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Abstract

In this paper we deal with sequence spaces inclusion equations (SSIE), which are
determined by an inclusion where each term is a sum or a sum of products of sets
of the form χa (T ) and χ f (x) (T ) where f map U+ to itself, and χ ∈

{
s,s0,s(c)

}
, the

sequence x is the unknown and T is a given triangle. Here we give characterizations
of the (SSIE) χx (B (r, s)) ⊂ χx (B (r′, s′)) and of the (SSE) χx (B (r, s)) = χx (B (r′, s′)),
where χ =s, s0, or s(c) and B (r, s) is the generalized operator of first difference defined
by B (r, s)n y = ryn + syn−1 for all n ≥ 2 and B (r, s)1 y1 = ry1. We give an application
to the spectrum of B (r, s) considered as an operator from χx to itself, where χ = s,
or s0. Then we apply these results to the solvability of the sequence spaces equation
χa+ s(c)

x (B (r, s)) = s(c)
x where χ = s, s0, or s(c) and x is the unknown.
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1 Introduction

In the book entitled Summability through Functional Analysis, [15] Wilansky introduced
sets of the form a−1 ∗ E where E is a BK space, and a = (an)n≥1 is a sequence satisfying
an , 0 for all n. Recall that a−1 ∗E is the set of all sequences y = (yn)n≥1 such that ay ∈ E.
In [4] the sets sa, s0

a and s(c)
a were introduced by (1/a)−1 ∗E with an > 0 for all n and E ∈

{`∞,c0,c}. In [5, 6] the sum χa+χ
′
b and the product χa ∗χ

′
b were defined, where χ, χ′ are any
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of the symbols s, s0, or s(c), among other things characterizations of matrix transformations
mapping in the sets sa+ s0

b (∆q) and sa+ s(c)
b (∆q) were given, where ∆ is the operator of the

first difference. In [9] de Malafosse and Malkowsky gave among other things properties of
the spectrum of the matrix of weighted means Nq considered as operator in the set sa. In [10]
characterizations can be found of the sets (sa (∆q) ,χb) where χ is any of the symbols s, s0, or
s(c). Using spectral properties of the operator of first difference in the sets s0

α and s(c)
β it can be

found in [6] simplifications of the set s0
α

(
(∆−λI)h

)
+ s(c)
β

(
(∆−µI)l

)
where h, l are complex

numbers, α, β given sequences, and characterization of matrix transformations in this set.
In [11] de Malafosse and Rakočević gave applications of the measure of noncompactness
to operators on the spaces sα, s0

α, s(c)
α and lp

α.
In this paper among other things we determine the set of all sequences x ∈U+ such that

ryn+ syn−1 =O (xn) implies r′yn+ s′yn−1 =O (xn) (n→∞) for all y and for given reals r, s, r′,
s′ . This statement consists in determining the set of all x such that sx (B (r, s))⊂ sx (B (r′, s′))
where B (r, s) and B (r′, s′) are band matrix. So we are led to deal with special sequence
spaces inclusion equations (SSIE), (resp. sequence spaces equations (SSE)), which are
determined by an inclusion, (resp. identity), where each term is a sum or a sum of products
of sets of the form χa (T ) and χ f (x) (T ) where f maps U+ to itself, χ is any of the symbols
s, s0, or s(c), x is the unknown and T is a triangle, (cf. [2, 7, 8]). In [2] some results were
given on the (SSE) sa + sx = sb and on the (SSE) sϕ(x) = sb where ϕ maps from the set U+

of all positive sequences to itself. In [7] it can be found a study of the (SSIE) χ′′b ⊂ χa+χ
′
x

when a/b ∈ c0 in the cases when χ, χ′, χ′′ are any of the symbols s, s0, or s(c), there is also
a resolution of the (SSIE) with operator χa +χx (∆) ⊂ χx where χ is any of the symbols s,
s0, or s(c).

This paper is organized as follows. In Section 2 we recall some well-known results
on sequence spaces and matrix transformations. In Section 3 some results are recalled on
the sum, the multiplier and the product of some special spaces of sequences. In Section 4
are recalled some results on the solvability of (SSIE) of the form χ′′b ⊂ χa +χ

′
x with χ, χ′,

χ′′ ∈
{
s0,s(c),s

}
. The main results are given in Sections 5 and 6. In Section 5 we explicitly

describe the set of all x ∈ U+ satisfying the inclusion χx (B (r, s)) ⊂ χx (B (r′, s′)), or the
identity χx (B (r, s)) = χx (B (r′, s′)) where χ = s, s0, or s(c) and deal with the spectrum of
B (r, s) considered as operator from χx to itself, where χ = s, or s0. In Section 6 we deal with
the (SSIE) s(c)

x (B (r, s)) ⊂ s(c)
x (B (r′, s′)) and focus on the special case when rs < 0. Finally in

Section 7 we apply these results to the solvability of the (SSE) χa+ s(c)
x (B (r, s)) = s(c)

x where
χ = s, s0, or s(c).

2 Notations and preliminary results

For a given infinite matrix Λ = (λnk)n,k≥1 we define the operators Λn for any integer n ≥ 1,
by

Λn (y) =
∞∑

k=1

λnkyk (2.1)

where y = (yk)k≥1, and the series are assumed convergent for all n. So we are led to the
study of the operator Λ defined by Λy = (Λn (y))n≥1 mapping between sequence spaces.
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A Banach space E of complex sequences with the norm ‖‖E is a BK space if each
projection Pn:E→ C defined by y→ Pny = yn is continuous. A BK space E is said to have
AK if every sequence y = (yk)k≥1 ∈ E has a unique representation y =

∑∞
k=1 yke(k) where e(k)

is the sequence with 1 in the k-th position and 0 otherwise.
We will denote by ω, c0, c, `∞ the sets of all sequences, the set of sequences that

converge to zero, that are convergent and that are bounded respectively. If u and v are
sequences and E and F are two subsets of ω, then we write uv = (unvn)n and

M (E,F) = {u = (un)n≥1 ∈ ω : uv ∈ F for all v ∈ E} ,

M (E,F) is called the multiplier space of E and F. We shall use the set U+ of all sequences
u = (un)n≥1 ∈ ω such that un > 0 for all n. Using Wilansky’s notations [15], we define
for any sequence a = (an)n≥1 ∈ U+ and for any set of sequences E, the set (1/a)−1 ∗ E ={
(yn)n≥1 ∈ ω : (yn/an)n ∈ E

}
. To simplify, we use the diagonal matrix Da defined by [Da]nn =

an for all n and write
Da ∗E = (1/a)−1 ∗E

and define sa = Da ∗`∞, s0
a = Da ∗c0 and s(c)

a = Da ∗c, see for instance [5, 4, 11]. Each of the
spaces Dα ∗χ, where χ ∈ {`∞,c0,c}, is a BK space normed by ‖ξ‖sa

= supn≥1 (|ξn|/an) and s0
a

has AK.
Now let a = (an)n≥1, b = (bn)n≥1 ∈ U+. By S a,b we denote the set of infinite matrices

Λ = (λnk)n,k≥1 such that ‖Λ‖S a,b = supn≥1

[
(1/bn)

∑∞
k=1 |λnk|ak

]
<∞. The set S a,b is a Banach

space with the norm ‖‖S a,b . Let E and F be any subsets of ω. When Λ maps E into F we
write Λ ∈ (E,F), see [3]. So we have Λy ∈ F for all y ∈ E, (Λy ∈ F means that for each
n ≥ 1 the series defined by Λn (y) =

∑∞
k=1λnkyk is convergent and (Λn (y))n≥1 ∈ F). It is well

known that Λ ∈ (sa,sb) if and only if Λ ∈ S a,b. So we can write (sa,sb) = S a,b.
When sa = sb we obtain the Banach algebra with identity S a,b = S a, (see [4]) normed

by ‖Λ‖S a = ‖Λ‖S a,a . We also have Λ ∈ (sa,sa) if and only if Λ ∈ S a.
If a = (rn)n≥1, the sets S a, sa, s0

a and s(c)
a are denoted by S r, sr, s0

r and s(c)
r respectively

(see [5]). When r = 1, we obtain s1 = `∞, s0
1 = c0 and s(c)

1 = c, and putting e = (1,1, ...)
we have S 1 = S e. It is well known, see [3] that (s1,s1) = (c0,s1) = (c,s1) = S 1. We have
Λ ∈ (s1,s1) if and only if

Λ ∈ S 1; (2.2)

Λ ∈ (c0,c0) if and only if (2.2) holds and limn→∞λnk = 0 for all k ≥ 1. Then Λ ∈ (c,c) if and
only if (2.2) holds, limn→∞λnk = lk for all k and for some scalars lk, and limn→∞

∑∞
k=1λnk = l

for some l.
In the following we will frequently use the fact thatΛ ∈

(
χa,χ

′
b

)
if and only if D1/bΛDa ∈(

χe,χ
′
e
)

where χ, χ′ are any of the symbols s0, s(c), or s.
For any subset E of ω, we put ΛE = {η ∈ ω : η = Λy for some y ∈ E} . If F is a subset of

ω, we will write F (Λ) = FΛ = {y ∈ ω : Λy ∈ F}.

3 Sum, multiplier and product of special sets sequences.

In this section we recall some properties of the sum χa + χ
′
b where χ, χ′ are any of the

symbols s0, s(c), or s.
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3.1 Sum of sets of the form χa, where χ is any of the symbols s0, s(c), or s.

We state some results concerning the sum of particular interesting sequence spaces.
Let E, F ⊂ ω be two linear spaces. The set E+F is defined by

E+F = {y ∈ ω : y = u+ v for some u ∈ E and v ∈ F} .

It can easily be seen that E +F = F if and only if E ⊂ F. This permits us to show some of
the next results.

Theorem 3.1. [5] Let a, b ∈ U+.
(i) a) sa ⊂ sb if and only if a/b ∈ `∞;

b) sa = sb if and only if there are K1, K2 > 0 such that

K1 ≤
bn

an
≤ K2 for all n,

c) sa+ sb = sa+b = smax(a,b), where [max(a,b)]n =max(an,bn);
d) sa+ sb = sa if and only if b/a ∈ `∞.

(ii) a) s0
a ⊂ s0

b if and only if a/b ∈ `∞;
b) s0

a = s0
b if and only if sa = sb;

c) s0
a+ s0

b =s0
a+b;

d) s0
a+ s0

b = s0
a if and only if b/a ∈ l∞;

e) s(c)
a ⊂ s(c)

b if and only if a/b ∈ c;
f) Consider the condition

an/bn→ l (n→∞) for some l > 0. (3.1)

Then condition (3.1) is equivalent to s(c)
a = s(c)

b , and (3.1) implies sa = sb, s0
a = s0

b and s(c)
a =

s(c)
b .

(iii) a) s(c)
a+b ⊂ s(c)

a + s(c)
b ;

b) The condition a/ (a+b) ∈ c is equivalent to s(c)
a + s(c)

b = s(c)
a+b;

c) The condition b/a ∈ c is equivalent to s(c)
a + s(c)

b = s(c)
a+b = s(c)

a ;
(iv) s0

a+ s(c)
b = s(c)

b is equivalent to a/b ∈ `∞, and the condition b/a ∈ c0 implies s0
a+

s(c)
b = s0

a.
(v) a) sa+ s0

b = s0
a is equivalent to b/a ∈ `∞;

b) sa+ s0
b = s0

b is equivalent to a/b ∈ c0.
(vi) a) s(c)

a + sb = s(c)
a is equivalent to b/a ∈ c0;

b) s(c)
a + sb = sb is equivalent to a/b ∈ `∞;

c) s(c)
a + s(c)

b = s(c)
a is equivalent to b/a ∈ c.

As a direct consequence of the preceding we obtain the next result.

Corollary 3.2. [5, 6] The following properties are equivalent,
(i) b/a ∈ `∞,
(ii) s0

a+ s0
b =s0

a,
(iii) sa+ sb = sa,
(iv) s(c)

a + s0
b = s(c)

a ,
(v) sa+ s(c)

b = sa.



Applications of the Summability Theory to the Solvability ... 39

3.2 The multiplier of certain sets of sequences

First we need to recall some well-known results. We have

Lemma 3.3. Let E and F be arbitrary subsets of ω, u = (un)n≥1 with un , 0. Then
(i) M (E,F) ⊂ M

(
Ẽ,F

)
for all Ẽ ⊂ E,

(ii) M (E,F) ⊂ M
(
E, F̃

)
for all F ⊂ F̃.

We also have, see [5, Lemma 3.1, p. 648] and [5, Example 1.28, p. 157],

Lemma 3.4. (i) M (c0,χ) = `∞ for χ = c0, c, or `∞,
(ii) M (`∞,c0) = c0 and M (`∞, `∞) = `∞,
(iii) M (c,c) = c and M (`∞,c) = c0.

Remark 3.5. Since c0 ⊂ c ⊂ `∞, it can easily be deduced from Lemma 3.3 and Lemma 3.4
that `∞ = M (`∞, `∞) ⊂ M (c, `∞) ⊂ M (c0, `∞) = `∞ and M (c, `∞) = `∞. We also have

M (c,c0) = M (`∞,c0) = c0 and M (c0,c0) = `∞.

We deduce the next corollary from the preceding one.

Corollary 3.6. [6] (i) M
(
s0

a,χ
′
b

)
= sb/a where χ′ is any of the symbols s0, s(c), or s,

(ii) M (χa,sb) =sb/a where χ is any of the symbols s(c), or s,
(iii) M

(
sa,s(c)

b

)
= s0

b/a and M
(
s(c)

a ,s
(c)
b

)
= s(c)

b/a.

3.3 Product of sets of the form χξ where χ is any of the symbols s, s0, or s(c).

In this subsection we will deal with some properties of the product E ∗ F of particular
subsets E and F of ω. These results generalize some of those given in [5, 10].

For any given sets of sequences E and F, we will write

E ∗F = {uv ∈ ω : u ∈ E and v ∈ F} .

We immediately have the following results,

Proposition 3.7. Let a, b, γ ∈ U+. Then
(i) sa ∗ sb = sa ∗ s(c)

b = sab,
(ii) sa ∗ s0

b = s0
a ∗ s0

b = s(c)
a ∗ s0

b = s0
ab,

(iii) s(c)
a ∗ s(c)

b = s(c)
ab .

(iv) s(c)
a ∗ sb = sab,

(v) Let χ be any of the symbols s, s0, or s(c).
Then χa ∗ s0

b = s0
γ if and only if there are K1, K2 > 0 such that

K1γn ≤ anbn ≤ K2γn for all n.

(vi) a) sa ∗ sb = sa ∗ sγ if and only if sb = sγ,
b) s0

a ∗ s0
b = s0

a ∗ s0
γ if and only if s0

b = s0
γ.
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4 Solvability of some sequence spaces inclusion equations

In this section among other we determine for given sequences a and b the set of all se-
quences x = (xn)n≥1 ∈ U+ such that s(c)

b ⊂ s(c)
a + sx. The last (SSIE) means that for every

y ∈ ω the condition
yn

bn
→ l (n→∞)

implies there are u and v ∈ ω such that y = u+ v and un/an→ l1 and vn/xn = O (1) (n→∞)
for some scalars l and l1.

4.1 (SSIE) of the form χ′′b ⊂ χa+χ
′
x with χ, χ′, χ′′ ∈

{
s0,s(c),s

}
.

Theorem 4.1. [7] Let a and b ∈ U+.
(i) Assume a/b ∈ c0. Each one of the next (SSIE) where χ, χ′ are any of the symbols s,

s0, or s(c)

a) s0
b ⊂ χa+χ

′
x,

b) χ′′b ⊂ χa+sx where χ′′ ∈
{
s,s(c)

}
,

is equivalent to sx ⊃ sb, that is, xn ≥ Kbn for all n and for some K > 0.
(ii) Let a/b ∈ `∞. Then the (SSIE)
χ′′b ⊂ s0

a+ s0
x where χ′′ is s(c), or s

is equivalent to sb ⊂ s0
x, that is, limn→∞ xn/bn =∞.

(iii) If b/a ∈ `∞ then each of the next (SSIE) holds for all x ∈ U+ where
a) s0

b ⊂ χa+χ
′
x where χ, χ′ are any of the symbols s, s0, or s(c);

b) χ′′b ⊂ sa+ sx where χ′′ ∈
{
s,s(c)

}
.

We immediately deduce the following.

Corollary 4.2. Let a ∈ c0 and let χ, χ′ be any of the symbols s, s0, or s(c). Then
(i) each of the inclusion equations

c0 ⊂ χa+χ
′
x,

χ′′1 ⊂ χa+ sx,

where χ′′ is either s(c), or s is equivalent to xn ≥ K for all n and for some K > 0.
(ii) If a ∈ `∞, then the inclusion equation

χ′′1 ⊂ s0
a+ s0

x,

where χ′′ is either s(c), or s is equivalent to xn→∞ (n→∞).

4.2 The operators C (ξ), ∆ (ξ) and the sets Γ̂, Ĉ, Γ and Ĉ1

An infinite matrix T = (tnk)n,k≥1 is said to be a triangle if tnk = 0 for k > n and tnn , 0 for
all n. Now let U be the set of all sequences (un)n≥1 ∈ ω with un , 0 for all n. The next
operators are used for many applications, see for instance [4, 13, 12, 14]. The triangle C (ξ)
for ξ = (ξn)n≥1 ∈ U, is defined by

[
C (ξ)

]
nk = 1/ξn for k ≤ n. The infinite matrix ∆ (ξ) is the

triangle whose the non-zero entries are given by
[
∆ (ξ)

]
nn = ξn, and

[
∆ (ξ)

]
n,n−1 = −ξn−1, for
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all n, with the convention ξ0 = 0. It can be shown that the triangle ∆ (ξ) is the inverse of
C (ξ), that is, C (ξ) (∆ (ξ)y) = ∆ (ξ) (C (ξ)y) = y for all y ∈ ω. If ξ = e we obtain the well-
known operator of the first difference denoted by ∆ (e) = ∆. We then have ∆yn = yn − yn−1
for all n ≥ 1, with the convention y0 = 0. It is usually written Σ = C (e). Note that ∆ = Σ−1

and ∆, Σ ∈ S R for any R > 1.
Consider the sets

Ĉ =

ξ ∈ U+ :
[
C (ξ)ξ

]
n =

1
ξn

n∑
k=1

ξk→ l (n→∞) for some scalar l


Ĉ1 =

ξ ∈ U+ :
[
C (ξ)ξ

]
n =

1
ξn

n∑
k=1

ξk = O (1) (n→∞)

 ,
Γ̂ =

{
ξ ∈ U+ : lim

n→∞

(
ξn−1

ξn

)
< 1

}
,

Γ =

{
ξ ∈ U+ : limsup

n→∞

(
ξn−1

ξn

)
< 1

}
and

G1 =
{
ξ ∈ U+ : ξn ≥Cγn for all n and for some C > 0 and γ > 1

}
.

By [4, Proposition 2.1, p. 1786] and [9, Proposition 2.2 p. 88] we obtain the next
lemma.

Lemma 4.3. We have Ĉ = Γ̂ ⊂ Γ ( Ĉ1 ⊂G1.

We also need the next results.

Lemma 4.4. [5, Proposition 9, p. 300] Let a, b ∈ U+. Then
(i) following statements are equivalent
(a) χa (∆) = χb where χ is any of the symbols s, or s0,
(b) a ∈ Ĉ1 and sa = sb.
(ii) a ∈ Γ̂ if and only if s(c)

a (∆) = s(c)
a .

We then have the following examples.

Example 4.5. Assume b ∈ Γ̂ and a/b ∈ c0 and consider the (SSIE)

s(c)
b (∆) ⊂ s0

a+ sx. (4.1)

We have s(c)
b (∆) = s(c)

b since b ∈ Γ̂, and (4.1) is equivalent to s(c)
b ⊂ s0

a+ sx. Then by Theorem
4.1, inclusion equation (4.1) holds if and only if sx ⊃sb, that is, xn ≥ Kbn for all n.

We are led to state the next application which is a direct application of the preceding.

Example 4.6. Let r, u > 0 with r > 1 and u < r. Consider the set Υ of all x ∈ U+ such that

∆yn

rn → l implies yn = o
(
un)+O (xn) (n→∞) for some l ∈ C and for all y ∈ ω.

Υ is determined by the solutions of the inclusion equation s(c)
r (∆) ⊂ s0

u + sx, where x ∈ U+

is the unknown. By Lemma 4.4 we have s(c)
r (∆) = s(c)

r and as we have just seen we easily
deduce that Υ is the set of all sequences x such that xn ≥ Krn for all n.
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5 On some (SSIE) and (SSE) with operators of the form B (r, s)

5.1 The (SSIE) χx (B (r, s)) ⊂ χx (B (r′, s′)) where χ = s, or s0.

In this subsection among other things, we are interested in the study of the equivalence

ryn+ syn−1 = O (xn) if and only if r′yn+ s′yn−1 = O (xn) (n→∞) for all y ∈ ω,

for r, s, r′, s′ reals, which consists in determining the set of all x ∈U+ such that sx (B (r, s))=
sx (B (r′, s′)), similarly we easily see that the equivalence

ryn+ syn−1

xn
→ 0 if and only if

r′yn+ s′yn−1

xn
→ 0 (n→∞) , for all y ∈ ω,

reduces to the study of the (SSE) with operators s0
x (B (r, s)) = s0

x (B (r′, s′)).
Let B (r, s) where r, s are reals be the lower triangular matrix

B (r, s) =


r
s r 0

s r
0 . .

. .


.

For r, s , 0, the matrix B (r, s) was introduced by Altay and Basar [1] and was called the
generalized operator of first difference. When r = −s = 1, the matrix B (r, s) reduces to the
operator of first difference ∆. Here we deal with the (SSIE) with operators

sx (B (r, s)) ⊂ sx
(
B
(
r′, s′

))
. (5.1)

In the following we use the notations α = s/r, α′ = s′/r′ for r, r′ , 0, δ =

∣∣∣∣∣∣ r r′

s s′

∣∣∣∣∣∣ = rs′− r′s

and we write B̃ = B (r′, s′) B−1 (r, s) for r , 0. Now we can state the next result.

Theorem 5.1. Let r, s, r′ and s′ be reals.
(i) Let r, s , 0. Then
(a) if δ = 0, then (SSIE) (5.1) holds for all x, and we have sx (B (r, s)) =sx (B (r′, s′));
(b) if δ , 0, then (5.1) holds if and only if

x ∈ D(|α|n)n ∗ Ĉ1,

(that is (xn/ |α|
n)n ∈ Ĉ1). So if

lim
n→∞

(
xn−1

xn

)
<

∣∣∣∣∣ rs
∣∣∣∣∣ , (5.2)

then (5.1) holds.
(ii) Assume r , 0 and s = 0. Then
a) if s′ , 0 then (SSIE) (5.1) holds if and only if

sup
n

(
xn−1

xn

)
<∞ ;
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b) if s′ = 0 then (5.1) holds for all x.
(iii) Assume r = 0 and s , 0. Then
a) if r′ = 0 then (5.1) holds for all x;
b) if r′ , 0 then (5.1) holds if and only if

sup
n

(
xn

xn−1

)
<∞. (5.3)

(iv) If r = s = 0, then
a) if r′, or s′ , 0 then (5.1) has no solution,
b) if r′ = s′ = 0 then (5.1) holds for all x.

Proof. (i) First for r , 0 the band matrix B (r, s) is invertible, its inverse is a triangle and
elementary calculations give[

B−1 (r, s)
]
nk
=

1
r

(−α)n−k for 1 ≤ k ≤ n.

Inclusion (5.1) is equivalent to I ∈ (sx (B (r, s)) ,sx (B (r′, s′))), that is, to

B̃ = B
(
r′, s′

)
B−1 (r, s) ∈ (sx,sx) .

This means
D1/xB̃Dx ∈ (`∞, `∞) . (5.4)

For k = n we obtain B̃nn = r′/r, and for k ≤ n−1 we have

B̃nk = s′
[
B−1 (r, s)

]
n−1,k
+ r′

[
B−1 (r, s)

]
nk

= s′
1
r

(−α)n−k−1+
r′

r
(−α)n−k

= (−α)n−k−1
[

s′

r
+

r′

r

(
−

s
r

)]
= (−α)n−k−1 δ

r2 .

From the characterization of (`∞, `∞) we deduce that (5.4) holds if and only if

n∑
k=1

∣∣∣∣[D1/xB̃Dx
]
nk

∣∣∣∣ = ∣∣∣∣∣r′r
∣∣∣∣∣+ ∣∣∣∣∣ δrs

∣∣∣∣∣
 1

xn

|α|n

n−1∑
k=1

xk

|α|k

 ≤ K

for all n and for some K.
(a) If δ = 0 the previous sum reduces to |r′/r| and the inclusion (5.1) holds for all x.
(b) If δ , 0 it can easily be deduced that (5.1) holds if and only if (xn/ |α|

n)n ∈ Ĉ1.
Then we have (xn/ |α|

n)n ∈ Γ if and only if (5.2) holds, and since Ĉ1 ⊃ Γ by Lemma 4.3, we
conclude that (5.2) implies (5.1). This concludes the proof of (i) b).

(ii) Case r , 0 and s = 0. Since B (r, s) = rI we have

sx (B (r, s)) = sx.
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So inclusion (5.1) is equivalent to D1/xB (r′, s′) Dx ∈ (`∞, `∞), that is,∣∣∣r′∣∣∣+ ∣∣∣s′∣∣∣ xn−1

xn
≤ K′ for all n. (5.5)

If s′ , 0 then
xn−1

xn
≤

K′− |r′|
|s′|

for all n

and if s′ = 0 condition (5.5) holds for all x.
(iii) Case r = 0, s , 0. We have

sx (B (0, s)) =
{

y ∈ ω :
yn

xn+1
= O (1) (n→∞)

}
= sx+

where x+ = (xn+1)n. Then (5.1) is successively equivalent to sx+ ⊂ sx (B (r′, s′)), B (r′, s′) ∈
(sx+ ,sx) and to ∣∣∣r′∣∣∣ xn+1

xn
+

∣∣∣s′∣∣∣ ≤ K′′ for all n and for some K′′ > 0. (5.6)

(a) If r′ = 0, then (5.6) trivially holds for all x.
(b) If r′ , 0, we then have xn+1/xn ≤ (K′′− |s′|)/ |r′| for all n and inclusion equation

(5.1) holds for all x ∈ U+.
(iv) a) Assume r = s= 0. Then sx (B (0,0))=ω and the inclusionω⊂sx (B (r′, s′)) implies

r′ = s′ = 0. Indeed assume either r′, or s′ is different from zero. Let r′ , 0 and consider the
cases s′/r′ ≥ 0 and s′/r′ < 0. If s′/r′ ≥ 0 take y = (Rnxn)n ∈ ω with R > 1, we then have∣∣∣∣∣B (r′, s′)yn

xn

∣∣∣∣∣ = |r′|xn

∣∣∣∣∣yn+
s′

r′
yn−1

∣∣∣∣∣ ≥ ∣∣∣r′∣∣∣Rn for all n.

Then ∣∣∣∣∣B (r′, s′)yn

xn

∣∣∣∣∣→∞ (n→∞)

and ω ⊂sx (B (r′, s′)) is impossible. If s′/r′ < 0 taking yn = (−R)n xn with R > 1 we then have∣∣∣∣∣B (r′, s′)yn

xn

∣∣∣∣∣ =
∣∣∣∣∣∣ r′

xn

(
yn+

s′

r′
yn−1

)∣∣∣∣∣∣ ≥ ∣∣∣r′∣∣∣Rn−1 for all n

and we conclude as above. The case s′ , 0 can be treated similarly.
b) is trivial. �

Proposition 5.2. Theorem 5.1 holds when sx is replaced by s0
x.

Proof. The proof follows the same lines as above. Note that here in part (i) b) we have
D1/xB̃Dx ∈ (c0,c0) equivalent to (5.4) and

[
D1/xB̃Dx

]
nk
→ 0 (n→∞). But for δ , 0, condi-

tion (5.4) implies (xn/ |α|
n)n ∈ Ĉ1 and xn/ |α|

n→∞ (n→∞) by Lemma 4.3, then for n > k
we have[

D1/xB̃Dx
]
nk
=

1
xn

(−α)n−k−1 δ

r2 xk =
(−α)n

xn

[
(−α)−k−1 δ

r2 xk

]
= o (1) (n→∞) for all k.

�
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5.2 On some (SSE) with operators B (r, s) and B (r′, s′)

5.2.1 The (SSE) sx (B (r, s)) = sx (B (r′, s′))

Consider now the next sequence spaces equations with operators

sx (B (r, s)) = sx (5.7)

and
sx (B (r, s)) = sx

(
B
(
r′, s′

))
. (5.8)

We immediately deduce from Theorem 5.1 the following corollaries.

Corollary 5.3. (i) Let r, s , 0. Then (SSE) (5.7) holds if and only if x ∈ D(|α|n)n ∗ Ĉ1.
(ii) If r , 0, s = 0 then (5.7) holds for all x.
(iii) If r = 0, s , 0 then (5.7) holds if and only if there are K1, K2 > 0 such that

K1 ≤
xn

xn−1
≤ K2 for all n.

(iv) If r = s = 0 then (5.7) has no solution.

Proof. Proof of (i). First we have B (r, s) ∈ (sx,sx) if and only if
xn−1

xn
≤ K for all n, and for some K > 0, (5.9)

and from the expression of B−1 (r, s), we have B−1 (r, s) ∈ (sx,sx) if and only if

1
xn

n∑
k=1

|α|n−k xk ≤ K′ for all n,

that is, x ∈ D(|α|n)n ∗ Ĉ1. Now x ∈ D(|α|n)n ∗ Ĉ1 implies

1
xn
|α|n−(n−1) xn−1 ≤ K′ for all n,

that is, (5.9). So (5.9) holds if and only if x ∈ D(|α|n)n ∗ Ĉ1. This concludes the proof of part
(i).

(ii), (iii) and (iv) are direct consequences of Theorem 5.1. �

In the next corollary we limit our study to the case when r, s , 0.

Corollary 5.4. Let r, s , 0.
(i) Let r′, s′ , 0.
(a) If δ = 0 then (SSE) (5.8) holds for all x,
(b) if δ , 0 then (5.8) holds if and only if

x ∈
(
D(|α|n)n ∗ Ĉ1

)
∩

(
D(|α′ |n)n ∗ Ĉ1

)
. (5.10)

(ii) Case r′, or s′ = 0.
(a) Let r′ , 0 and s′ = 0. Then (5.8) holds if and only if x ∈ D(|α|n)n ∗ Ĉ1.

(b) Let r′ = 0 and s′ , 0. Then (5.8) holds if and only if supn (xn/xn−1) < ∞ and
x ∈ D(|α|n)n ∗ Ĉ1.

(iii) If r′ = s′ = 0, then (5.8) has no solution.
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Proof. (i) (a) is a direct consequence of Theorem 5.1 (i) (a). Now we show (i) (b). From
Theorem 5.1 (i) (b) we have sx (B (r, s))⊂ sx (B (r′, s′)) if and only if x ∈D(|α|n)n ∗Ĉ1. Since r′,
s′ , 0 we have δ, 0 and the (SSIE) sx (B (r′, s′))⊂ sx (B (r, s)) is equivalent to x ∈D(|α′ |n)n ∗Ĉ1
and we conclude (5.8) holds if and only if (5.10) holds. (ii) (a) we have r′ , 0 and s′ = 0 and
sx (B (r′, s′)) = sx (I) = sx. By Corollary 5.3 (i), (SSE) (5.8) is equivalent to x ∈ D(|α|n)n ∗ Ĉ1.
(ii) (b) By Theorem 5.1 (i) (b) the solutions of the (SSIE) sx (B (r, s)) ⊂ sx (B (0, s′)) are

determined by x ∈D(|α|n)n ∗Ĉ1, since

∣∣∣∣∣∣ r 0
s s′

∣∣∣∣∣∣= rs′ , 0. By Theorem 5.1 (iii) (b) the inclusion

sx (B (0, s′)) ⊂ sx (B (r, s)) is equivalent to supn (xn/xn−1) <∞. Finally (iii) is a consequence
of Theorem 5.1 (iv). �

Now we deal with the equivalence

∆yn = O (xn) (n→∞)

if and only if
ryn+ syn−1 = O (xn) (n→∞) for all y.

This statement leads to study the identity

sx (B (r, s)) = sx (∆) . (5.11)

From Corollary 5.4 we obtain the next results.

Corollary 5.5. (i) Let r, s , 0.
(a) If r = −s then (SSE) (5.11) holds for all x.
(b) If r , −s then (5.11) holds if and only if

x ∈ Ĉ1∩
(
D(|α|n)n ∗ Ĉ1

)
.

(ii) Let r , 0 and s = 0. Then (5.11) holds if and only if x ∈ Ĉ1.
(iii) Let r = 0 and s , 0. Then (5.11) holds if and only if

sup
n

(
xn

xn−1

)
<∞ and x ∈ Ĉ1.

(iv) If r = s = 0 then (5.11) has no solution.

Remark 5.6. Note that for a ∈ ω and b ∈ U, if supk≤n |ak/bk| ≤ K |an/bn| for all n and for
some K > 0, then

D|a| ∗ Ĉ1 ⊂ D|b| ∗ Ĉ1.

In this way in Corollary 5.5 we have Ĉ1∩
(
D(|α|n)n ∗ Ĉ1

)
= Ĉ1 if |α| ≤ 1, and Ĉ1∩

(
D(|α|n)n ∗ Ĉ1

)
=

D(|α|n)n ∗ Ĉ1 if |α| ≥ 1.

Remark 5.7. The results given in Corollary 5.4 and Corollary 5.5 are also true for the (SSE)
s0

x (B (r, s)) = s0
x (B (r′, s′)).

This remark leads to the next proposition which is a consequence of Theorem 5.1 and
Corollary 5.3,
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Proposition 5.8. Let r, s, 0 and let x ∈U+. Then the next statements are equivalent, where
χ = s, or s0,

i) χx (B (r, s)) ⊂ χx,
ii) χx (B (r, s)) = χx,
iii) B (r, s) ∈ (χx,χx) is surjective,
iv) B (r, s) ∈ (χx,χx) is bijective,
v) x ∈ D(|α|n)n ∗ Ĉ1.

Remark 5.9. Note that in Proposition 5.8 r and s can be non-zero complex numbers. This
permits us to state the results of the next subsection.

5.2.2 Application to the spectrum of B (r, s) considered as an operator from χx to itself

with χ = s, or s0

We obtain the next result where σ (B (r, s) ,χx) is the spectrum of the continuous operator
B (r, s) ∈ (χx,χx), where χ = s, or s0, that is,

σ (B (r, s) ,χx) =
{
λ ∈ C : B (r, s)−λI as operator from χx to itself is not invertible

}
.

We write ρ (B (r, s) ,χx) = C\σ (B (r, s) ,χx) for the resolvent set of B (r, s). So we have λ ∈
ρ (B (r, s) ,χx) if and only if B (r, s)−λI = B (r−λ, s) as operator from sx to itself is invertible.
For x ∈ U+ we put

Sx = {λ ∈ C : χx (B (r, s)−λI) ⊂ χx} ,

and for λ , r we put
S′λ =

{
x ∈ U+ : χx (B (r, s)−λI) ⊂ χx

}
.

Then we obtain the following result.

Corollary 5.10. Let r, s , 0, let χ = s, or s0. Then we have
i) for λ , r

Sx = ρ (B (r, s) ,χx) for all x ∈ U+;

and
S′λ = D(|αλ |n)n ∗ Ĉ1, (5.12)

where αλ = s/ (r−λ).
ii) For each x ∈ U+ we have
a)

λ ∈ σ (B (r, s) ,χx) if and only if λ = r, or
(∣∣∣∣∣λ− r

s

∣∣∣∣∣n xn

)
n
< Ĉ1; (5.13)

b)

λ ∈ σ (B (r, s) ,χx) implies |λ− r| ≤ |s| lim
n→∞

(
xn−1

xn

)
. (5.14)
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Proof. We only consider χ = s, since the proof in the case χ = s0 follows exactly the same
lines. i) Let λ ∈ Sx with λ , r. We then have

B−1 (r−λ, s) ∈ (sx,sx) (5.15)

so by Proposition 5.8 B (r−λ, s) ∈ (sx,sx) is bijective and λ ∈ Sx. Identity (5.12) is a direct
consequence of the preceding and of Proposition 5.8.

ii) Let x ∈U+. a) We have λ ∈ ρ (B (r, s) ,χx) if and only if B (r−λ, s) ∈ (sx,sx) is bijective,
that is, x ∈ D(|αλ |n)n ∗ Ĉ1 and λ , r, by Proposition 5.8. Thus we have (5.13). b) Here we
show that if λ satisfies

|λ− r| > |s| lim
n→∞

(
xn−1

xn

)
, (5.16)

then λ ∈ Sx. Since we have x ∈ D(|αλ |n)n ∗Γ if and only if

lim
n→∞

(
|αλ|

n

xn

xn−1

|αλ|
n−1

)
< 1, lim

n→∞

xn−1

xn
<

1
|αλ|
=

∣∣∣∣∣λ− r
s

∣∣∣∣∣ ,
we deduce that λ satisfies (5.16) if and only if x ∈ D(|αλ |n)n ∗ Γ. But by Lemma 4.3 we
have D(|αλ |n)n ∗ Γ ⊂ D(|αλ |n)n ∗ Ĉ1, thus by Proposition 5.8 we conclude that (5.16) implies
λ ∈ Sx = ρ (B (r, s) ,χx). This completes the proof. �

6 On the (SSIE) s(c)
x (B (r, s)) ⊂s(c)

x (B (r′, s′)) for r, s, r′, s′ reals

In this subsection we determine the set of all x ∈ U+ such that

ryn+ syn−1

xn
→ l implies

r′yn+ s′yn−1

xn
→ l′ (n→∞) for all y

and for some scalars l, l′. For this consider the (SSIE)

s(c)
x (B (r, s)) ⊂ s(c)

x
(
B
(
r′, s′

))
. (6.1)

We will solve (6.1) in the general case when α1 = −s/r , 0 in Remark 6.2, but in the next
theorem, we develop the interesting case α1 > 0 when δ , 0.

Theorem 6.1. Let r, s, r′ and s′ be reals.
(i) Let r, s , 0.
(a) If δ = 0, then (SSIE) (6.1) holds for all x,
(b) if δ , 0 and α1 = −s/r > 0, then (6.1) holds if and only if

lim
n→∞

xn−1

xn
<

1
α1
.

(ii) Assume r , 0 and s = 0. Then
(a) if s′ , 0, then (6.1) holds if and only if

lim
n→∞

xn−1

xn
= l for some scalar l;
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(b) if s′ = 0 then (6.1) holds for all x.
(iii) Assume r = 0 and s , 0. Then
(a) if r′ , 0 then (6.1) holds if and only if

lim
n→∞

xn

xn−1
= l′ for some scalar l′;

(b) if r′ = 0 then (6.1) holds for all x.
(iv) If r = s = 0, then
(a) if r′, or s′ , 0 then (6.1) has no solution,
(b) if r′ = s′ = 0 then (6.1) holds for all x.

Proof. (i) The inclusion (6.1) is equivalent to

D1/xB̃Dx ∈ (c,c) . (6.2)

As we have seen in the proof of Theorem 5.1 we have

B̃nk =


(
−

s
r

)n−k−1 δ

r2 for k ≤ n−1,
r′

r
for k = n.

Since α1 = −s/r > 0 from the characterization of (c,c) we deduce that (6.2) holds if and
only if

n∑
k=1

[
D1/xB̃Dx

]
nk
=

r′

r
−

1
rs
δ

 1
xn

αn
1

n−1∑
k=1

xk

αk
1

 (6.3)

tends to a limit l as n tends to infinity. Indeed this condition implies D1/xB̃Dx ∈ S 1 and from
the proof of Proposition 5.2 we have

[
D1/xB̃Dx

]
nk
→ 0 (n→∞) for all k.

(a) If δ = 0 the previous sum defined in (6.3) is reduced to r′/r and inclusion (6.1) holds
for all x.

(b) If δ , 0, inclusion (6.1) means that (6.3) is convergent and

1
xn

αn
1

n−1∑
k=1

xk

αk
1

→−

l−
r′

r
1
rs
δ

(n→∞) ,

so we have
(
xn/α

n
1

)
n
∈ Ĉ. By Lemma 4.3 we have Ĉ = Γ̂, so (6.2) is equivalent to

lim
n→∞

xn−1

αn−1
1

αn
1

xn
= α1 lim

n→∞

xn−1

xn
< 1

and we conclude for (i) b).
(ii) Case r , 0 and s = 0. Since B (r, s) = rI we have s(c)

x (B (r, s)) = s(c)
x . So inclusion

(6.1) is equivalent to D1/xB (r′, s′) Dx ∈ (c,c), this means that there are K ≥ 0 and L such that
|r′|+ |s′|

xn−1

xn
≤ K for all n,

r′+ s′
xn−1

xn
→ L (n→∞) .
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If s′ , 0 then we have
xn−1

xn
→

L− r′

s′
(n→∞)

and if s′ = 0 the previous system holds for all x.
(iii) Case r= 0, s, 0. As we have seen in the proof of Theorem 5.1 we have s(c)

x (B (0, s))=
s(c)

x+ . Then (6.1) is successively equivalent to s(c)
x+ ⊂ s(c)

x (B (r′, s′)), B (r′, s′) ∈
(
s(c)

x+ ,s
(c)
x

)
and to

(S )


|r′|

xn+1

xn
+ |s′| ≤ K for all n,

r′
xn+1

xn
+ s′→ L (n→∞) ,

for some K ≥ 0 and some scalar L.
(a) If r′ , 0 we have

xn+1

xn
→

L− s′

r′
(n→∞)

and trivially (S) holds.
(b) If r′ = 0 system (S ) trivially holds for all x ∈ U+.
(iv) If r = s = 0 then s(c)

x (B (0,0)) = ω and as we have seen in the proof of Theorem 5.1
the inclusion ω ⊂s(c)

x (B (r′, s′)) implies r′ = s′ = 0. �

In the general case when r, s, δ, α , 0 we have the following,

Remark 6.2. Condition (6.1) holds if and only if

(i)
αn

xn

n−1∑
k=1

xk

αk → l (n→∞) , (ii)
|α|n

xn

n−1∑
k=1

xk

|α|k
≤ K for all n, and (iii)

αn

xn
→ l′ (n→∞)

for some l, l′, and K > 0. This result is a direct consequence of condition (6.2) in the proof
of Theorem 6.1.

We can also state the next remark.

Remark 6.3. The characterization of s(c)
x (B (r, s))= s(c)

x (B (r′, s′)) can be obtained combining
Theorem 6.1 and a similar theorem obtained by replacing (r, s) by (r′, s′).

7 Applications to some (SSIE) and (SSE) with operators of the
form B (r, s)

7.1 Application 1

In this part we apply the previous results to special (SSIE) or (SSE).
We deal with the next statements P1 (y) and P2 (y) defined by
P1 (y): yn+2yn−1 = O (xn) implies ∆yn = O (xn) (n→∞)
and
P2 (y): yn−1/xn→ l implies ∆yn/xn→ l′ (n→∞) for some scalars l, l′.
The question is: what is the set of all x ∈ U+ such that P1 (y) and P2 (y) hold for all y ?
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We easily see that this problem consists in determining the set

P=
{
x ∈ U+ : sx (B (1,2)) ⊂ sx (∆) and s(c)

x (B (0,1)) ⊂ s(c)
x (∆)

}
.

Combining Theorem 5.1 (i) (b) and Theorem 6.1 (iii) (a) we obtain

P=
{

x ∈ U+ :
( xn

2n

)
n
∈ Ĉ1 and

xn

xn−1
→ L (n→∞) for some L

}
.

Note that any sequence of the form x = (Rn)n with R > 2 belongs to P. We may explicitly
define a special simple subset of P. Indeed since we have Ĉ1 ⊃ Γ we easily see that

P ⊃
{

x ∈ U+ :
xn−1

xn
→ L (n→∞) for some L ∈ ]0,1/2[

}
.

7.2 Application 2

Here the question is: what are the sequences x ∈ U+ such that P′1 (y) and P′2 (y) hold for all
y, where

P′1 (y): yn−1/xn→ l implies ∆yn/xn→ l′ (n→∞)
and
P′2 (y): ∆yn/xn→ l′′ (n→∞) implies yn/xn→ l′′′ (n→∞) for some scalars l, l′, l′′ and

l′′′.
These statements lead to determine the set of all x ∈U+ such that s(c)

x (B (r, s))⊂s(c)
x (∆)⊂s(c)

x .
Reasoning as in Application 1 and by Theorems 5.1 and 6.1 we have

P′ =
{
x ∈ U+ : P′1 (y) and P′2 (y) hold for all y

}
=

{
x ∈ U+ :

xn−1

xn
→ L (n→∞) for some L ∈ ]0,1[

}
.

7.3 Application 3: The (SSE) χa+s(c)
x (B (r, s)) =s(c)

x

In this part we apply the previous results to solve sequence spaces equations of the form

χa+ s(c)
x (B (r, s)) = s(c)

x where χ = s, s0, or s(c) (7.1)

When χ = s0 this equation consists in determining the set of all x ∈ U+ such that

yn

xn
→ l (n→∞)

if and only if there are u, v such that y = u+ v and

un

an
→ 0 and

rvn+ svn−1

xn
→ l′ (n→∞) for all y ∈ ω.

Each of the sets χa, s(c)
x and s(c)

x (B (r, s)) are linear subspaces of ω. We obtain the following
result.
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Theorem 7.1. Let r, s , 0 and assume α1 = −s/r > 0. Then equation (7.1) where χ = s, s0,
or s(c) holds if and only if

lim
n→∞

xn−1

xn
<

1
α1

(7.2)

and a
x
∈ M (χ1,c) . (7.3)

Proof. Equation (7.1) implies

χa+ s(c)
x (B (r, s)) ⊂ s(c)

x (7.4)

which implies s(c)
x (B (r, s)) ⊂s(c)

x and condition (7.2) by Theorem 6.1. Then condition (7.4)
implies χa ⊂s(c)

x and (7.3). So we have shown that equation (7.1) implies conditions (7.2)
and (7.3). Now show that (7.2) and (7.3) imply (7.1). For this it is enough to note that (7.2)
implies (xn−1/xn)n≥2 ∈ c and s(c)

x ⊂ s(c)
x (B (r, s)) by Theorem 6.1 (ii) and s(c)

x (B (r, s)) ⊂s(c)
x

by Theorem 6.1 (i) (a) so s(c)
x (B (r, s)) =s(c)

x and χa+s(c)
x (B (r, s)) = χa+s(c)

x . Finally condition
(7.3) implies χa ⊂s(c)

x and χa+s(c)
x (B (r, s)) =s(c)

x . This concludes the proof. �

Corollary 7.2. We have

Γ̂ =
{
x ∈ U+ : χ1+ s(c)

x (∆) = s(c)
x

}
where χ = s, s0, or s(c). (7.5)

Proof. By Theorem 7.1 we have χ1 + s(c)
x (∆) = s(c)

x if and only if x ∈ Γ̂ and 1/x ∈ M (χ1,c).
If χ= s we have M (χ1,c) = c0 and xn→∞ (n→∞), but condition x ∈ Γ̂ implies 1/x ∈ c0,
so it also implies 1/x ∈ M (χ1,c) and (7.5) holds for χ= s. The proof is similar in the other
cases since we have c0 ⊂ M (χ1,c) for χ= s0, or s(c). �

As an immediate consequence of Theorem 7.1 we have

Corollary 7.3. Let a ∈ U+. Then
(i) sa+ s(c)

x (∆) = s(c)
x is equivalent to x ∈ Γ̂ and a/x ∈ c0;

(ii) s0
a+ s(c)

x (∆) = s(c)
x is equivalent to x ∈ Γ̂ and a/x ∈ s1;

(iii) s(c)
a + s(c)

x (∆) = s(c)
x is equivalent to x ∈ Γ̂ and a/x ∈ c.
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