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Abstract

An algebraic approach for factorizing nonlinear partial differential equations (PDEs)
and systems of PDEs is provided. In the particular case of second order linear and non-
linear PDEs and systems of PDEs, necessary and sufficient conditions of factorization
are given.
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1 Introduction

The search for exact solutions of differential equations is very challenging in mathematics,
but their usefulness in the proper understanding of qualitative features of phenomena and
processes in various areas of natural science merits to get down to such an investigation.
Indeed, exact solutions can be used to verify the consistency and estimate errors of various
numerical, asymptotic and approximate analytical methods. Unfortunately, there does not
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always exist a method adapted for the resolution of any type of differential equations. Very
often, one tries to reduce the equation in order to make easier its resolution. But this reduc-
tion requires the knowledge of suitable transformations or changes of variables. The latters
usually give rise to another problem the issue of which is not always favourable.

A simple approach for the reduction of a differential equation consists in seeking a
factorization, if there exists, of the differential operator associated with it. Note that for
the particular case of second order linear ordinary differential equations of Schrodinger or
Sturm-Liouville type, the factorization of the associated differential operators also allows
to obtain partially or completely their spectrum, under certain assumptions of integrability
[1, 2, 3, 4]. In recent years, there has been much interest devoted to the problem of factor-
ization of differential equations, especially based on linear ordinary [5, 6, 8] and nonlinear
differential operators [7, 8, 9]. Although effective, the used methods are rather restrictive in
their applications.

Recently, a purely algebraic method of factorization of the second order linear ordinary
differential equations has been presented by the authors in [10, 11, 12, 13]. The same
procedure of factorization has been exploited in [14] and extended to second order nonlinear
ordinary differential equations (NLODES) and systems of NLODEs. This work generalizes
previous works by applying the above mentioned algebraic method of factorization to linear
and nonlinear systems of partial differential equations (PDEs). Necessary and sufficient
conditions of factorization are derived in the case of second order equations.

First of all, some useful notations are required. Consider X, an n-dimensional in-
dependent variable space, and U, an m-dimensional dependent variable space. Let x =
(xl,m ,x”) eXandu= (ul,m ,u’”) € U. We define the space U™, s € N as:

m S
) ._ ), ). () _ J
U :=u : u —®[®u(k) : (1.1)
j=1 \k=0
where u(k) is the .

Pk = (1.2)
of all k-th order partial derivatives of u/. The u(k) vector components are recursively obtained
as follows:

N o (i 0.
) gy = and uyy = (1) 0ot

ii) Assume that ' is known. Then,

(k)

— Form the tuples u W )(l) as follows:

(k+1

0 0 0
(k+l)(l) (51 <k)[l]’@”{k)[”’ Ox" (k)[l]) =12 pe

where u(k)[l] is the /-th component of the vector u(k),

— Finally, form the vector

J ~j
Wiry = ((k+1)(1) (k+1)(2)""’”(k+1)(pk))'
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An element »®, in the space U9, is the

qs =m(l+ py+pr+---+ py)-tuple (1.3)
defined by
(s) _{(,,1 1 1 2 2 2
U = (ufoys gy sty s U1 ys = STy s g U= (). (1.4)

The coordinates in the space X x U® are denoted by (x, u(f)).

In the sequel, the g;-uple u® will be referred to (1.4), whereas the integers p; and ¢, are
defined by (1.2) and (1.3), respectively.
Define differential operators Dy, whose action on a regular function u is

Dy pu = uglhl (1.5)
These operators Dy j, satisfy the following properties:
(1) Doju=u (identity),
(i1) D14 Dp =Dy st -1)+n 1t (composition rule),
(iii) Dgpu=D1pDg11u, k=1 (decomposition rule).

Remark 1.1. Operators Dy, allow the simplification of the writing of certain differential
operators. For example, the operator

s 311+12+“'+ln

7= A 2\ l
L +l++1,=0 ((9)6 ) (ax ) "'(axn)"

can be shortly expressed as
S Pk
T Dk,h-

k=0 h=1

2 Linear differential operators

In this section, we develop an algebraic method of factorization applicable to linear differ-
ential operators (LDOs) and to systems of LDOs.

2.1 Factorizations of linear differential equations

The general setting of the factorization problem for LDOs is developed. Necessary and
sufficient conditions are derived for the factorization of second order linear ordinary and
partial differential operators with two independent variables.
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2.1.1 General setting
Let s > 2 be a positive integer and A be an open subset of R”". Let

S Pk

P(s)= > > gDy @.1)

k=0 h=1

a linear differential operator of order s, where g, € C(A,R). The operator $(s) acts on a
function u € C*(A,R) as follows

S Pk

P()u= > > ginx)Dini. (2.2)

k=0 h=1

The method of factorization consists in seeking a decomposition of the differential operator
(2.1) in the following form

/
Pes) = [ @isn (2.3)
i=1
with 3)/_, s, = s and
Si - Pk
Qs =D > bin(x)De, (2.4)
k=0 h=1

where by ;. € C(A,R) and b; ., € Czj;ll SIALR), i=2,3,-- 1.

Proposition 2.1. Let P(s) be an operator which can be decomposed into the form (2.3). If
the function uy satisfies

Q(spug =0, (2.5)

and uy, ..., u;— are solutions of the system

I
[T @sou; = vjj=1.2...0-1, (2.6)
k=I-j+1
where v;, j=1,2,...,1-1, are solutions of
I=j
nQi(Si)vj = 0, 2.7)
i=1

then ug, uy, ..., w1 are l particular solutions of the equation P(s)u = 0.

Proof. Letug and uj, j=1,2,...,1—1 be solutions of (2.5) and (2.6), respectively. Then

-1

P(s)ug = []_[ Ql-(s»]@(s,)uo =0,
i=1
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and for j=1,2,...,[-1,

I-j l
P(shu; = a,-(si)] [] @soly
i=1 k=l—j+1
I=j
= Qi(si)v; =0,
i=1
where the use of (2.6) and (2.7) has been made. O

Expanding (2.3) leads to the relations between unknown functions b; x 5 of the differen-
tial operators Q;(ss;) and the known functions g, of the original differential operator P(s).
Without loss of generality and as matter of clarity, this study will be concentrated to second
order equations, the generalization being straightforward.

2.1.2 Necessary and sufficient conditions for the factorization of second order linear

ODEs

Let A and Ag be two open subsets of R such that Ag C A. Consider the second order linear
ordinary differential operator

2 Pk
P2) = Z Z 8kh(X)Dy
=0 h=1
= 20,1(x)Do,1 +g1,1(x)D11 +g2,1(x)D2 1, (2.8)

where gi» € C(A,R) and x = x'. Write P(2) in the form

P2 Qi(1)-&(1)

L L P
lz Z b1 kn(X)Dy Z Z b2 k1 (X)Din

=0 =1 =0 =1
[61,0,1(x)Do,1 +b1,1,1(x)D11][02,0,1(x)Do1 +b2,1,1(x)D1 1], (2.9)

where by, € C(A,R) and ba s, € C'(A,R). Let u € C*(Ag,R). Then we have

PRu = go1(x)u+gi1(x)ux+g21(x)ury (2.10)
and after expansion

PR2)u [61,0,1(x)Do,1 +b1,1,1(x)D1,1][£2,0,1(x)Do,1 +b2,1,1(x)Dy 1 | u
bi11bo11u2x +[D1,0102,1.1 +b1.1,102,01 +b1,1,1D1,1(b2,1,1) ] s

(61010201 +b1,1,1D1,1(b20,1)] u (2.11)

+

Identifying (2.10) with (2.11) yields
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Proposition 2.2. A necessary and sufficient condition for the differential operator P(2)
defined by (2.8) be decomposed into the form (2.9) is:

g1 = biiibaia, (2.12)
811 = bioibr11+b11,1b201+b1,1,1D11(b21,1), (2.13)
801 = bio1b201+b11,1D1,1(b2p,1). (2.14)

Propose an approach to solve system (2.12)-(2.14). Assume that g5 1 does not vanish on
A. Thus, it is always possible to find two nonzero functions on A, namely b; 1 and by 1 1,
which satisfy (2.12). Substituting X = b1 and ¥ = by in (2.13) gives

B 1
b1

X [g11—01,1,1D1,1(b21,1) = b111Y]. (2.15)

The substitution of (2.15) into (2.14) implies that the decomposition (2.9) is strongly related
to the existence of a solution to the following Riccati equation in Y

b —b111D11(b
Dy (1) LLLyo 811~ b 1,1( 2,1,1)Y_ 801 _ ¢ 2.16)
82.1 82.1 b111

2.1.3 Necessary and sufficient conditions for the factorization of second order linear
PDEs with two independent variables

Let A and Ag be two open subsets of R? such that Ag € A. Consider the second order linear
partial differential operator

2 Pk

Z Z 8i,h(X)Dg

=0 h=1
= £0,1(x)Do1 +g1,1(x)D1,1 +g12(x)D1
821(X)D2 1 +822(x)D22 + g23(x)D2 3 + g2 4(X)D2 4, (2.17)

P(2)

+

where gi, € C(A,R) and x = (xl,xz). Write £(2) in the form

P2 Qi(1)-&(1)

L » 1 D
[Z Z b1,kn(X)Di Z Z b2 n(x)Di

=0 h=1 =0 h=1
= [b1,01(x)Do,1 +b1,1,1(x)D11 +b1,12(x)Dy 2]
[02,0,1(X)Do,1 +b2,1,1(X)D11 +b212(x)Dy 2], (2.18)

X

where by 1, € C(A,R) and by, € C'(A,R). Let u € C*(Ag,R). Then we have

P(Z)u = goiutgiiuygt+gioupt+griUya+ (gz,z +g2,3) Uyl 2 +824Up,2 (2.19)



Factorization of Differential Operators 59

and after expansion

PRu = [b10,1(x)Do,1 +b1,1,1(x)D1,1 +b1,12(x)D12]
X [b2,0,1(x)Do,1 +b2,1,1(x)Dy1 +b2,1 2(Xx)D1 2] u
= |[b10,1b2,0,1 +b1,1,1D1,1(b2,0,1) + b1,12D12(b20,1)] u
+  [b10,1b2,1,1 +b1,1,1b2,0,1 +b1,1,1D1,1(b2,1,1) +b1,12D12(b2,1,1)] w0
+ [b10,1b2,12 +b1,12b201 +b1,1,1D1,1(b2,12) +b1,12D12(b212)] w2
+ briibar gy +[bra2b21 + D111 2] U +b112bo 12Uy, (2.20)

Identifying (2.19) with (2.20) leads to the following

Proposition 2.3. A necessary and sufficient condition for the differential operator P(2)
defined by (2.17) be decomposed into the form (2.18) is:

g1 = Dbiiibai, (2.21)
82+83 = biriabaia+biiaba, (2.22)
g4 = bii2b212, (2.23)
g1 = bio1b21,1+b11,1b201 + L(b211), (2.24)
812 = bi1o1b212+b112b201 + L(b212), (2.25)
go,1 = bio1bro1+ Lbapo), (2.26)

where .E = bl,l,lDl,l +b1,1’2D1,2.

Propose an approach to solve system (2.21)-(2.26). Assume that at least one of the
functions g1 and g>4 does not vanish on A, says gz . It is always possible to find two
nonzero functions on A, namely by 1,1 and by 11 which satisfy (2.21). Substituting X1 =b; 12
and X, = by 17 into (2.22) yields

1
X = o (822+823—b1,11X2). (2.27)
2.1,1

The substitution of (2.27) into (2.23) shows that b, is a solution of the second degree
algebraic equation

b +
11,1 X% 82271823 X, + 824 _ 0. (2.28)
82,1 82,1 b111
The discriminant of equation (2.28) is
A=(g22+823)" —4g21824 = (b112b211 = b11,1b212)" 2 0. (2.29)

If A > 0, then the substitution of Y = by and Z = by o1 into (2.24) and (2.25) implies that
the decomposition (2.18) is possible if the unique solution to the following algebraic system
inY and Z

g11—L(b21,1)
g12—L(b2,12)

bry11Y+b111Z
br12Y +b112Z (2.30)
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satisfies (2.26). Indeed, the determinant of the system (2.30) is
b112ba1i —bi1ibais =+ VA 0.

If A =0, then the substitution of ¥ = b1 and Z = by into (2.24) yields

1
Y= b—[g1,1 = L(b2,1.1) ~b1.1.17Z]. (2.31)
2,1,1
Then, the substitution of (2.31) into (2.26) implies that the decomposition (2.18) is strongly
related to the existence of a solution to the following first order quasi-linear partial differ-
ential equation in Z
b111 gl1-£(b211)

L(Z)- : ——7—-g01=0 (2.32)
by, 1 b1

which satisfies (2.25).

2.2 Factorizations of systems of linear differential equations

The previous analysis is now made for systems of linear differential equations.

2.2.1 General considerations

Let A be an open subset of R”. Examine now the factorization process for systems of s-th

order, (s > 2), linear differential equations with n independent variables x = (xl, e ,x”) and
m > 2 dependent variables u = ! (ul,--- um) u = u(x) whose associated matrix operator,
M(s), is of the form

M(s) = [Rp,q (sp’q)]ISp,qu; (2.33)

the R, 4 (s p,q) are s, 4-th order linear differential operators

Spq Pk

Rpa (Sp,q) = Z pr,q,k,h(x)Dk,h, (2.34)

k=0 h=1

where f, 410 € C(A,R), 5pg=5—1+0,4,0,p,=1andéd,,=0if p #gq.
Let A and Ag be two open subsets of R” such that A9 € A. The matrix operator M(s) acts
on a vector valued function u =/ (ul, e ,um) € C*(Ag,R™) as follows

m

=| 2Realsna } -
1<p<m

=1

M(s)u= [Rp,q (sp q

1<p, q<m

The method of factorization consists in seeking a decomposition of the matrix M(s) under
the following form

1
Mes) = | [Nicsi) (2.35)
i=1
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where
Ni(si) = | Tipa (Sipa)] 2, ym (2.36)
and Si,p.q Pk
Tipg (Si,p,q) = Z Z @i p.q.kn(X)Di s (2.37)
k=0 h=1

. g ,
with Zle Si =5, Sipg=58i—1+6p4, a1 pgrn € C(AR) and a;pgxn € CLi=1fira(AR), i =
2,3,--+,1

Proposition 2.4. Let M(s) be a matrix of differential operators defined by (2.33) which can
be decomposed into the form (2.35). If the function ug ="' (u(l), -e ,ug’) satisfies

Ni(spuo =0, (2.38)
and uj = ’(u},-‘- ,u;?l), j=1,2,---,1—1 are solutions of the system
!
[T Metsow; = v j=1,2,00-1, (2.39)
k=I-j+1
where v; = ’(v},--- v’J") j=1,2,...,1-1, are solutions of
I=j
[ [Msw; =0, (2.40)
i=1

then ug, uy, ..., uj— are l particular solutions of the equation M(s)u = 0.
Proof. The proof is similar to that of the Proposition 2.1. O

Expanding (2.35) leads to the relations between the unknown functions a; , 4.« » of N;(s;)
and the known functions f,, ;. x» of M(s).

As matter of clarity, in the sequel we explicitly derive necessary and sufficient condi-
tions for the factorization of systems of second order linear ordinary and partial differential
operators with two independent variables.

2.2.2 Necessary and sufficient conditions for the factorization of systems of second
order linear ODEs

Let A and A¢ be two open subsets of R such that Ag C A. Consider the matrix operator
M@ =Rog) e (2.41)

where

Pk

2
Rp.p = Z JpaknODih = fp.p.01Do1 + fp.p11D11 + fpp21D2,1 (2.42)
k=0 h=1
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and for p # ¢
Pk

i
Rpq = Z Tp.adn(ODip = fpg01D01 + fpg1,1D1,1 (2.43)
=0 h=1

with fp, ,xn € C(AR), x = x!. Write M(2) in the form

M(2) = N1(1)- N2 (1), (2.44)
where
NiD = Tipal o oo (2.45)
with
I D
Tipp= @i ppkh()Dip = @i p p01Do,1 +aipp1,1D1,1 (2.46)
k=0 h=1
and for p £ g
7~i,p,q = ai,p,q,O,lDO,l ’ (247)

a1 p.gin € CAAR) and ap p gin € C'(AR). Letu = (u!,--+,u") € C2(Ag,R). Then we have

m
= = q
M@u=[Rpg| . u D Ry qu (2.48)
g=1 1<p<m
where
_ p p
Rpp = fpporl + fppiiue+ fppoiiy,
and for p # ¢
_ q
Rpqu? = fpqo1u? + fpg1,1 Uy
On the other hand, after expansion of (2.44), we have
m
= = q
MQ2)u [Rp,q]lsp’m u Z Rpq , (2.49)
=1 1<p<m
where
m
P
Rppu’ = Zal,p,z,o,laz,z,p,o,l +app1aD1i(@2ppoa) U +aipp11a2,pp11 s,
=1
P
+ [al,P,p,O,lalp,p,l,l +a1pp1.162,pp01 +a1pp11D1L1(A2,p p 11 )] Uy
and for p # ¢
R — q
Rpgtt! = [@1pp1102,pg01 +@1pq012441.1 |1

+

m
[Z a1,p,10,102,14,0,1 +a1,p.p,1,1D1,1(02,p.4,0,1 )] ul.
=1

Identifying (2.48) with (2.49) yields
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Proposition 2.5. A necessary and sufficient condition for the differential operator M(2)

defined by (2.41) be decomposed into the form (2.44) is:

m
Fopod =D 01500121501 +@1pp11D11@2pp01);
=1
Sopll = Qpp01a2.pp11+a1pp1,1a2.pp01+a1pp1,1D11(a2,pp1,1),
fp,p,Z,l = Qalpp1,142,p,p.1,1
and for p # q
m
Fra0a = D @1p101021601 +a1pp11D11(@2pg0.0);
=1
fp,q,l,l = Alpp1,102,p40,11a1pg010244.1,1-

(2.50)

(2.51)
(2.52)

(2.53)

(2.54)

2.2.3 Necessary and sufficient conditions for the factorization of systems of second

order linear PDEs with two independent variables

Let A and A¢ be two open subsets of R? such that Ag € A. Consider the matrix operator

M) =Ry o

where
2 Pk
Rpp = Z Zf gk (ODg
I=0 h=1
= Jfpp0aDoa+ fpp11Dii+ fpp12Di2
+  fpp2iDoa+ fpp22D22+ fpp23D2s+ fpp2aDaa
and for p # g
L Pk
Rpq = Z Tpaki(Dich = fr.401D0.1 + fp.g.1,1D1.1 + fpg12D12
k=0 h=1

with fp, xn € C(AR), x = (xl,xz). Write M(2) in the form

M2) = Ni(1)- No(D),

where
W=[7in
Ni(1)=|Tipq 1<pg<m
with
1 pi
Tipp = Aip.p ki (X)Dicn = @i p p.01D01 + @ipp1,1D11 +@ipp12D12

k=0 h=1

and for p # ¢

Tipq = dipaq0,1Do,1,

(2.55)

(2.56)

(2.57)

(2.58)

(2.59)

(2.60)

(2.61)
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a1 pgin € CAAR) and az p gion € C'(AR). Letu = "(u',-+,u") € C2(Ag,R). Then we have

m
- - q
M@u=[Rpg|,_ _ u= D Rpqu : (2.62)
g=1 1<p<m
where
- P p
Rppt” = fppoau’ + fpprity + frpiou,
P p P
+ fppaaiy  + (fp,p,2,2 + fp,p,2,3) U0t fpp2atty
and for p # ¢

— q q
Rp’q uq - fp’q’071 uq +f17a(1,1,1 uxl +fl9s(1,1,2 MXZ'

On the other hand, after expansion of (2.58), we have

M@)u =R, L D Ry qu : (2.63)
q=1

I<p<m

where

R - P P
Rppu’ = a1ppr1@appiitty, + (al,p,p,l,zaz,p,p,l,l +al,p,p,1,1a2,p,p,1,2) Ui

+

p
[al,p,p,o,l a2.p.p1.1 +A1pp1.162,pp0.1 +Lp(@2pp 11 )] U,

+

P
[al,p,p,O,laZ,p,p,l,Z taip,p1202pp01t Lp(QZ,p,p,l,Z)] uxz
m

p
Z a1,p,10,102,1,p.0,1 + Lp(@2,p,p.0,0) (U + a1 pp12a2pp121y
=1

+

and for p # ¢

R — q
Rpqu? = [al,p,p,l,lalp,q,&l +a1,p,q,0,la2,q,q,l,l]”xl

q
x2

+

[al,p,p,l,2a2,p,q,0,l + al,p,q,o,laz,q,q,1,2] u
m

Z at,p,10,102,1,4.0,1 +Lp(a2,pq0,1) | U,
=1

+

where £, =ay p p1,1D1,1+a1p p,12D1,2. From the Identification of (2.62) with (2.63) results

Proposition 2.6. A necessary and sufficient condition for the differential operator M(2)
defined by (2.55) be decomposed into the form (2.58) is:

m
fppo1 = Z a1,p,1,0,142,,p,0,1 + Lp(a2,p.p.0,1) (2.64)
=1
fopl = App01a2ppin+aippi1a2ppor+Lplazppi1),  (2.65)
Jopd2 = A1pp01a2pp12+aLpp12a2pp01+Lp(@2pp12),  (2.60)
Jop21 = A1pp11@2pplis (2.67)
Jop22tfpp23 = Qlpp12G2pp11+a1pp1,102,pp12s (2.68)

Jop24a = Alpp12a2pp12 (2.69)
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and for p # q
m
fp,q,O,l = Z ai,p,1,0,142,1,4,0,1 + -Lp (a2,p,q,0,l ), (2.70)
=1
Jpa1l = Q1pp11G2pg01+0a1,pg0,102,44.1,15 (2.71)
fpgl2 = Q1pp1202pg01+0a1pg0,102,44912- (2.72)

3 Nonlinear differential operators

In this section, we investigate the factorization of nonlinear differential operators.

3.1 Factorizations of nonlinear differential equations

We start with general considerations and then deduce the main results on conditions of
factorization.

3.1.1 General setting and results
Let s > 2 be a positive integer, A be an open subset of R” and Q an open subset of R. Let

S Pk

P()= > > gkn(x,)Den (3.1)

k=0 h=1

be a nonlinear differential operator of order s, where g; , € C(A X Q,R). The operator P(s)
acts on a function u € C5(A, Q) as follows

s Pk

P(s)u= "> gin(xwDeyu. (32)

k=0 h=1

The method of factorization consists in seeking a decomposition of the differential operator
(3.1) in the following form

l
Pis) = |@ts) (3.3)
i=1
with Y1, s; = s and
Si - Pk
Qils)= 2" " bign(x, D, (3.4)
k=0 h=1

where by i € C(AXQ,R) and by € CEFI(AXQR), i = 2,3, 1.
Expanding (3.3) leads to the relations between unknown functions b;; , of the differential
operators Q;(s;) and the known functions g of the original differential operator P(s).
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3.1.2 Necessary and sufficient conditions for the factorization of second order non-
linear ODEs

Let Q,A and Ag be three open subsets of R such that Ag € A. Consider the second order
nonlinear ordinary differential operator

2 Dk
PQ2) = Zzgk,h(x,')Dk,h
=0 h=1
= go,1(x,")Do1 +g1,1(x,")D1,1 +82,1(x,-)D2 1, (3.5)

where gi;, € C(A X Q,R) and x = x!. Write P(2) in the form

P(2)

Qi(1)- (1)

1 Pk
[Z Z b1 kn(x,)Dyp

1 p
Z Z by g n(x,-)Dy
k=0 h=1 k=0 h=1

[61,01(x,)Do,1 +b1,1,1(x,)D11][p20,1(x,)Do1 +b211(x,)D1 1], (3.6)
where by 1, € C(AXQ,R) and by, € C1(A X Q,R). Let u € C*(Ag, Q). Then we have

PQu = goa(x,u)u+g11(x,u) e +g2,1(x,u)ury (3.7
and after expansion

[61,0,1(x,)Do,1 +b11,1(x,-)D1 1] [b2,0.1(x,)Do,1 +b2,1,1(x,-)Dy 1 | u
[b101b2,11 +b1,1,102,01 +b1,11D1,1(D2,1,1) +b1,1,1D12(b201)u]ux — (3.8)

2
bi1,1D12(bo 1, Dus + 010,102,010 +01,1,1D1,1(D2,0,1) | 4+ b1 1,102,1,1 Uy

PQ2)u

+

Identifying (3.7) with (3.8) furnishes

Proposition 3.1. A necessary and sufficient condition for the differential operator P(2)
defined by (3.5) be decomposed into the form (3.6) is:

g1 = bbby, (3.9
g1 = bi1o1b21,1+b11,1b20,1 +b111D11(b2,11) +b11,1D12(b2p)u,  (3.10)

0 = b111D12(b21,1), (3.11)
go1 = Db101b20,1+b11,1D1.1(b20,1)- (3.12)

3.1.3 Necessary and sufficient conditions for the factorization of second order non-
linear PDEs with two independent variables

Let A and A be two open subsets of R? such that Ag C A. Let Q be an open subset of R.

Consider the second order nonlinear partial differential operator

2 Pk

Z Z 8kh (X, )Dg

=0 h=1
80,1(x,)Do,1 +g1,1(x,)D11 + g1 2(x,-)D12 + g2,1(x,-)D2 1

822(x,)D22 + g23(x,-)D2 3 + g2.4(x,)D2 4, (3.13)

P(2)

+
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where gr, € C(AXQ,R) and x = (x1 , xz). Write £(2) in the form

P2) Qi(1)-&(1)

1 1
lz i b1 kn(x,)Di Z Z b xn(x, Dy
k=0

=0 h=1 =1
[610,1(x,)Do,1 + by 1,1(x,-)D1 1 +by,12(x,-)Dy 2]
[62,0,1(x,)Do,1 +b2,1,1(x,-)D1 1 + b2 12(x,-)D1 2], (3.14)

Pk

X

where by ;. € C(AXQ,R) and by, € C'(AxQ,R). Let u € C*(Ag,Q). Then we have

PRu = goi(x,u)u+gri(uwuy+gia(x,u)ue +go1(x,u)uy,
+ (8220, u)+g23(x, 1)) u 2+ g2a(x,u) Uy, (3.15)

and after expansion

P2)u b1,0,1(x,)Do,1 +b1,1,1(x,)D1,1 +b1,12(x,-)D1 2]

b20,1(x,-)Do,1 +b2,1,1(x,-)D1 1 +b212(x,-)Di 2] u
b10,1b20,1+b1,1,1D1,1(b2,0,1) +b1,12D12(b20,1)] u

b1,0,1021,1 +b1,1,1b20,1 +b1,1,1D1,1(b2,1,1) +b1,12D12(b2,1,1)
b1,11D13(b20,1)u] Uyt +[b10,1b2,12 +b1,12b201 +b1,1,1D1,1(b2,12)
b1,12D12(b2,12) +b1.12D1 3(b20,1) u] e +by 1 1Dy a(by )i
[61,1,1D13(b2,12) + b1,12D13(b2,1,1)] 1,2 + b1,1,2D1,3(b2,1,2)ui2

bi1,1bo1 gt +[D112b2 11 +D11b2 2] w2 + b1 1202 12Uy 2. (3.16)

X

[
[
[
[

+ + o+ + o+

Identifying (3.15) with (3.16) yields

Proposition 3.2. A necessary and sufficient condition for the differential operator P(2)
defined by (3.13) be decomposed into the form (3.14) is:

g1 = bbb, (3.17)
82+83 = biri2br11+b11,1b212, (3.18)
g4 = bii2b212, (3.19)

g1 = bioibyi1+b11,1b201+ L(b211)+b11,1D13(b2o1)u, (3.20)
812 = bioibrio+b112bro1+ L(b212)+b112D13(bro1)u, (3.2D

go1 = b1o1b201+ L(b202), (3.22)
0 = br12D13(b2,12)s (3.23)
0 = b111D13(b21,1), (3.24)
0 = D111D13(b212)+b1,12D13(D2,11), (3.25)

where .E = bl,l,lDl,l +b1’1’2D1,2.
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3.2 Factorizations of systems of nonlinear differential equations
3.2.1 Theoretical considerations and principles

Let A be an open subset of R” and €, an open subset of R”. Examine now the factorization
process for systems of s-th order, (s > 2), nonlinear differential equations with n indepen-
dent variables x = (xl,--- ,x”) and m > 2 dependent variables u = t(ul,--- ,um), u = u(x)

whose associated matrix operator, M(s), is of the form

M) = [Rpg (5p.0)] ) om (3.26)
the R, 4 (s p,q) are s, 4-th order linear differential operators
Spa Pk
Rp.q (sp,q) = Zprqkh(x’ s--»" )Drp, 3.27)
k=0 h=1

m-entries

where fp 40 € CAXQR), 5,4=5—-1+0,4,6pp=1and6,,=0if p #q.
Let A and Ay be two open subsets of R” such that Ag C A. The matrix operator M(s) acts
on a vector valued function u =’ (ul R ,u’”) € C*(Ap, Q) as follows

M) = [Rpg (55.)] ) o 1=

m
q
Z Rp.a (Sp,q) u ’
1<p<m

q=1

with
Spq Pk
qu Spq Ip qkh um)Dk,h uf. (3.28)
k=0 h=1

The method of factorization consists in seeking a decomposition of the matrix M(s) under
the following form

)
Ms) = | [ Nicsi) (3.29)
i=1
where
Ni(si) = [ tpq(stpq)]lsp’qu (3.30)
and
Siipg Pk
7dzpq slpq Zatquh(x, seees )Dgps (3.31)
k=0 h=1 m-entries

with 31 5= 5, Sipg = Si— 1 +0pg, @1.pgin € CAXQR) and a; p.gs € CEF 74 (AXQR),
i=2,3,--,L

Expanding (3.29) leads to the relations between the unknown functions a; gk, of Ni(s;)
and the known functions f,, 5« » of M(s).
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3.2.2 Necessary and sufficient conditions for the factorization of systems of second
order nonlinear ODEs

Let A, Ag be two open subsets of R such that Ag C A, and Q an open subset of R”. Consider
the matrix operator

M@ =Rog) e (332)
where
2 P
Rop = Zprqkh(x, s-es )Dgp (3.33)
k=0 h=1 m-entries
= fp.p.01( ., Do+ fpp11(x, . )DL+ fppoa(x, o, )Do
m-entries m-entries m-entries
and for p # g
Rpg = Zprqkh(x, s> Dk
k=0 h=1 m-entries
= fpg01(xs oo )Do1 + fpgr1(x, 5.0, )Dy (3.34)
m-entries m-entries

with f,460 € C(AXQ,R), x = x'. Write M(2) in the form

M(2) = Ni(1)- Na(1), (3.35)
where
NiD =gl o (3.36)
with
7.i,p,p = Zzalppkh(X, seres )Din
k=0 h= m-entries
= Qippo1(x, ...,-)Do1+aipp11(x, ..., )D1 (3.37)
m-entries m-entries
and for p # ¢
7~i,p,q = ai,p,q,O,l(X, Sheees” )D0,17 (3.38)
m-entries

a1 pgin € CAAXQR) and az p g 1n € C(AXQR). Let u = ’(ul yoo ,u’") € C*(A,Q). Then

we have
M@)u=[Ry] ZR g i (3.39)

q 1<p q<m

1<p<m
where
Rp,p uf = fp,p,O,l (x,u) ul + fp,p,],l (x,u) ui + fp,p,Z,l (x,u) ugx
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and for p # ¢

Rp,q ul = fp,q,O,l (x,u)u? + fp,q,l,l (x,u) ”z-

On the other hand, after expansion of (3.35), we have

MQR)u= [ﬁp’q]lanSm u= Zﬁp,q u? ,
g=1

I<p<m

where

m

R _ p hop
Rppu’ = al,p,p,l,lalp,p,l,l”2x+a1,p,p,1,1ZDLZH(QZ,p,p,I,I)qux

=1
m

(3.40)

h
+ Aippll Z D, 7.1(a2ppo ) ugu’ + [al,p,p,o,laz,p,p,l,l +a1,p.p1,142,p.p,0.1

X
h#p

P
+ aipp1D1(a2pp11)+ al,p,p,l,lDl,p+1(a2,p,p,0,1)Mp] Uy
m

+ Zal,p,l,o,laz,z,p,o,l +aipp1,1D11(azppo1) |u”
=1

and for p # ¢

R — q
Rpqu! = [al,p,p,l,laZ,p,q,O,l +a1,p.4.0,102,4.4.1,1 +A1,p.p.1,1D1,4+1(a2,p.40.1) Mq] Uy

+

m
h
al,p,p.1,1 Z Dl,ﬁ+1(a2,p,q,0,l)ux uf

el
h#q

+

m
Z a1,p.00.1420,40.1 +a1,p.p.1.1D1.1(@2,pg.0.1) | u?.
=1

Identifying (3.39) with (3.40) yields

Proposition 3.3. A necessary and sufficient condition for the differential operator M(2)

defined by (3.32) be decomposed into the form (3.35) is:

m
fp,p,O,l = Zal,p,l,o,laz,l,p,O,l +al’p,p,l,lDl’l(azgp’p’o’l)’
=1
fopll = @Lpp01@2pp11+a1pp 1102501
+ a1 pp11D11@pp11) A1 pp11 D1 pe1 @2 p po1) Ul
fP,P,Z,l = al’p’p’l!lalp,p,l,l,
0 = D1ﬁ+1(02,p,p,0,1), he{l,2,---,m}\{p},
0 = Dlﬁﬂ(aZ,p,p,l,l), h=1,2,---.,m

(3.41)

(3.42)
(3.43)
(3.44)

(3.45)



Factorization of Differential Operators 71

and for p # q
m
frao1 = Z a1,p.101021.40.1 +@1,p.p11D1,1(@2,p.4.0.1); (3.46)
=1
Jpaldl = Q1pp1102,pg01+0a1p00102,441.1+a1pp11D1g+1(a2,pq01)u?, (3.47)
O = Dl;]:;+1(az,p,q,0,1)a h E {1’2’ 7m}\{q} (348)

3.2.3 Necessary and sufficient conditions for the factorization of systems of second
order nonlinear PDEs with two independent variables

Let A, Ag be two open subsets of R? such that Ay C A, and Q an open subset of R”. Consider
the matrix operator

MQ) = [R,,,[,]lsp,qgn, (3.49)
where
2 Pk
Rop = Zpr,q,k,h(x, “yeees )Dip (3.50)
k=0 h=1 m-entries
= fpp01(x ... )Dot + fpp11(x, .o )DL+ fppa2(x, ., Dy
S~ S~ S~
m-entries m-entries m-entries
+  fop21(x, o )Dog+ fpp22(x, o, )Doo
S~~—— S~——
m-entries m-entries
+ fpp23(x Do+ [y p0a(x, -, )Doyg
S~— S~—
m-entries m-entries
and for p # ¢
1 Pk
Rpqg = Z pr,q,k,h(x, “yeees )Dip (3.51)
~——
k=0 h=1 m-entries

= fp,q,O,l(x, EEEEED )DO,I +fp,q,1,1(xa EEEEED )Dl,l +fp,q,1,2(xa EXEEEN )Dl,2
S~—— S~ S~

m-entries m-entries m-entries

with f,gn € C(AXQR), x = (x!,x2). Write M(2) in the form

M(2) = Ni(1)- Na(1), (3.52)
where
NiD = Tipal 2,y (3.53)
with
1 p
7'i,p,p = Zzai,p,p,k,h(x oo )Dron (3.54)

k=0 h=1 m-entries

Aipp0,1 (X ..., )Do1+aipp1,1(x ..., )Di1+aippi12(x-,...,-)Dio

m-entries m-entries m-entries
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and for p # g
7~i,p,q = di,p,q,0,1 (X ey )DO,I > (3.55)

m-entries

a1 pgin € CAXQR) and a3 pgin € CAXQR). Letu="(u', -+ ,u") € C*(A9, Q). Then
we have

m
_ - q
M@u=Rpg| _ _ u= D Ry qu : (3.56)
q=1 1<p<m
where
Rppul = f P+ f, P+ P
PP p.p0,1 U pp LU T ppl2l,
P P P
+ Jppartt + (fp,p,2,2 + fp,p,2,3) U ot Tppratty, (3.57)
and for p £ ¢q

— q q
Rp’q Mq - fp’qvo’l uq +fp:qa1’1 uxl +fpvq’]’2 MXZ'

On the other hand, after expansion of (3.52), we have

m
i - R
MQ2)u= [Rp,q]lsp’qu u= ZRM u , (3.58)
=1 1<p<m
where
R P — p p
Rppu’ = a1pp11G2pp11iy,+ (al,p,p,l,zaz,p,p,l,l + a1,p,p,1,1az,p,p,1,2) U,

p
T A1pp1202,pp 12U, 5 [al,pw,O,laZ,p,p,l,l +a1,p,p.1,102,p,p,0,1
P
+ 'Lp(alp,p,l,l) + al,p,p,l,lDl,p+2(a2,p,p,0,l) up] u, + [al,p,p,O,laZ,p,p,l,Z

p
+ a1pp12a2,pp0.1 + Lp(a2,p.p12) +a1pp12D1p12(@2,pp0.1) ”p] U

m m
_ h D _ h P
+ al,p,p,l,IE D 7.0(app1,0)u ”x1+a1,p,p,l,l§ D, go(appr2)ug u,

h=1 h=1
m _ m _
+ D.~ ( h D D.~ h D
a1,p.p.1.2 17+2\92,p.p,1,1 17803 u,+aippi2 1,h+2(a2,p,p,1,2) Upl ,
=1 =1

h
D 52(a2p po) i u”

!ME

m
h
T dippli Z Dl’ﬁ+2(a2,p,p,0,l)ux1 u? + ai,p,p,1,2

=
h#p

==

m

+ Zal,p,z,o,mz,l,p,o,l+£p(02,p,p,o,1) uP
=1



Factorization of Differential Operators

73

and for p # ¢
R — q
Rpqu? = [al,p,p,l,lalp,q,O,l+a1,p,q,0,1a2,q,q,1,1+al,p,p,l,lDl,q+2(“2,p,q,0,1)”q] U
+ |a a + + Dy a( Yul |u?
Lp,p.1,202,p,4.01 T A1,p,q,0,142,4.4,12 T Q1,p,p,1201,4+242,p,q,0,1 ) U™ | U ,
m _ m _
+ a D+ ,(a yu', ul +a D,+ .(a Yl u?
Lp.p,1,1 Lh+2\92,p.4,0,1) % 1 Lp.p,1.2 Lh+2\92,p.4,0,1) % 2
h=1 h=1
Pﬁ#q E#q
m
+ Zal,p,z,o,laz,z,q,o,l +Lp(azpq01)|u,

=1

where L, = ay p p1,1D1,1 +a1,pp1,2D12. Identifying (3.56) with (3.58) yields

Proposition 3.4. A necessary and sufficient condition for the differential operator M(2)
defined by (3.49) be decomposed into the form (3.52) is:

m
Topoa = Zal’p’lvo»]alﬂpﬁ,l +Ly(a2,p.p0.1)s
=1
Jopdd = A1pp01a2,pp 11+ A1pp11G2,pp0.1
+ Ly(azpp11)+aipp1,1D1pr2(azppo)u’,
Jfop12 = Qpp01a2,pp12+aipp1202,pp0,1
+ Ly(azppi12)+aippi12D1pi2(azppo1)ul,
fP,P»ZJ = Qlp,p1,102,p,p,1,1,
fp7p,2,2 +fp,p,2,3 = Alppl1202.pp11+Ta1pp1,102.pp1.2,
fp,p,2,4 = Qlpp12a2p.p1.2,
0 = Dg,@ppo1). he{l.2, - .mp\{p},
0 = Dlﬁ_'_z(az’p,p’l’l), h=1,2,---,m,
0 = Dl,ﬁ+2(a2vPsP,192)’ h=1,2,.m
and for p # q
m
frao1 = Z a1,p.1,0,142,1,4.0,1 + Lp(a2,p.4.0,1)s
=1
Jralt = @Lpp11a2pg01+0a1pg010244.11+@1pp11D1442(a2,p401) U7,
Tra12 = 1pp1282,pg01+a1p01024412%a1pp12D1g42(a2,pg01) U,
0 = Diznazpgo1), hefl2,--- mi\{q}.
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