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Abstract

In this paper we study the existence of solutions for differential equations with state
dependent delay on an unbounded domain. Our results are based on the properties of
the Kuratowski measure of noncompactness and Darbo’s fixed point theorem.
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1 Introduction

This paper deals with the existence of solutions to the boundary value problem (BVP for
short) for the differential equation with state-dependent delay on an unbounded domain of
the form:

y′′(t) = f (t,yρ(t,yt)) a.e. t ∈ J := [0,∞), (1.1)

y(t) = φ(t), t ∈ (−∞,0], y′(∞) = y∞, (1.2)

∗E-mail address: benchohra@univ-sba.dz
†E-mail address: nilpot hedia@yahoo.fr



86 M. Benchohra and B. Hedia

where f : J×B→ E, ρ : J×B→R, φ ∈ B are given functions, B is an abstract phase space,
to be specified later, and (E, | · |) is a Banach space. For any function y and any t ∈ [0,∞),
we denote by yt the element of B defined by yt(θ) = y(t+θ) for θ ∈ (−∞,0]. For any t ∈ J, yt

is the history of the state y up to t.
Boundary value problems on infinite intervals frequently occur in mathematical mod-

elling of various applied problems. For example, in the study of unsteady flow of a gas
through a semi-infinite porous medium [3, 31], analysis of the mass transfer on a rotating
disk in a non-Newtonian fluid [4], heat transfer in the radial flow between parallel circular
disks [37], investigation of the temperature distribution in the problem of phase change of
solids with temperature dependent thermal conductivity [37], as well as numerous prob-
lems arising in the study of circular membranes [5, 16, 17], plasma physics [4], nonlinear
mechanics, and non-Newtonian fluid flows [6].

Differential equations with infinite delay appear frequently in applications; for instance,
in physics, aeronautic, economics, engineering, populations dynamics. There exists an ex-
tensive literature for ordinary and partial differential equations with state-dependent delay,
see for instance Aiello et al [7], Arino et al [8], Cao et al [13], Domoshnitsky et al [18],
Hartung et al [23, 24, 25, 26, 27], Hernandez et al [28], Schumakher [39], Qesmi and
Walther [38], and Walther [40]. Delay Differential equations have been used in modeling
scientific phenomena for many years. Often, it has been assumed that the delay is either
a fixed constant or is given as an integral in which case it is called a distributed delay, see
for instance the books [22, 29, 32, 34, 41], and the papers [14, 21]. For existence results
for differential equations on infinite intervals we refer the reader to [1, 2, 35, 36, 44]. In
the literature devoted to equations with finite delay, the phase space is often chosen to be
the space of all continuous functions on [−r,0], endowed with the uniform norm topology.
When the delay is infinite, the notion of phase space B plays an important role in the study
of both qualitative and quantitative theory. A usual choice for the phase space is a normed
space satisfying suitable axioms which was introduced by Hale and Kato [21], see also [30].
Other results for problems involving infinite delay can be found in the papers [9, 12, 11].
For a detailed discussion on this topic we refer the reader to the book by Hino et al. [29].
Some papers [36, 42, 43] deal with the existence of solutions to boundary value problems
of differential equations on unbounded domains.

In this paper we will establish an existence result for a class of boundary value prob-
lems for differential equation with state-dependent delay on an unbounded domain. The
technique relies on the Kuratowski measure of noncompactness and Darbo’s fixed point
theorem [10, 15, 33]. To our best knowledge, no papers exist in the literature that are de-
voted to boundary value problems for functional differential equations with state-dependent
delay on a unbounded interval in the infinite dimensional Banach space. This paper initiates
the study of such problems.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used
throughout this paper.
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Consider the space C∞(J,E) defined by

C∞(J,E) = {y ∈C(J,E) : lim
t→∞

y(t)
1+ t

exists},

equipped with the norm

‖y‖∞ = sup
t∈J

|y(t)|
1+ t

.

It is easy to verify that C∞ is a Banach space [36]. We use α, αC and α∞ to denote the
Kuratowski measure of noncompactness of bounded sets in the spaces E, C(I,E) and C∞
respectively, I is a compact interval of J. As for the definition of the Kuratowski measure
of noncompactness, we refer to the reference [20].

In this paper, we will employ an axiomatic definition of the phase space B introduced
by Hale and Kato in [21] and follow the terminology used in [29]. Thus, (B,‖ · ‖B) will be a
seminormed linear space of functions mapping (−∞,0] into E. For ψ ∈ B the norm of ψ is
defined by

‖ψ‖B = sup{|ψ(θ)| : θ ∈ (−∞,0]}.

For the definition of the phase space B we introduce the following axioms.

(A1) If y : (−∞,+∞)→ E, y0 ∈ B, then for every t ∈ J the following conditions hold:
(i) yt ∈ B;
(ii) There exists a positive constant H such that |y(t)| ≤ H‖yt‖B;
(iii) There exist two functions K(·),M(·) : J→ J, independent of y, with K continuous,
M locally bounded and supt∈J K(t) < +∞, supt∈J M(t) < +∞ such that:

‖yt‖B ≤ K(t) sup{ |y(s)| : 0 ≤ s ≤ t}+M(t)‖y0‖B.

(A2) The space B is complete.

Denote
K∞ = sup{K(s) : s ∈ J}

and
M∞ = sup{M(s) : s ∈ J}.

Example 2.1. Define for a positive constant γ the following standard space

Cγ := {φ : (−∞,0]→ E continuous such that lim
θ→−∞

eγθφ(θ) exists in E}.

It is known from [29] that Cγ with the norm ‖φ‖γ = supθ≤0 eγθ|φ(θ)|, φ ∈ Cγ, satisfies the
axioms (A1), (A2) with H = 1, K(t) = e−γt and M(t) = e−γt for all t ≥ 0. It follows that

K∞ = 1, M∞ = 1.
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Set
B∞ = {y : (−∞,+∞)→ E : y|(−∞,0] ∈ B and y|J ∈C∞(J,E)},

and let ‖.‖∞ the seminorm in B∞ be defined by

‖y‖∞ = ‖y0‖B+ sup
t∈[0,+∞)

|y(t)|
1+ t

.

Let L1(J,E) denote the Banach space of measurable functions y : J −→ E which are
Bochner integrable and normed by

‖y‖L1 =

∫ ∞

0
|y(t)|dt.

Definition 2.2. The map f : J×B→ E is said to be Carathéodory if:

(i) The function t 7−→ f (t,u) is measurable for each u ∈ B;

(ii) The function u 7−→ f (t,u) is continuous for almost all t ∈ J.

AC1(J,E) denotes the space of differentiable functions y : J→ E whose first derivative
y′ is absolutely continuous.

The following properties of the Kuratowski measure of noncompactness and the Darbo’s
fixed point theorem are needed for our discussion.

Lemma 2.3. [20] If H ⊂ C(I,E) is bounded and equicontinuous, then the function t 7→
α(H(t)) is continuous on I and

αC(H) =max
t∈I

α(H(t)),

where H(t) = {x(t), x ∈ H}, t ∈ I, I is a compact interval of J.

Definition 2.4. Let D be a bounded, closed and convex subset of the Banach space C∞. A
bounded and continuous operator T : D→ D is called a strict set contraction if there is a
constant 0 ≤ k < 1 such that α(T (S )) ≤ kα(S ) for any bounded set S ⊂ D.

Lemma 2.5. [15] Let D be a bounded, closed and convex subset of the Banach space C∞.
If the operator T : D→ D is a strict set contraction, then T has a fixed point in D.

3 Existence of Solutions

Let h : J→ E be an integrable function and consider the differential equation

y′′(t) = h(t), a.e, t ∈ J. (3.1)

We shall refer to (3.1), (1.2) as (LP). Let

Ω = {y : (−∞,+∞)→ E : y|(−∞,0] ∈ B and y|J ∈ AC1(J,E)}.

By a solution to (LP) we mean a function y ∈ Ω which satisfies (3.1),(1.2). We need the
following auxiliary result:
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Lemma 3.1. [1] Let h be an integrable function. A function y ∈ Ω is a solution of (LP) if
and only if y is a solution of the integral equation

y(t) =


φ(t) if t ∈ (−∞,0],

φ(0)+ ty∞+
∫ +∞

0 G(t, s)h(s)ds if t ∈ J,

(3.2)

where G(t, s) is the Green function defined by

G(t, s) =


−s, 0 ≤ s ≤ t <∞

−t, 0 ≤ t ≤ s <∞.
(3.3)

We will need to introduce the following hypotheses

(Hφ) The function t→ φt is continuous from R(ρ−) = {ρ(s,ϕ) : (s,ϕ) ∈ J ×B,ρ(s,ϕ) ≤ 0}
into B and there exists a continuous and bounded function Lφ : R(ρ−)→ (0,∞) such
that ‖φt‖B ≤ Lφ(t)‖φ‖B for every t ∈ R(ρ−).

(H1) There exist p ∈ L1(J,R+) and ψ : [0,∞)→ (0,∞) continuous and nondecreasing such
that

| f (t,u)| ≤ p(t)ψ(‖u‖B) for each t ∈ J and all u ∈ B,

with ∫ ∞

0
p(s)ds <∞.

(H2) For any r > 0 and compact interval I with I ⊂ J, f (t,y) is uniformly continuous on
I×B(0,r), where 0 is the zero element of B.

(H3) The function f : J×B→ E is Carathéodory.

(H4) There exists a nonnegative constant R, such that

ψ(K∞R+K∞|φ(0)|+M∞‖φ‖B)
∫ +∞

0
p(s)ds ≤ R.

(H5) There exists a nonnegative function l ∈ L1(J,R+) such that

α( f (t,B)) ≤ l(t)α(B), t ∈ J,

where B is any bounded subset of B and
∫ +∞

0 (1+ t)l(t)dt < 1.

The next result is a consequence of the phase space axioms.

Lemma 3.2. ([[28], Lemma 2.1]) If y : (−∞,∞)→ E is a function such that y0 = φ and
y|J ∈C(J,E), then

‖ys‖B ≤ (M∞+Lφ)‖φ‖B+K∞ sup{‖y(θ)‖; θ ∈ [0, max{0, s}]}, s ∈ R(ρ−)∪ J,

where
Lφ = sup

t∈R(ρ−)
Lφ(t).
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Remark 3.3. We remark that condition (Hφ) is satisfied by functions which are continuous
and bounded. In fact, if the space B satisfies axiom C2 in [29] then there exists a constant
L > 0 such that ‖φ‖B ≤ Lsup{‖φ(θ)‖ : θ ∈ (−∞,0]} for every φ ∈ B that is continuous and
bounded (see [29] Proposition 7.1.1) for details. Consequently,

‖φt‖B ≤ L
supθ≤0 ‖φ(θ)‖
‖φ‖B

‖φ‖B, for every φ ∈ B\{0}.

Theorem 3.4. Assume that hypotheses (H1)− (H5) and (Hφ) hold. Then the problem (1.1)-
(1.2) has at least one solution on (−∞,+∞).

Proof. Define the operator T : B∞→B∞ by:

T (y)(t) =


φ(t), if t ∈ (−∞,0],

φ(0)+ ty∞+
∫ +∞

0 G(t, s) f (s,yρ(s,ys))ds if t ∈ [0,∞)
(3.4)

where the Green’s function G(t, s) is given by (3.3). Clearly, from Lemma 3.1, the fixed
points of T are solutions to (1.1)–(1.2).
Let x(·) : (−∞,+∞)→ E be the function defined by

x(t) =

 φ(t), if t ∈ (−∞,0],

φ(0)+ ty∞, if t ∈ [0,∞).

Then x0 = φ. For each z ∈ B∞ with z0 = 0, we denote by z the function defined by

z(t) =

 0, if t ∈ (−∞,0],

z(t), if t ∈ [0,∞).

If y(·) satisfies the integral equation

y(t) = φ(0)+ ty∞+
∫ ∞

0
G(t, s) f (s,yρ(s,ys))ds,

we can decompose y(.) into y(t) = z(t)+ x(t), t ≥ 0, which implies yt = zt+ xt, for every t ∈ J,
and the function z(·) satisfies

z(t) =
∫ ∞

0
G(t, s) f (s,zρ(s,zs+xs)+ xρ(s,zs+xs))ds.

Let
C = {z ∈ B∞ : z0 = 0}.

Let ‖ · ‖0 be the norm in C defined by

‖z‖0 = ‖z0‖B+ sup
t∈J

|z(t)|
1+ t

= sup
t∈J

|z(t)|
1+ t

= ‖z‖∞.

We define the operator P : C→ C by

P(z)(t) =
∫ ∞

0
G(t, s) f (s,zρ(s,zs+xs)+ xρ(s,zs+xs))ds.



Functional Differential Equations with State-Dependent Delay 91

Obviously the operator T has a fixed point if and only if P has one, so we need to prove that
P has a fixed point. We shall show that P satisfies the properties of the Kuratowski measure
of noncompactness and Darbo’s fixed point theorem assumptions. The proof will be given
in four Steps.

Step 1: P is continuous

Let {yn}
∞
n=1 ⊂ C and y ∈ C such that yn→ y as n→∞. Then {yn}

∞
n=1 is a bounded set of

C, i.e. there exists m > 0 such that ‖yn‖∞ ≤ m for n ≥ 1. We also have by taking the limit
that ‖y‖∞ ≤ m. Now by (H1), for any ε > 0, there exists l > 0 such that

∫ ∞

l
p(s)ds <

ε

3ψ(m)
. (3.5)

Condition (H2) yields that there exists N > 0 such that for n > N and t ∈ [0, l],

∣∣∣∣ f (t,yn
ρ(t,yn

t ))− f (t,yρ(t,yt))
∣∣∣∣ < ε

3l
. (3.6)

Therefore, for t ∈ [0, l] and n > N, we can obtain from (3.4), (3.5), (3.6)

|P(zn)(t)−P(z)(t)|
1+ t

≤∫ t

0

s
1+ t
| f (s,znρ(s,zn s+xs)+ xρ(s,zn s+xs))− f (s,zρ(s,zs+xs)+ xρ(s,zs+xs))|ds

+

∫ +∞

t

t
1+ t
| f (s,znρ(s,zn s+xs)+ xρ(s,zn s+xs))− f (s,zρ(s,zs+xs)+ xρ(s,zs+xs))|ds

≤

∫ t

0
| f (s,znρ(s,zn s+xs)+ xρ(s,zn s+xs))− f (s,zρ(s,zs+xs)+ xρ(s,zs+xs))|ds

+

∫ ∞

t
| f (s,znρ(s,zn s+xs)+ xρ(s,zn s+xs))− f (s,zρ(s,zs+xs)+ xρ(s,zs+xs))|ds

≤

∫ l

0
| f (s,znρ(s,zn s+xs)+ xρ(s,zn s+xs))− f (s,zρ(s,zs+xs)+ xρ(s,zs+xs))|ds

+ 2ψ(m)
∫ ∞

l
p(s)ds

≤
ε

3
+

2ε
3
= ε.

Thus we conclude that ‖Pyn−Py‖∞ ≤ ε as n > N, namely, P is continuous.

Step 2: P maps bounded sets into bounded sets in C.

Indeed, it is enough to show that for any η > 0, there exists a positive constant ` such



92 M. Benchohra and B. Hedia

that for each z ∈ Bη = {z ∈ C : ‖z‖∞ ≤ η}, we have ‖Pz‖∞ ≤ l. By (H1) we have for each t ∈ J,

|P(z)(t)|
1+ t

≤

∫ t

0

s
1+ t
| f (s,zρ(s,zs+xs)+ xρ(s,zs+xs))|ds

+

∫ +∞

t

t
1+ t
| f (s,zρ(s,zs+xs)+ xρ(s,zs+xs))|ds

≤

∫ +∞

0
p(s)ψ(‖zρ(s,zs+xs)+ xρ(s,zs+xs)‖)ds

≤ ψ(K∞η+K∞|φ(0)|+M‖φ‖B)
∫ +∞

0
p(s)ds := `.

Step 3:

(a) The {PB(t)
1+t } is equicontinuous on any compact interval I of J, and for any bounded set

B of C.

We note that P(z)(t) can be written as

P(z)(t) =
∫ t

0
(t− s) f (s,zρ(s,zs+xs)+ xρ(s,zs+xs))ds−

∫ ∞

0
t f (s,zρ(s,zs+xs)+ xρ(s,zs+xs))ds.

In view of the condition (H1) and the boundedness of B there exists m > 0 such that∫ ∞

0

∣∣∣ f (s,yρ(s,ys))
∣∣∣ds ≤ m for any y ∈ B. (3.7)

In order to prove (a) let t1, t2 ∈ [a,b] where [a,b] ⊂ J, t1 < t2, let the constant η be such that
‖z‖∞ ≤ η for any z ∈ B. Then,∣∣∣∣P(z)(t2)

1+t2
−

P(z)(t1)
1+t1

∣∣∣∣ ≤ ∣∣∣∣ t2
1+t2
−

t1
1+t1

∣∣∣∣ ∫ ∞0 | f (s,zρ(s,zs+xs)+ xρ(s,zs+xs))|ds

+
∫ t2

0
t2−s
1+t2
| f (s,zρ(s,zs+xs)+ xρ(s,zs+xs))|ds

−
∫ t1

0
t2−s
1+t2
| f (s,zρ(s,zs+xs)+ xρ(s,zs+xs))|ds

+
∫ t1

0
t2−s
1+t2
| f (s,zρ(s,zs+xs)+ xρ(s,zs+xs))|ds

−
∫ t1

0
t1−s
1+t1
| f (s,zρ(s,zs+xs)+ xρ(s,zs+xs))|ds

≤ m
∣∣∣∣ t2
1+t2
−

t1
1+t1

∣∣∣∣+ ∫ t2
t1
| f (s,zρ(s,zs+xs)+ xρ(s,zs+xs))|ds

+
∫ t1

0

∣∣∣∣ t2−s
1+t2
−

t1−s
1+t1

∣∣∣∣ | f (s,zρ(s,zs+xs)+ xρ(s,zs+xs))|ds

≤ m
∣∣∣∣ t2
1+t2
−

t1
1+t1

∣∣∣∣+ψ(K∞η+K∞|φ(0)|+M‖φ‖B)
∫ t2

t1
p(s)ds

+ ψ(K∞η+K∞|φ(0)|+M∞‖φ‖B)
∫ t1

0

∣∣∣∣ t2−s
1+t2
−

t1−s
1+t1

∣∣∣∣ p(s)ds.

As t1→ t2, the right-hand side of the above inequality tends to zero.

(b) Equiconvergence at infinity.

We shall show that for a given ε > 0, there exists a constant N > 0 such that
∣∣∣∣Pz(t1)

1+t1
−

Pz(t2)
1+t2

∣∣∣∣< ε
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for any t1, t2 ≥ N and z ∈ B.

∣∣∣∣∣P(z)(t2)
1+ t2

−
P(z)(t1)
1+ t1

∣∣∣∣∣ ≤ ∣∣∣∣∣ t2
1+ t2

−
t1

1+ t1

∣∣∣∣∣ ∣∣∣∣∣∫ ∞

0
f (s,zρ(s,zs+xs)+ xρ(s,zs+xs))ds

∣∣∣∣∣
+

∣∣∣∣∣∣
∫ t2

0

t2− s
1+ t2

f (s,zρ(s,zs+xs)+ xρ(s,zs+xs))ds

−

∫ t1

0

t1− s
1+ t1

f (s,zρ(s,zs+xs)+ xρ(s,zs+xs))ds

∣∣∣∣∣∣ .

It is sufficient to prove that

∣∣∣∣∣∣
∫ t2

0

s
1+ t2

f (s,zρ(s,zs+xs)+ xρ(s,zs+xs))ds−
∫ t1

0

s
1+ t1

f (s,zρ(s,zs+xs)+ xρ(s,zs+xs))ds

∣∣∣∣∣∣ ≤ ε.

The relation (3.7) yields that there exists N1 > 0 such that

∣∣∣∣∣∣
∫ ∞

N1

f (s,zρ(s,zs+xs)+ xρ(s,zs+xs))ds

∣∣∣∣∣∣ ≤ ε3 uniformly with respect to z ∈ B. (3.8)

On the other hand since limt→∞
t−N1
1+t = 1 there exists N ≥ N1, such that for every t1, t2 ≥ N,

and s ∈ [0,N1] we have :

∣∣∣∣∣ t1− s
1+ t1

−
t2− s
1+ t2

∣∣∣∣∣ ≤ (
1−

t1− s
1+ t1

)
+

(
1−

t2− s
1+ t2

)
≤

(
1−

t1−N1

1+ t1

)
+

(
1−

t2−N1

1+ t2

)
≤

ε

3m
.

Thus we have

∣∣∣∣∣ t1− s
1+ t1

−
t2− s
1+ t2

∣∣∣∣∣ ≤ ε

3m
. (3.9)
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Now take t1, t2 ≥ N, then from (3.7), (3.8), (3.9) we arrive at

|

∫ t2

0

t2− s
1+ t2

f (s,zρ(s,zs+xs)+ xρ(s,zs+xs))ds

−

∫ t1

0

t1− s
1+ t1

f (s,zρ(s,zs+xs)+ xρ(s,zs+xs))ds|

≤

∫ N1

0

∣∣∣∣∣ t2− s
1+ t2

−
t1− s
1+ t1

∣∣∣∣∣ | f (s,zρ(s,zs+xs)+ xρ(s,zs+xs))|ds

+

∫ t1

N1

t1− s
1+ t1

| f (s,zρ(s,zs+xs)+ xρ(s,zs+xs))|ds

+

∫ t2

N1

t2− s
1+ t2

| f (s,zρ(s,zs+xs)+ xρ(s,zs+xs))|ds

<
ε

3m

∫ ∞

0
| f (s,zρ(s,zs+xs)+ xρ(s,zs+xs))|ds

+2
∫ ∞

N1

| f (s,zρ(s,zs+xs)+ xρ(s,zs+xs))|ds

< ε.

Step 4: Let
B = {z ∈ C : ‖z‖∞ ≤ R},

where R is the constant defined by (H4). We will show now that P maps B into itself.
Indeed, for any z ∈ B, by the condition (H1) we get

|Pz(t)|
1+ t

≤

∫ t

0

s
1+ t
| f (s,znρ(s,zn s+xs)+ xρ(s,zn s+xs))|ds

+

∫ ∞

t

t
1+ t
| f (s,zρ(s,zs+xs)+ xρ(s,zs+xs))|ds

≤ ψ(K∞R+K∞|φ(0)|+M∞‖φ‖B)
∫ +∞

0
p(s)ds

≤ R.

Hence, ‖Pz‖∞ ≤ R and we conclude that P : B→ B. In what follows we show that the
operator P : B→ B is a strict set contraction. From Steps 1 and 2 we know that P : B→ B
is bounded and continuous. Finally we need to prove that there exists a constant 0 ≤ k < 1
such that

α∞(PS ) ≤ kα∞(S )

for S ⊂ B. Furthermore, from Step 3 it is enough to verify

sup
t∈J

α

(
PS (t)
1+ t

)
≤ kα∞(S ). (3.10)

Define

Pnz(t) = −
∫ t

0
s f (s,znρ(s,zn s+xs)+ xρ(s,zn s+xs))ds−

∫ n

t
t f (s,znρ(s,zn s+xs)+ xρ(s,zn s+xs)).
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Thus ∣∣∣∣∣Pnz(t)
1+ t

−
Pz(t)
1+ t

∣∣∣∣∣ ≤ ψ(K∞R+K∞|φ(0)|+M‖φ‖B))
∫ +∞

n
p(s)ds.

This shows d
(

PnS (t)
1+t ,

PS (t)
1+t

)
→ 0 as n→ ∞, t ∈ J, where d(.) denotes the Hausdorff α

metric in the space E. Thus, by the property of α we get

lim
n→∞

α

(
PnS (t)
1+ t

)
= α

(
PS (t)
1+ t

)
t ∈ J.

Now we estimate α( PnS (t)
1+t ), Step 2, implies that { D

1+t } is equicontinuous on any compact
intervals of J and hence, S (t)

1+t is equicontinuous on any compact interval of J. By condition
(H2), it is easy to show that { f (s,zρ(s,zs+xs) + xρ(s,zs+xs)) : zs + xs ∈ S } is equicontinuous on
[0,N]. Moreover, { f (s,zρ(s,zs+xs) + xρ(s,zs+xs)) : zs + xs ∈ S } is bounded on [0,N] by (H1).
Using Lemma 2.3, Step 4 and condition (H5), we arrive at

α

(
PnS (t)
1+ t

)
≤

∫ t

0
α({ f (s,zρ(s,zs+xs)+ xρ(s,zs+xs))ds : zs+ xs ∈ S })

+

∫ n

t
α({ f (s,zρ(s,zs+xs)+ xρ(s,zs+xs))ds : zs+ xs ∈ S })

≤

∫ n

0
l(s)α(S (s))ds

≤

∫ n

0
(1+ s)l(s)α

(
S (s)
1+ s

)
ds

≤

∫ n

0
(1+ s)l(s)dsα∞(S ).

Thus, from (3.10) and Step 4, it follows immediately that

α∞(PS ) ≤
∫ ∞

0
(1+ s)l(s)ds.α∞(S ) = kα∞(S )

here k :=
∫ ∞

0 (1+ s)l(s)ds and obviously we have 0 ≤ k < 1 by (H5). Therefore, Darbo’s
fixed point theorem asserts that BVP (1.1)-(1.2) has at least one solution in D and the proof
is finished. �

4 An Example

To apply our results, we consider the functional differential equation with state-dependent
delay of the form: u′′n (t) = un(t−σ(un(t)))

2(1+t2) +
ln(1+un+1(t−σ(un+1(t))))

ne
√

t if t ∈ (0,+∞),

un(t) = φn(t), u′n(∞) = un∞ if t ∈ (−∞,0]
(4.1)

where σ ∈C(R, [0,∞)), φi ∈C((−∞,0],R), i = 1, . . . ,n, . . ..
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Let
E = {u = (u1,u2, . . . ,un, . . .) : sup

n
|un| <∞}

with the norm u = supn |un|. Then E is a Banach space. Set γ > 0. For the phase space, we
choose B = Bγ to be defined by

Bγ = {u ∈C((−∞,0],E) : lim
θ→−∞

eγθui(θ) exists, i = 1, . . .n, . . .}

with the norm
‖u‖γ = sup

i=1,...n,...
sup

θ∈(−∞,0]
eγθ|ui(θ)|.

Let u : (−∞,+∞)→ E be such that u0 ∈ Bγ. Then

lim
θ→−∞

eγθuit (θ) = lim
θ→−∞

eγθui(t+ θ)

= lim
θ→−∞

eγ(θ−t)ui(θ)

= e−γ t lim
θ→−∞

eγθui0(θ).

Hence ut ∈ Bγ. Finally we prove that

‖ut‖γ ≤ K(t) sup{ |ut(s)| : s ∈ J}+M(t)‖u0‖γ,

where K∞ = M∞ = H = 1. We have uit (θ) = ui(t+ θ).
If t+ θ ≤ 0 we get

‖uit (θ)‖ ≤ sup{ |ui(t+ θ)| : −∞ ≤ θ ≤ 0}.

For t+ θ ≥ 0 we have
‖uit (θ)‖ ≤ sup{ |ui(t+ θ)| : θ ∈ J}.

Thus for all t+ θ ∈ (−∞,+∞), we get

‖uti(θ)‖ ≤ sup{ |ui(θ)| : −∞ ≤ θ ≤ 0}+ sup{ |ui(θ)| : θ ∈ J}.

Thus
‖ut‖γ ≤ ‖u‖0+ sup{ |u(θ)| : θ ∈ J}.

It is clear that (Bγ,‖u‖γ) is a Banach space. We can conclude that Bγ is a phase space.
Take f (t,u) = ( f1(t,u), ....., fn(t,u), ...) with

fn(t,u) =
un(0)

2(1+ t2)
+

ln(1+un+1(0))

ne
√

t
.

Evidently f ∈C(J×Bγ,E) and

| f (t,u)| ≤
[

1
2(1+ t2)

+
1

e
√

t

]
|u|

ρ(t,u) = t−σ(u(0)), (t,u) ∈ [0,∞)×Bγ,



Functional Differential Equations with State-Dependent Delay 97

(4.1) can be written as (1.1)-(1.2). Thus condition (H1) is satisfied with

p(t) =
1

2(1+ t2)
+

1

e
√

t∫ +∞

0
p(t)dt <∞

ψ(‖u‖) = |u|.

It is easy to see that the condition (H2) is also satisfied. Now let us verify condition (H5).
Denote f = f 1+ f 2 where

f 1 =
un(0)

2(1+ t2)
,

f 2 =
ln(1+un+1(0))

ne
√

t
.

Then we can obtain that for any bounded set B ⊂Bγ, α( f 2(t,B)) = 0. Indeed, let um ⊂Bγ be
bounded, so ‖um‖ ≤ M, m = 1,2, . . . , where um = (um

1 , . . . ,u
m
n , . . .). Then we have, for fixed

t ∈ J,

f (2)
n (t,u(m)) ≤

M
n
, n = 1, . . . , (4.2)

so { f 2
n (t,um)} is bounded, and we can choose subsequence {u(mk)} ⊂ {u(m)} such that

f (2)
n (t,u(mk))→ vn as k→∞, n = 1, . . . , (4.3)

and from (4.2) we get

‖vn‖ ≤
M
n
, n = 1, . . . , (4.4)

and thus v = {v1, . . . ,vn, . . .} ∈ Bγ. For given ε > 0, (4.2) and (4.3) imply that there exists
N > 0 such that

| f (2)
n (t,u(mk))| <

ε

2
, |vn| < ε, n > N, k = 1, . . . , (4.5)

On the other hand, from (4.3) we obtain that there exits N > 0 such that

| f (2)
n (t,u(mk))− vn| < ε, k > N, n = 1,2,3, ..., (4.6)

It follows from (4.5) and (4.6) that ‖ f (2)(t,u(mk))−v‖ ≤ ε for k>N. This means that ‖ f (2)(t,u(mk))−
v‖ → 0 as k→∞ and we have that f (2)(t,B) is relatively compact for any bounded B ⊂ Bγ,
thus, α( f (2)(t,B)) = 0. Consequently, we arrive at

α( f (t,B)) ≤ (α f (1)(t,B)) =
α(B)

2(1+ t2)
.

Since
∫ +∞

0
dt

2(1+t2) < 1, we conclude that condition (H5) is satisfied with l(t) = 1
2(1+t2) . From

the choice of the function ψ we can easily show that there exists a positive constant R
satisfying

ψ(R+ |φ(0)|+ ‖φ‖B)
∫ +∞

0
p(s)ds ≤ R.

Theorem 3.4 ensures that the problem (4.1) has a solution.
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