X ∈ Γr
α(Q) and Q ∈ ∆.

A similar argument allows us to prove that actually

| logu(X)| ≤ Ñ ru(Q)+ c

for every X ∈ Γr
α(Q). Therefore

|Ñ ru(Q)−Ñ ru(Q0, s0)| . 1 (5.6)

for every Q ∈ ∆, and the Claim 1 is proved.
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Assuming the two Claims, we can follow the argument in [4, p. 289] (see also [9,
Lemma 4.4]) to obtain

inf
a∈R

∫
∆

|Nu−a|κdω ≤Cω(∆)

which already implies that Nu ∈ BMO(S ,ω), which is precisely (5.1). The proof of Theo-
rem 4.5 is now finished, except for Lemma 5.2, Claim 2 and Theorem 5.1, which we prove
next.

Proof of Lemma 5.2. To shorten notation, let Ci =Ciρ(X0, t0), i= 1,2. Apply Green’s iden-
tity to v(X, t) = logu(X, t)− logu(X0, t0) at (X, t) = (X0, t0) to obtain∫

∂pC2

[logu(Q, s)− logu(X0, t0)]dω(X0,t0)
2 (Q, s) =

∫
C2

g2(X0, t0;Y, s)L[logu(Y, s)]dYds, (5.7)

where ω2 and g2 denote the parabolic measure and Green’s function for L on C2. In fact,
for (X, t) ∈ C2

logu(X, t)− logu(X0, t0) =
∫
∂pC2

[logu(Q, s)− logu(X0, t0)]dω(X,t)
2 (Q, s)−

−

∫
C2

g2(X, t;Y, s)L[logu(Y, s)]dYds. (5.8)

Applying Harnack’s inequality to g2 in (5.8), and using the fact that |L logu|. |∇u|2/|u|2,
and that the Radon-Nikodým derivative dω(X0,t0)

2 /dω(X,t)
2 is essentially bounded by 1 we

obtain ∣∣∣logu(X, t)− logu(X0, t0)
∣∣∣ . ∫

C2

g2(X0, t0;Y, s)
|∇u(Y, s)|2

|u(Y, s)|2
dYds

.

∫
C2

G(X0, t0;Y, s)
|∇u(Y, s)|2

|u(Y, s)|2
dYds

by (5.7), and where in the last inequality we have used the maximum principle. Here
G denotes the Green’s function of L on Ω∩ {(X, t) : −1 < t < T + 1}. Applying Harnack
inequality and the comparison of parabolic measure and Green’s function [10, Lemma 2.8]
we conclude

| logu(X, t)− logu(X0, t0)| .
∫
C2

|∇u(Y, s)|2

|u(Y, s)|2
δ(Y, s)−nω(∆αδ(Y,s)(Y, s))dYds

≤

∫
C2

|∇u(Y, s)|2

|u(Y, s)|2
δ(Y, s)−ndYds

as desired. �

Proof of Theorem 5.1. Let E be the set in the left side of (5.3) and define

F = {(Q, s) ∈ ∆ : [Mr
βu(Q, s)]2 ≤ δt, MωχGδt (Q, s) ≤ θ}
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Now we repeat the definition of W, Nu, Gτr, etc. in the previous proof with F replacing
Fu. This way, the argument leading to (5.6), along with the fact that for (Q, s) ∈ E one has
[Mr

βu(Q, s)]2 ≤ δt imply that

E ⊂
{
(Q, s) ∈ ∆ : Ñu(Q, s) ≥ γt

}
.

So it suffices to prove that for κ > 0 as in Proposition 4.3 and any ζ > 0

ω{(Q, s) ∈ ∆ : Ñu(Q, s) ≥ ζ} ≤ ζ−κω(∆). (5.9)

The following argument that establishes (5.9) also proves the Claim 2 in the proof of The-
orem 4.5.

Let Hζ = {(Q, s) ∈ ∆ : Ñu(Q, s) > ζ}. By Proposition 4.3 it suffices to prove

ν̃(Hζ) . ζη (5.10)

for certain η > 0 and where ν̃ is the measure defined in (4.1). Now note that by Chebyshev’s
inequality, and using the notations in and around the definition of ν̃, we obtain

ν̃(Hζ) .
1
ζ

∫
E

[Ñu]dν+
∑

j

ω(∆ j∩Hζ)
ω(∆ j)

ν(∆̃). (5.11)

Now the proof continues in three steps:

Step 1. We first prove that ω(Hζ ∩∆ j) ≈ ω(∆ j).

Proof. For Q ∈ Hζ ∩∆ j one has d(Q; E) ≈ diam∆ j. Also if P ∈ E satisfies d(P;Q) ≈ diam∆ j

then there exists X ∈ Γα(Q)∩Γ(α+β)/2(P) with d(X;SΦ) ≈ diam∆ j and such that | logu(X)−
logu(ξΦ, s0)| > ζ. So we choose β as a large multiple of α and we obtain that for certain
ρ1 > 0 one has

Ñu(Z) > ζ for every Z ∈ ∆ρ1diam∆ j(Q).

The doubling property of ω implies the claim of this first step. �

Step 2. Now we prove that

ν̃(Hζ)ζ .
∫

D
g(Ξ;Y, s)

|∇u(Y, s)|2

|u(Y, s)|2
dYds,

where g is the Green’s function for L on D.

Proof. Note that by Step 1, (5.11) is transformed into

ν̃(Hζ) .
1
ζ

∫
E

[Ñu]dν+
∑

j

ν(∆̃). (5.12)

Accordingly, there is two terms to be estimated. For Q ∈ E and X ∈ Gτr(Q), by Green’s
identity

| logu(X)− logu(Ξ)| ≤
∫
∂pD
| logu(Z)− logu(Ξ)|dνX(Z)+

∫
D

g(X;Y, s)
|∇u(Y, s)|2

|u(Y, s)|2
dYds

.

∫
∂pD
| logu(Z)− logu(Ξ)|dν(Z)+

∫
D

g(Ξ;Y, s)
|∇u(Y, s)|2

|u(Y, s)|2
dYds
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by Harnack’s principle, and since the Radon-Nikodým derivative dνX/dν ≤ 1.
This already implies

Ñu(Q) .
∫
∂pD
| logu(Z)− logu(Ξ)|dν(Z)+

∫
D

g(Ξ;Y, s)
|∇u(Y, s)|2

|u(Y, s)|2
dYds. (5.13)

uniformly in Q ∈ E.
On the other hand, for Z ∈ ∆̃ j we can choose as in the proof of Step 1, X ∈ Γα(Z)∩

Γ(α+β)/2(P) such that | logu(X)− logu(Ξ)| > ζ, where P ∈ E satisfies d(P;Z) ≈ diam∆ j.
Then, since P ∈ E we can assume that [Mr

β(P)]2 < εζ, with ε to be chosen. Also,
since | logu(Z)− logu(Ξ)| ≤ [Mr

β(P)]2 we can conclude that for suitable small ε one has
| logu(Z)− logu(Ξ)| > ζ. Applying Chebyshev’s inequality

ν(∆̃ j) ≤
1
ζ

∫
∆̃ j

| logu(Z)− logu(Ξ)|dν(Z).

Since the ∆̃ j have finite overlapping we conclude from (5.13)

ν̃(Hζ)ζ .
∫

D
g(Ξ;Y, s)

|∇u(Y, s)|2

|u(Y, s)|2
dYds+

∫
∂pD
| logu(Z)− logu(Ξ)|dν(Z). (5.14)

Finally notice that Green’s identity applied to v(X, t) = logu(X, t)− logu(Ξ) implies∫
∂pD

[logu(Z)− logu(Ξ)]dν(Z) =
∫

D
g(Ξ;Y, s)L logu(Y, s)dYds.

Hence ∫
∂pD

[logu(Z)− logu(Ξ)]dν(Z) .
∫

D
g(Ξ;Y, s)

|∇u(Y, s)|2

|u(Y, s)|2
dYds. (5.15)

Plugging (5.15) in (5.13) and (5.14) the claim is established. �

Step 3. We finally prove ∫
D

g(Ξ;Y, s)
|∇u(Y, s)|2

|u(Y, s)|2
dYds . 1. (5.16)

Proof. Set Dr = {X ∈ D : d(X; DS ) ≤ τr} where τ > 0 is chosen small enough. Now we
handle the part far from the boundary. By ellipticity∫

D\Dr
g(Ξ;Y, s)

|∇u(Y, s)|2

|u(Y, s)|2
dYds .

1
inf

D\Dr
|u|2

∫
D\Dr

g(Ξ;Y, s)〈A(Y, s)∇u(Y, s),∇u(Y, s)〉dYds

≤
1

inf
D\Dr
|u|2

∫
D\Dr

g(Ξ̃;Y, s)〈A(Y, s)∇u(Y, s),∇u(Y, s)〉dYds
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by elliptic type Harnack principle, and where Ξ̃ = (ξΦ, s0−br2) (see Proposition 4.2). Note
that Harnack’s inequality implies u(Ξ̃) . u(X) for every X ∈ D \Dr and so we conclude∫

D\Dr
g(Ξ;Y, s)

|∇u(Y, s)|2

|u(Y, s)|2
dYds .

1
inf

D\Dr
|u|2

∫
D\Dr

g(Ξ̃;Y, s)Lu2(Y, s)dYds

≤
u(Ξ̃)

inf
D\Dr
|u|2
. 1 (5.17)

To handle the part close to the boundary, observe that

C ≥
∫

S \G1

[Mr
βu]2dωΞ ≥

∫
D

|∇u(Y, s)|2

|u(Y, s)|2
Ψ̃(Y, s)dYds (5.18)

where
Ψ̃(Y, s) = ωΞ{Z ∈ S \G1 : (Y, s) ∈ Γr

β(Z)}.

Note that for Y ∈ Dr there exists Ỹ ∈ E ⊂ S \G1 such that ‖Y− Ỹ‖ ≈ δ(Y) and Y ∈ Γβ(Ỹ). In
other words, denoting ∆̃ = ∆γδ(Ỹ)(Ỹ) then

∆̃∩S \G1 ⊂ {Z ∈ S \G1 : Y ∈ Γr
β(Z)}.

Therefore by the Comparison principle in [10, Lemma 3.4]

Ψ̃(Y) ≥ ωΞ(∆̃∩S \G1) ≈
ω(∆̃∩S \G1)

ω(∆̃)
ωΞ(∆̃) &

ω(∆̃∩S \G1)

ω(∆̃)
g(Ξ;Y)δn(Y)

where in the last inequality we have used the comparison between Green’s function and
parabolic measure [10, Lemma 2.8]. Since Ỹ ∈ E, then by definitionω(∆̃∩S \G1)/ω(∆̃)& 1
thus

Ψ̃(Y) & g(Ξ;Y)δn(Y). (5.19)

Since clearly ∫
Dr

gD(Ξ;Y, s)
|∇u(Y, s)|2

|u(Y, s)|2
dYds ≤

∫
D

g(Ξ;Y, s)
|∇u(Y, s)|2

|u(Y, s)|2
dYds

from (5.18) and (5.19) we obtain the claim of this step. �

As we mention before, (5.10) is essentially Claim 2. Also, we noted that the three steps
described above imply (5.10), which in turn suffices to finish the proof of Theorem 4.5. �

Acknowledgements.

The last part of this work was developed during an academic visit to the Department of
Mathematics of the University of Kentucky. The author gratefully thanks Professors J. L.
Lewis, Z. Shen and R. M. Brown for kind hospitality and for support on some logistics for
this academic visit.
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