
Communications in Mathematical Analysis
Volume 11, Number 2, pp. 1–22 (2011)
ISSN 1938-9787

www.math-res-pub.org/cma

CHERN-SIMONS PATH INTEGRAL ON R3 USING
ABSTRACT WIENER MEASURE

ADRIAN P. C. LIM∗

Mathematics Research Unit
University of Luxembourg

(Communicated by Hitoshi Kitada)

Abstract

Instead of using white noise analysis, we use abstract Wiener measure to define the
Chern-Simons path integral over R3. One rigorous and the other, not so rigorous, def-
initions will be given. The latter will be used to compute the Wilson Loop observable
in the abelian case, which gives us the linking number of a link.
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1 Introduction

Witten in his paper [4] showed that the Chern-Simons path integral can be used to obtain
knot polynomials in a 3-manifold. The authors in [1] used white noise analysis to make
sense of the path integral Equation (2.2) on R3. They began with a Hilbert space, consisting
of L2 functions. Using Minlos theorem, they complete this space, using a sequence of
inner products, to define a (Gaussian) probability space E∗ consisting of distributions and
L2(E∗,µ). The Chern-Simons path integral is now realized as a distribution acting on test
functions contained in L2(E∗,µ).

A similar approach was adapted by Hahn in [3]. Furthermore, he computed the Wilson
Loop observables Equation (3.1) for the abelian and non-abelian gauge group. When the
gauge group is abelian, the theory agrees very well with the known knot literature. For the
non-abelian gauge group, there is a slight discrepancy.

More recently, the authors in [9] defined the Chern-Simons integral on a 3-manifold
using Wiener measure.

Before we begin on the math proper, we will use the following notation, to make the
writing easier. This is helpful when the reader encounters unfamiliar notation used in this
article.

∗E-mail address: adrian.lim@uni.lu
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Notation 1.1. (Set Notation.) For any vector space S, ~S will denote the direct product S×S.
~s will denote an element in~S, written as (s+,s−). Addition will be component-wise addition.
Define a product, ~s×~u := (s+u+,s−u−), ~s ∈ R2 and ~u ∈ ~S. ± as superscript or subscript
do not make any significant difference.

Given a Hilbert space (H,〈·, ·〉), consider the direct product ~H := H ×H. An element
in H is usually denoted by u and an element in H×H is always denoted by a 2- component
vector, ~u. Let P+ : H ×H → H (P− : H ×H → H) denote the projection onto the first
(second) component.

Let P : H ×H → H ×H be an orthogonal projection. Let Q± = P±P : H ×H → H
denote the composition of 2 projections and let A± = Q±(H×H) denote the range of Q±.
Note that A± is a subspace in H. Define for each orthogonal projection P, an orthogonal
projection P] whose range is equal to (A+⊕A−)× (A+⊕A−), a subspace inside H×H.

The inner product 〈·, ·〉 is extended to an inner product, 〈〈·, ·〉〉 on the direct product by

〈〈(A1 +B1),A2 +B2〉〉 := 〈A1,A2〉+ 〈B1,B2〉.

Given ~u = (u+,u−) ∈ H×H, denote 〈~u〉] := 〈u+,u−〉.
The standard coordinates on R3 will be denoted by x = (x0,x1,x2).
MN(C) will denote the vector space of N ×N matrices with complex entries. A∗ will

denote its hermitian conjugate of A. AT will denote the transpose. Tr will denote the matrix
trace.

φκ will always denote a 1,2 or 3 dimensional Gaussian density function with mean 0
and variance 1/κ2 and ς1 := κ/(8π), ς0 := κ/2π.

Remark 1.1. There is a dependence on κ in most of the definitions in this article. To simplify
the notation, reference to κ is omitted in most of the definitions, but the reader should bear
in mind that there is a κ dependence in the definitions used.

2 Chern-Simons Path Integral

Only for this section of this article, we will set κ =
√

2.
Let E be a trivial bundle over R3 and G a (compact) connected Lie subgroup of U(N),

N ∈ N. Denote the Lie algebra of G by g and identify g with the Lie subalgebra of the Lie
algebra u(N) of U(N).

Remark 2.1. In general, given A,B ∈ g, 〈A,B〉 = −Tr[AB] is degenerate. However, if g is
semisimple, then this bilinear form is non-degenerate.

Let x = (x0,x1,x2) be the usual coordinates on R3. The Chern-Simons action is given
by

CS(A) =
κ

4π

Z
R3

Tr[A∧dA+
2
3

A∧A∧A] dvolR3 , κ 6= 0. (2.1)

A is a connection on R3, which decays to 0 fast enough for it to be integrable on R3.
Now, we want to make sense of an expression

ZCS :=
Z

A∈A
eiCS(A)DA. (2.2)
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Here, A is the space of g-valued connections on the bundle E and DA is some heuristic
Lebesgue measure on A .

Every connection over R3 can be gauge transformed into the form

A = a0dx0 +a1dx1,

where a0 and a1 are g-valued functions over R3 and

a1(x0,x1,0) = 0, a0(x0,0,0) = 0. (2.3)

This is called Axial gauge fixing in [3]. Assume a0 and a1 are smooth and decay fast enough
for the integral to be defined.

With this gauge the cubic term in the action drops out and we are left with (Dot means
matrix multiplication.)

2ς1

Z
R3

Tr[∂2a0 ·a1−a0 ·∂2a1]dvolR3 , ς1 :=
κ

8π
=
√

2
8π

. (2.4)

Consider the Schwartz space S(R3), with the Gaussian measure φκ,
√

φκ(x)= e−κ2|x|2/4(κ2/2π)3/4.
a1(x) = x2 p−(x) ·

√
φκ(x) will satisfy Equation (2.3). Write a0(x) = p+(x) ·

√
φκ(x). p± are

g-valued, with each component being a polynomial over R3.
Let τ := x2∂2 and define an inner product

〈·, ·〉g,κ ≡ 〈·, ·〉 : A,B ∈C∞(R3 → g)×C∞(R3 → g)→−ς1

Z
R3

Tr(AB)φκdvolR3 .

Then Equation (2.4) becomes

〈x2∂2 p+, p−〉−〈p+, p−〉−〈p+,x2∂2 p−〉
=〈τp+ + τp−, p−− p+〉−〈p+, p−〉+ 〈τp+, p+〉−〈τp−, p−〉. (2.5)

Now, let a∗ = −∂2 + x2, a = ∂2 + x2. Apply 2xy = (x + y)2 − x2 − y2 + [x,y], 2τ =
2x2∂2 = a2−∂2

2− x2
2−1 = a2−2x2

2 +a∗a.
Now, 2∂2 = a−a∗ := a−, 2x2 = a+a∗ := a+. Let

L = a2− a+,2

2
, a+,2 = (a+)2.

Define

F(~p) := 〈2τ(p+ + p−), p−− p+〉−2〈p+, p−〉+ 〈Lp+, p+〉−〈Lp−, p−〉.

Then, Equation (2.5) becomes F(~p) + 〈a∗ap+, p+〉 − 〈a∗ap−, p−〉, which is equal to
−CS(A).

The idea now is to split the expression intoZ
~p∈~Sg(R3)

e−iF(~p)e−κ+〈a∗ap+,p+〉−κ−〈a∗ap−,p−〉Dp+Dp−,

for κi > 0 and then do an analytic continuation, followed by κ+ → i and κ−→−i.
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For~κ = (κ+,κ−),

1
N~κ

exp[−κ+〈a∗ap+, p+〉−κ− 〈a∗ap−, p−〉]Dp+Dp−

should be interpreted as a product of 2 infinite dimensional Gaussian measure, with vari-
ances κ

−1
+ and κ

−1
− respectively and 1/Nκ is some normalization constant. Such a measure

does not exists on C∞(R3); one has to complete the space to define a sensible Gaussian
measure.

The (physicists) Hermite polynomials {hi}i≥0 form an orthogonal basis on L2(R,µ)
with the Gaussian measure dµ(x) ≡ e−x2

dx/
√

π. The operators a∗ and a are the familiar
raising and lowering operators, i.e. a∗hn = hn+1 and ahn = hn−1. The operator a∗a is the
Hamiltonian operator, a∗ahn = nhn.

There is a unitary isomorphism from L2(R,µ)→ L2(C,e−|z|
2
dxd p/π), given by the stan-

dard Geometric Quantization of the Harmonic Oscillator, which is also the Segal-Barmann
transform. Using Kahler polarization, the Quantum Hilbert space is the space of Holomor-
phic functions integrable with respect to e−|z|

2
dxd p/π, z = x + ip. The quantized Hamil-

tonian is z∂z and the orthonormal basis is {zn/
√

n!}∞
n=0. Note that Q : hn

√
φ1/

√
2nn! →

zn/
√

n! and Q : a∗a → z∂z, is a unitary isomorphism.

Notation 2.1. For integers i, j,k ≥ 0, pr will denote the triple (i, j,k) with i + j + k = r.
pr! := i! j!k! and pr!∗ := pr!k. (Note the extra k factor.) For z = (z0,z1,z2) ∈ C3, zpr :=
zi

0z j
1zk

2. Pr will denote the set of all such triples, i.e.

Pr = {(i, j,k)| i+ j + k = r}.

Let P =
S

∞
r=0 Pr.

There is an ordering which we will adopt in the rest of the article. We will write pr ≤ pr′ ,
if in the order of priority, r ≤ r′, followed by i ≤ i′, j ≤ j′ and k ≤ k′. Hpr precedes before
Hpr′ if pr ≤ pr′ . Hpr will be defined shortly.

Definition 2.2. Let Sg(R3) = S(R3)⊗ g. Define ~Sg(R3) ∼= Sg(R3)× Sg(R3) to be the
Schwartz space of all g×g-valued functions over R3, and denote the extension of 〈a∗a·, ·〉g,κ

to the direct sum as 〈〈·, ·〉〉1, dropping the dependence on κ for ease of notation and let ~H1

be the Hilbert space using this inner product. The norm is denoted by ‖ · ‖1:=
√
〈〈a∗a·, ·〉〉1.

We will let H1 denote the Hilbert space containing Sg(R3) using the inner product 〈a∗a·, ·〉g,κ.

Remark 2.3. In order for 〈〈a∗a·, ·〉〉1 to qualify to be an inner product on ~H1, we only
consider polynomials which vanish at x2 = 0.

Let {Ei j} be an orthonormal basis for g× g, using −Tr extended to the direct sum.
Let Hpr(x) := hi(x0)h j(x1)hk(x2) be a product of Hermite polynomials and H̃pr will denote
Hpr/

√
2r pr!∗. Here, H̃pr is normalized. Consider the tensor product set

∞[
r=0

{ς
−1/2
1 H̃pr

√
φκ : pr ∈ Pr}⊗{Ei j},

which forms an orthonormal basis for ~H1. Order this basis according to the ordering on pr.
Given ~u ∈ ~H1, write

~u = ∑
pr

∑
i j

ci j
pr

ς
−1/2
1 H̃pr ⊗Ei j
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and
〈〈a∗a~u,~u〉〉1 = ∑

pr

∑
i j

ci j,2
pr

, ci j,2
pr

= (ci j
pr

)2.

Definition 2.4.

1. Let F be a partial ordered set of finite dimensional orthogonal projections onto ~H1,
i.e. P > Q if QH1 ⊆PH1. Similarly let G be a partial ordered set of finite dimensional
orthogonal projections onto H1.

2. Let P ∈ G . Given any Borel subset F ⊆ PH1, define for κ > 0,

µκ

(
x ∈ P−1(F)

)
=
(

κ

2π

)l/2 Z
y∈F

e−κ|y|2/2dy, (2.6)

where l is the dimension of PH1.

3. Let P = P+×P− ∈ F . Let F ∈ P~H1 be a measurable set, such that F = F+×F−,
F± ⊆ PH1. Define for~κ,

µ~κ

(
x ∈ P−1(F)

)
= µκ+

(
x ∈ P−1(F+)

)
×µκ−

(
x ∈ P−1(F−)

)
=
(

κ+

2π

)l+/2(κ−
2π

)l−/2 Z
y+∈F+,y−∈F−

e−(κ+|~y1|2+κ−|~y2|2)/2dy+dy−, (2.7)

where l± is the dimension of P±H1.

4. Let D± denote the Borel σ-algebra in P±H1, P± ∈ G . Let P = P+×P− and F ⊆
P~H1 be in the σ-algebra generated by D+ ×D−. Extend µ~κ to be defined on the
measurable set F .

5. A semi-norm ‖ · ‖ in ~H1 is called measurable if for every ε > 0, there exists a P0 ∈ F
such that

µ~κ (‖ Px ‖> ε) < ε

for all P ⊥ P0 and P ∈ F .

As explained in [2], this does not define a measure on ~H1. To define a Gaussian measure,
one has to complete ~H1 into a Banach space B, using any measurable norm ‖ · ‖, defined as
follows. We will use Q : ς

−1/2
1 H̃pr 7→ zpr/

√
pr!∗. For any~u = ∑pr∈P ∑i j ci j

pr ς
−1/2
1 H̃pr ⊗Ei j ∈

~H1, Q maps it to a gC×gC-valued function on C3 by replacing each ς
−1/2
1 H̃pr by zpr/

√
pr!∗.

Note that zpr = zi
0z j

1zk
2, pr = (i, j,k). The sesquilinear complex inner product on gC-valued

functions over C3 is given by

〈zpr ⊗Ei j,zpr′ ⊗Ei′ j′〉

=−Tr[Ei jEi′ j′ ]
1
π3

Z
C3

z2∂z2zpr · zpr′ e−|z
2
0|−|z1|2−|z2|2dx0d p0dx1d p1dx2d p2.

Note that z j = x j + ip j and z j means complex conjugate. We will use the same symbol ~H1

to denote the Hilbert space of gC×gC-valued functions over C3.
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Definition 2.5. (Measurable norm)
Let ~u = ∑i j ∑r ∑pr ci j

pr z
pr/
√

pr!∗. Introduce a norm by setting

‖~u ‖= sup
i j

sup
z∈B(0,1/2)

∑
r

∑
pr

|ci j
pr
||zpr |.

B(0,1/2) is the ball with radius 1/2, center 0 in C3.

Proposition 2.6. The norm ‖ · ‖ is measurable.

Proof. Let ε > 0 and λ = ∧{κ+,κ−}. Choose a N large such that ∑n≥N n22−n < λε2 and let
Po be a finite dimensional orthogonal projection onto the span of {zpr ⊗Ei j : r ≤ N}i j. Let
V be a finite dimensional subspace in the complement of the range of Po and let {β1, . . .βl}
be an orthonormal basis for V , using 〈〈·, ·〉〉1. Let P denote the projection onto V . Now,
there are at most n2 triple (i, j,k) with i+ j +k = n. It is possible to write each basis vector
as

βs = ∑
pr≥qs

ai j,s
pr

zpr/
√

pr!∗⊗Ei j,

with q1 < q2 < .. . < ql and each qt is a triple (i, j,k) with i+ j + k ≥ N.
Any projected vector Px can be written as Px = ∑s cs(x)βs. By definition (See Equation

(2.7).), cs(·) : ~H1 →R is a Gaussian random variable with variance 1/κ±. Let E denote the
expectation of l independent standard Gaussian random variables. Then

µ~κ (‖ Px ‖> ε) =µ~κ

(
sup

i j
sup

z∈B(0,1/2)
∑

s
∑

pr≥qs

|csai j,s
pr
||zpr |> ε

)

≤1
ε

sup
i j

sup
z∈B(0,1/2)

∑
s

∑
pr≥qs

E|csai j,s
pr
||zpr | ≤ 1

ε
sup

z∈B(0,1/2)
∑

s
E|cs|2 ∑

pr≥qs

|zpr |

≤ 1
λε

∑
n≥N

n22−n < ε.

Complete ~H1 into a Banach space ~B1, and forms a triple, an abstract Wiener space in
the sense of Gross. Thus, (i, ~H1,~B1) forms an abstract Wiener space. Identify ~y ∈ ~B1,∗ ⊆
~H1 ⊆ ~B1 with an element in ~H1 and denote the pairing ((~u,~y))1 =~y(~u). Here,~y ∈ ~B1,∗.

Definition 2.7. (Gaussian measure on Abstract Wiener Space)

1. Define µ̃~κ, a measure on ~B1 with covariance~κ, by

µ̃~κ

{
~u∈~B1 :

(
((~u,~y1))1, . . . ,((~u,~yn))1

)
∈F
}

= µ~κ

{
~u∈ ~H1 :

(
〈〈~u,~y1〉〉1 , . . . ,〈〈~u,~yn〉〉1

)
∈F
}

.

The~y j’s are in ~B1,∗.

2.
{
~u ∈ ~B1 :

(
((~u,~y1))1, . . . ,((~u,~yn))1

)
∈ F
}

is called a cylinder set in ~B1. Let R~B1 be

the collection of cylinder sets in ~B1.
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Remark 2.8. 1. It was shown by Gross that µ̃~κ is σ-additive in the σ-field generated by
R~B1 .

2. Extend µ̃~κ over the Borel field of ~B1.

3. It can be shown that the σ-field generated by R~B1 is equal to the Borel field of ~B1.

Now, any ~u ∈ ~B1 can be written as ~u = ∑i j ∑pr ci j
pr z

pr/
√

pr!∗ ⊗ Ei j, convergence in
the sense of ‖ · ‖. The space ~B1 can be described explicitly. Let ~H1

C = ~H1 ⊗R C and
~B1,∗

C = ~B1,∗⊗R C.

Proposition 2.9. For w ∈ C3, define χ(w) :~u ∈ ~B1 7→~u(w). Then χ(w) is in ~B1,∗
C .

Proof. Let R ≥ 2|w|. Choose M > 0 such that for all r > M, Rr ≤
√
b(r/3)c!. Then,

|~u(w)| ≤ sup
i j

∣∣∣∣∣∑pr

ci j
pr

wpr/
√

pr!∗

∣∣∣∣∣≤RM sup
i j

∑
r≤M

∑
pr

|ci j
pr
|
∣∣∣(w

R

)pr
∣∣∣ 1√

pr!∗

+ ∑
r>M

sup
i j

∑
pr

|ci j
pr
|
∣∣∣(w

R

)pr
∣∣∣ Rr
√

pr!∗

<(RM +1) ‖~u ‖ . (2.8)

This shows that χ(w) :~u →~u(w) is a bounded complex functional on ~B1.

Proposition 2.10. The support of µ̃~κ is on continuous gC×gC-valued functions on C3.

Proof. Fix a w0 = (x0,x1,x2). Now for any w,~u(w0 +w)−~u(w0) = (~u,χ(w0 +w)−χ(w0))
for ~u ∈ ~B1. From Equation (2.8), it is clear that χ(·) is continuous at 0 using the operator
norm.

Fix a z0 6= 0 and let |z0| ≤R. Let D = {z∈C : |z−z0|< R/4}⊆C and γ be the boundary
of D. By Cauchy integral formula,

zn
0 =

Z
γ

zn

z− z0
dz.

Thus, for z1 close to z0,

|zn
1− zn

0|=
∣∣∣∣Z

γ

zn(z1− z0)
(z− z1)(z− z0)

dz
∣∣∣∣≤ 2π(2R)(2R+1)n|z1− z0|.

Thus, if write pr = (n0,n1,n2) and w+w0 = (y0,y1,y2), then

|(w+w0)pr −wpr
0 |=

∣∣(xn0
0 − yn0

0 )xn1
1 xn2

2 + yn0
0 (xn1

1 − yn1
1 )+ yn0

0 yn1
1 (xn2

2 − yn2
2 )
∣∣

≤ 3(|w+w0|+ |w0|)2r(|w+w0|+ |w0|)r|w+w0−w0|. (2.9)

Let ~u = ∑i j ∑pr |c
i j
pr |wpr/

√
pr!∗⊗Ei j. From Equation (2.9), choose R > 0 such that

|(w+w0)pr −wpr
0 | ≤ Rr|w|
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for all w ∈ B(w0,2|w0|). Then, if ε < |w0|,

sup
w∈B(0,ε)

|~u(w+w0)−~u(w0)| ≤ sup
w∈B(0,ε)

N2 sup
i j

∑
pr

|ci j
pr
|
|(w+w0)pr −wpr

0 |√
pr!∗

≤ sup
w∈B(0,ε)

N2 sup
i j

∑
pr

1
2r |c

i j
pr
|2

rRr|w|√
pr!∗

≤c(w0) · ε ‖~u ‖

for some constant c(w0).
Thus for any ε > 0,

µ̃~κ

(
sup

w∈B(w0,1/k)
|~u(w0 +w)−~u(w0)|> ε

)
= µ̃~κ

(
sup

w∈B(w0,1/k)
|(~u,χ(w0 +w)−χ(w0))|> ε

)

≤ µ̃~κ

(
c(w0)

k
‖~u ‖> ε

)
−→ 0

as k goes to infinity. Let

Ek = {~u : sup
w∈B(w0,1/k)

|(~u,χ(w0 +w)−χ(w0))|> ε}.

Choose an increasing subsequence {rk}∞
k=1 in N such that ∑k µ̃(Erk) < ∞. Then, by the

choice of rk, ∑k µ̃(Erk) < ∞ and hence by the Borel Cantelli Lemma,

∞\
q=1

∞[
p=q

Erp

has probability 0. Hence with probability 1, for each ~u, there exists a rk(~u) such that

sup
w∈B(w0,1/rk)

|~u(w0 +w)−~u(w0)|< ε.

Any ~u ∈ ~B1 in the support of µ̃~κ is continuous. Since it is actually given by a power
series, by Morera’s Theorem, it is analytic in each of its variable. Hence, the support of µ̃~κ

in the Banach space ~B1 is the space of entire ((gC×gC)-valued) functions on C3.
Now, the problem is to interpret F on ~B1

κ+
×~B1

κ− . Recall Q : ς
−1/2
1 H̃pr 7→ zpr/

√
pr!∗.

Under this map Q,

a 7→ ∂z2 , a∗ 7→ z2, τ 7→ ∂
2
z2
−2(z2 +∂z2)

2 + z2∂z2

and

L 7→ ∂
2
z2
− (∂z2 + z2)2

2
.

These operations make sense on holomorphic functions. The problem is that the holomor-
phic functions are not integrable with respect to Gaussian measure.
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Write
H (p,q) := (‖ p+q ‖2 − ‖ p ‖2 − ‖ q ‖2)/2.

Then F is extended to F̃ ,

F̃(p) :=H (2τ(pα + pβ), pβ− pα)−H (pα, pβ)+H (Lpα, pα)−H (Lpβ, pβ), p =(pα, pβ).

Given a continuous function G : A → R, suppose it has a continuous extension G̃ :
~B1 → R.

Definition 2.11. (First definition for Chern-Simons path integral)
The CS path integral, is now interpreted as

1
ZCS

Z
A∈A

G(A)eiCS(A)DA = lim
κ+→i, κ−→−i

1
Z~κ

Z
~u∈~B1

G̃(~u)e−iF̃(~u)dµ̃~κ(~u). (2.10)

Z~κ is defined as

Z~κ := lim
κ+→i, κ−→−i

Z
~u∈~B1

e−iF̃(~u)dµ̃~κ(~u)

Remark 2.12. It is not at all clear that such an analytic continuation exists in this definition.
We will not address this issue, as in the rest of this article, we will not use this definition at
all. Instead, we will give an alternative definition, based on the approach used in [1].

3 Wilson Loop Observables

Note that for the rest of this article, κ > 0 is allowed to vary.
Let G be a Lie group. Let {ρk} be any set of finite dimensional representations of G.

The interest in Chern-Simons path integrals is the evaluation of

Z(R3,Ci,ρi;q) :=
1

ZCS

Z
A∈A

l

∏
k=1

W (Ck,ρk;q)eiCS(A)DA, (3.1)

where L = {Ck}k is a link in R3 with non-intersecting (closed) curves Ck and

W (Ck,ρk;q)(A) := Trρk T exp
[

q
Z

Ck
Aidxi

]
. (3.2)

Here, Trρk is the matrix trace in the representation ρk and T is the time ordering operator.
W (Ck,ρk;q)(A) is the holonomy operator of A, computed along the loop Ck. The integral
in Equation (3.1) will be known as the Wilson Loop observable (associated to the link L). q
will be called the charge of the link. When L consists of only one curve, the link is termed
a knot. We will write Z(R3,L;q)≡ Z(R3,Ci,ρ;q), when ρk = ρ for some representation ρ.

When L is empty, then Z(R3, /0;q) = 1. The completion of ~H1 is the space of 2-tuple
entire (gC×gC-valued) functions on C3, which defines a space of 2-tuple C∞(R3) (gC×gC-
valued) functions, i.e.

A ∈ ~B1 7→ A|R3 ∈ (C∞(R3)⊗gC)× (C∞(R3)⊗gC).
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Using the canonical embedding of R3 into C3, we could use Equation (3.2) to define a
function on ~B1 and this would give rigorous meaning to Equation (3.1).

There is a second approach to define ZCS, which was used in both [1] and [3]. Continue
the same setting as from the previous section. From Equation (2.4), an integration by parts
gives,

−ς0

Z
R3

Tr [a0 ·∂2a1]dvolR3 , ς0 :=
κ

2π
. (3.3)

Define 〈A,B〉0 :=−ς0
R

Tr[AB]dvolR3 and (H0,〈·, ·〉)≡H0 := L2
g(R3,volR3), the Hilbert

space of g-valued, integrable functions. The Schwartz space S(R3)⊗g is dense inside H0

and thus {ς
−1/2
0 Ĥpr

√
φκ}pr∈P ⊗{Ei j} forms an orthonormal basis.

Remark 3.1. Let Hpr/
√

pr! be the normalized Hermite polynomials with respect to the
Gaussian measure e−(|x0|2+|x1|2+|x2|2)/2/(2π)3/2dx0dx1dx2. Thus,

ς
−1/2
0 Ĥpr(x0,x1,x2)

√
φκ = ς

−1/2
0 Hpr(κx0,κx1,κx2)

√
φκ/
√

pr!.

Making use of Equation (2.3), let f1 = ∂2a1. If ~u = (a0, f1), then the Chern-Simons
path integral is defined as

lim
θ→i

Z
~u∈~Sg(R3)

ei〈~u〉]+ i
2 〈〈~u,~u〉〉0− θ

2 〈〈~u,~u〉〉0Da0D f1. (3.4)

Define ~H0, the completion of ~Sg(R3) using 〈〈·, ·〉〉0, using the same symbol to denote
the space of gC×gC-valued functions over C3. Define a Gaussian measure µθ on P~H0 for
any P ∈ F as in Equation (2.7). Define ‖ · ‖0:=

√
〈〈·, ·〉〉0 and complete the space into ~B0

using a measurable norm as before and define a Gaussian measure µ̃θ on ~B0. Denote the
paring ((~y,~u))0 :=~y(~u) ∈ R for~y ∈ ~B0,∗.

To make sense of 〈~u〉] + 〈〈~u,~u〉〉0 /2 on ~B0, one can define it using polarization and
hence define a measure on ~B0. However, in this case, we will use a different approach.

Definition 3.2. Let θ > 0.

1. Suppose F : (0,ε)→ C. Do an analytic continuation on F and write F̃ : U ⊆ C→ C
for some open and connected set U . Suppose i ∈U . We will write

lim
θ→i

F(θ) = F̃(i).

2. Let P ∈ F , the set of finite dimensional orthogonal projections and let {~e+,k,~e−,k}k
be an orthonormal basis in P]~H0. Let y±k = 〈〈·,~e±,k〉〉0 be the coordinates with respect
to~e±,k. Let the dimension of P]~H0 be 2l.

3. For each k,~yk = (y+
k ,y−k ) ∈R2. Let | · | be the Euclidean distance norm in R2. Define

for each P ∈ F ,

Z(P],θ) :=
(

θ

2π

)l Z
R2l

ei∑
l
k=1〈~yk〉]+ 1

2 |~yk|2e−
θ

2 ∑
l
k=1 |~yk|2

l

∏
k=1

dy+
k dy−k

and Z(P], i) = limθ→i F(θ).
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4. For any continuous cylinder function G ∈C(P~H0 → R), define

G({~yk}l
k=1) := G

(
l

∑
k=1

y+
k ~e+,k + y−k ~e−,k

)
.

5. For any continuous cylinder function G ∈C(P~H0 → R), let

Z(G,P],θ)

:=
1

Z(P],θ)

(
θ

2π

)l Z
R2l

G({~yk}l
k=1)e

i∑
l
k=1〈~yk〉]+ 1

2 |~yk|2e−
θ

2 ∑
l
k=1 |~yk|2

l

∏
k=1

dy+
k dy−k . (3.5)

Proposition 3.3. Let P],Q] ∈ F be orthogonal.

1. Z(P] +Q],θ) = Z(P],θ)Z(Q],θ).

2. For each θ > 0, Z(P],θ) = (1/
√

1−2i/θ)l . l was defined in Item 2 in Definition 3.2.

3. For each θ > 0, there exists a complex measure νθ such that
R
~u∈~B0 G(~u)dνθ(~u) is

given by Equation (3.5) for any cylinder function. Furthermore, |νθ| is a probability
measure on ~B0.

4. Let~s = (s+,s−) ∈R2 and~u = (u+,u−) ∈ ~B0,∗ ⊆ ~H0 ⊆ ~B0. Define a product~s×~u :=
(s+u+,s−u−). The Fourier transform of νθ is given by

Fνθ(s+u+,s−u−) =
Z
~B0

ei((·,~s×~u))0dνθ

=exp
(
−i(s+u+ + s−u−)2/2θ2

1− (2i/θ)

)
e−

1
2θ

(s+,2u+,2+s−,2u−,2). (3.6)

The RHS can be analytically extended to over C/{0,2i} and thus

lim
θ→i

Fνθ(~s×~u) = e−i〈~s×~u〉] . (3.7)

Remark 3.4. 1. If one is interested in only the moment generating function, thenZ
~B0

e((·,~s×~u))0dνθ = exp
(

i(s+u+ + s−u−)2/2θ2

1−2i/θ

)
e

1
2θ

(s+,2u+,2+s−,2u−,2)

and
lim
θ→i

Fνθ(~s×~u) = ei〈~s×~u〉] . (3.8)

2. Compare the result of [4] in Proposition 3.3 with Equation (2.5.3) in [1], it appears
we are off by a minus sign. However, note that the L2 inner product used in that
article is negative of the one used here.

Proof. 1. It follows from 〈~u+~v〉] = 〈~u〉] + 〈~v〉], ~u ∈ P] and~v ∈ Q].
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2. The integral

z :=
θ

2π

Z
R2

eixy+i(x2+y2)/2e−θ(x2+y2)/2dxdy = E[eiZ2/θ], Z ∼ N(0,1).

But N2 ∼ χ2
1, and the characteristic function E[eitN2

] = 1/
√

1−2it. Thus, z = 1/
√

1−2i/θ

and hence the result follows from [1].

3. Let Γ : G ∈ L2(~B0, µ̃θ)→ Z(G,P],θ) ∈R for any bounded continuous cylinder func-
tion G. [1] says that for any cylinder function G, Z(G,P],θ) is well defined for any
P~H0 such that G is defined on. Since cylinder functions are dense, this linear func-
tional Γ can be extended to all of L2(~B0, µ̃θ). From Equation (3.5), Γ has operator
norm 1, using the L2 norm on L2(~B0, µ̃θ). By Riesz representation theorem, there
exists a complex valued function γθ, |γθ|= 1 such that Γ(G) =

R
~B0 Gγθdµ̃θ.

4. Set s+ = s− = 1. Note that ei〈〈·,~u〉〉0 is a cylinder function on P]~H0, where P is projec-
tion onto ~u. First assume that P] = P, i.e. ~u = (u+e,u−e), u+,u− ∈ R and e is a unit
vector in H0. Then, a straight forward computation givesZ

~B0
ei〈〈·,~u〉〉0dνθ =

√
1−2i/θE

[
e

i
θ

(
N+ iu+

√
2θ

+ iu−√
2θ

)2]
e−( 1

2θ
u+,2+ 1

2θ
u−,2),

N is the standard normal distribution. The quantity Q = (N +λ)2 is a non-central χ2

distribution and the characteristic function for Q is given by

exp
(

iλ2t
1−2it

)
√

1−2it
.

Plug in λ = i(u+ +u−)/
√

2θ, t = 1/θ,Z
~B0

ei〈〈·,~y〉〉0dνθ = exp
(
−i(u+ +u−)2/2θ2

1−2i/θ

)
e−( 1

2θ
u+,2+ 1

2θ
u−,2).

Observe that u+u− = 〈~u〉]. Take the limit as θ go to i in the sense of Definition 3.2,
we have the result.

Now assume that~u = (u1 p,u2 p+ tq), with p,q orthonormal vectors in H0 and u±, t ∈
R. Associate + with 1 and − with 2 for convenience. P] is now spanned by
{p j,q j} j=1,2, p1, p2 ≡ p and q1,q2 ≡ q. Then ~u = u1 p1 +u2 p2 + tq2.

For any arbitrary vector ∑ j α j p j + β jq j = y ∈ P], 〈〈y,~u〉〉0 = u1α1 + u2α2 + tβ2. If
~w = (u1,u2),~α = (α1,α2) and~β = (β1,β2), then the integral becomes

(1−2i/θ)
(

θ

2π

)2 Z
R2

ei(~w·~α+〈~α〉]+|~α|2/2)e−θ|~α|2/2dα1dα2 ·
Z

R2
ei(tβ2+〈~β〉]+|~β|2/2)e−θ|~β|2/2dβ1dβ2.

Note that 〈~u〉] = u1u2. Apply the calculations above, we get the result.
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Definition 3.5. (Second definition for Chern-Simons path integral)
Suppose a bounded continuous function G ∈ C(~H0) can be extended to G̃ ∈ L1(~B0, µ̃θ).
Define the Chern-Simons path integral as,

1
ZCS

Z
A∈A

G(A)eiCS(A)DA := lim
θ→i

Z
~B0

G̃dνθ. (3.9)

The existence of νθ was proved in Proposition 3.3.

From Remark 3.4, we note that such an analytic continuation exists, at least for G̃ of the
form ei((·,~u))0 ,~u ∈ ~B0,∗ ⊆ ~H0 ⊆ ~B0. The Chern-Simons path integral is then interpreted as a
linear functional acting on (a possibly subspace of) L1(~B0, ν̃θ).

3.1 Some Important Comments

Definition 3.5 of the Chern-Simons path integral, is not exact. Write ∂2 = a−a∗. In terms
of Hermite polynomials, ∂2 : hk 7→ khk−1 − hk+1. If one does a change of variables, ∂2 :
a1 7→ f1 = ∂2a1, then Expression (3.4) should become

1
det∂2

Z
~u∈~Sg(R3)

ei〈~u〉]+ i
2 〈〈~u,~u〉〉0− θ

2 〈〈~u,~u〉〉0Da0D f1. (3.10)

Of course, det∂2 does not make sense. It is either 0 or ∞.
Since we are only interested in defining a probability measure, one can just divide out

this indeterminate. But the problem is that there is no way to rigorously justify this division.
The bottom line is that in the second definition of the path integral is far from exact.

Because of this change of variables formula, the definition of the path integral should
be

1
ZCS

Z
A∈A

G(A)eiCS(A)DA := lim
θ→i

Z
~a∈~B0

G̃((a0,∂
−1
2 a1))dνθ(~a). (3.11)

and the Fourier transform should yield exp[i〈(u0,∂
−1
2 u1)〉]]. (The adjoint of ∂

−1
2 is −∂

−1
2 .)

Unfortunately, given u1 ∈ H0, ∂
−1
2 u1 is not in H0.

This change is necessary to get the right knot invariants later on. Actually, one is not
interested in the measure. What one is really after is the Wilson Loop observable. As will
be shown later, it is simply a Fourier transform. But Equation (3.6) is not well defined if we
make this change.

Fortunately, Equations (3.7) and (3.8) are well defined if 〈(u0,∂
−1
2 u1)〉] ≡ 〈u0,∂

−1
2 u1〉 is

defined, even though ∂
−1
2 u1 is not in H0. Let us be more precise about this statement. We

mean that

〈u0⊗A,∂−1
2 u1⊗B〉 :=−Tr[AB]

Z
C3

(u0 ·∂−1
2 u1)ze−|z|

2
2

∏
i=0

dxid pi

π
< ∞.

Here, z = (z0,z1,z2) and z j = x j + ip j.
Therefore, we will make the following definition:

ECS
[
e((·,~s×~u))0

]
:= e−i〈s+u0,s−∂

−1
2 u1〉, (3.12)
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for any (u0,u1) ∈ ~B0,∗ with 〈u0,∂
−1
2 u1〉< ∞.

A word of caution: On the space of Hermite polynomials, ∂2 = a− a∗ and ∂
−1
2 a1 :=R ·

−∞
a1(x2)dx2 −

R
∞

· a1(x2)dx2. However, on the space of holomorphic functions, ∂2 7→
∂z2 − z2. The inverse of the operator is (∂z2 − z2)−1.

If (u0,u1)∈ ~B0,∗⊆ ~H0, then u1 ∈H0. Under the map Q−1, a1 = Q−1u1 is in L2(R3 → g).
If a1 is in L2(R3 → g), then

∂
−1
2 a1 =

Z ·

−∞

a1(x2)dx2−
Z

∞

·
a1(x2)dx2

is bounded, but unfortunately it is not L2 integrable. But,

〈a0,∂
−1
2 a1〉=

Z
R3

a0 ·∂−1
2 a1dvolR3 < ∞,

if a0 is L1 integrable.
So far, we considered the Lie algebra g as a Lie subalgebra in su(N). One can view it

as a representation of g in u(N). In fact, our method can be generalized to any semisim-
ple Lie algebra, if there is a representation ρ̂ of g such that the bilinear form 〈A,B〉ρ̂ :=
−Tr[ρ̂(A)ρ̂(B)], Tr is the usual matrix trace, is positive and non-degenerate. In this repre-
sentation, 〈A,B〉 :=−ς0

R
Tr[ρ̂(A)ρ̂(B)]dvolR3 , for A,B : R3 → g.

Definition 3.6. (Third definition for Chern-Simons path integral)
Let G be any complex (gauge) Lie group for a trivial bundle E. Let ρ̂ be any finite-
dimensional representation of G, such that the bilinear form 〈·, ·〉ρ̂ defined above is positive
and non-degenerate. Define a bilinear form 〈·, ·〉 on H0 as above. If~φ :~B0 →R is a bounded
linear functional, define

ECS
κ,ρ̂

[
e((·,~s×~φ))0

]
:= e−i〈s+φ0,s−∂

−1
2 φ1〉, (3.13)

~s = (s+,s−) ∈ R2, if
〈s+

φ0,s−∂
−1
2 φ1〉< ∞.

There is a κ dependence in the RHS of the definition, which is not obvious from the notation.
The term ∂

−1
2 is actually dependent on κ. When the representation is clear, ECS

κ [·]≡ ECS
κ,ρ̂[·].

Note that e((·,~s×~φ))0 is in L1(~B0, ν̃θ). Similar to Definition 3.5, ECS
κ,ρ̂ is viewed as a linear

functional, defined only on a strict subspace of L1(~B0, ν̃θ). Since we only need Equation
(3.13), we will not find the largest possible subspace in L1(~B0, ν̃θ) for which ECS

κ,ρ̂ can be
defined on.

For the rest of this article, our Chern-Simons path integral will be computed using
Definition 3.6.

4 Abelian Gauge Group

The next thing we want to compute is the Wilson Loop observables for an abelian gauge
group using Definition 3.6 for Chern-Simons path integral. Write

ψ(z0,z1,z2) = exp[−(z2
0 + z2

1 + z2
2)/2], (z0,z1,z2) ∈ C3.
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We will write

〈u0,∂
−1
2 u1〉=

Z
C3

(u0 ·∂−1
2 u1)ze−|z|

2
2

∏
i=0

dxid pi

π

for u0,u1 : C3 → C. Here, z j = x j + ip j. We will also write

〈 f ,g〉=
Z

Rk
f (x)g(x)dvolRk .

Here, f ,g : Rk → R, k = 1,2,3.
We will work out the case for N = 1 for an abelian gauge group G. Let L = {Ck}k

be a link, and embed R3 into C3. We assume L is smooth and let lk : [0,1] → R3 be a
parametrization of Ck. We need to do the following 2 scalings:

a The link L in R3 ⊆ C3 is scaled by a factor κ/2.

b Given ~a = (a0,a1) ∈ ~B0, we will scale it by
√

ς2ψ, ς2 := κ/(4
√

2π).

The reader might question why do we need to make these scaling. These factors are
necessary in order to obtain the knot invariants. With these scaling factors, the holonomy
operator of ~a computed along the L is given by

∏
k

W (Ck) = exp

[
q
√

ς2 ∑
k

Z
κCk/2

ψ · (a0dx0 +a1dx1)

]
, ~a = (a0,a1) ∈ ~B0.

The map

~a 7→
√

ς2 ∑
k

Z
κCk/2

ψ · (a0dx0 +a1dx1)

is linear. Suppose it can be written as~a 7→ √
ς2((~a,~η(L)))0, whereby~η(L) ∈ ~B0,∗ ∈ ~H0 and

((·, ·))0 is a pairing.
Using Equation (3.13), the Wilson Loop observable, Equation (3.1) now becomes

Z(R3,L) = ECS
κ

[
e
√

ς2((·,~η(L)))0
]

= exp[−iq2
ς2〈η(L)0,∂

−1
2 η(L)1〉0],

~η(L) = (η(L)0,η(L)1). There is a κ dependence on the RHS. We will work out the RHS
explicitly in the following calculations. To obtain the knot invariants, we will have to take
the limit as κ goes to infinity.

Lemma 4.1. Continue with the discussion as above. Then,

Z(R3,L) = exp
[
− πiq2κ3

16π
√

2π
∑
j≥k

Z 1

0
ds

Z 1

0
dt δ

k
j

[
l j,′
0 (s)lk,′

1 (t)− lk,′
0 (t)l j,′

1 (s)
]

·h j(s)hk(t)
〈

χ(κ̄l j(s)),∂−1
2 χ(κ̄lk(t))

〉]
,

with δk
j = δ

j
k = 1− (δ jk/2) and κ̄ = κ/2.
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Proof. Let {lk ≡ (lk
0, l

k
1, l

k
2)} and lk : [0,1] 7→ R3 be a parametrization of Ck. Write hκ

k (s)≡
hk(s) = exp[−κ2lk,2(s)/8] and κ̄ = κ/2. Let {s0 = 0 < s1 < .. .sn = 1} be a partition of
[0,1] and ∆is = si− si−1. Let ∆ = supi ∆is. Then, doing a Riemannian sum approximation,

κ̄

[Z 1

0
hk(s)a0(κ̄lk(s))lk,′

0 (s)ds+hk(t)a1(κ̄lk(t))lk,′
1 (t)dt

]
= lim

∆→0
κ̄

[
∑

i
hk(si)a0(κ̄lk(si))l

k,′
0 (si)∆is+∑

j
hk(t j)a1(κ̄lk(t j))l

k,′
1 (t j)∆ jt

]

= lim
∆→0

κ̄

((
~a,

(
∑

i
hk(si)χ(κ̄lk(si))l

k,′
0 (si)∆is,∑

j
hk(t j)χ(κ̄lk(t j))l

k,′
1 (t j)∆ jt

)))
0

.

χ(lk(s)) was defined earlier, a linear functional χ(lk(s)) : a 7→ a(lk(s)), i.e. evaluate a at the
point lk(s) ∈ R3.

Define an operator F such that

F(~a) := lim
∆→0

κ̄

((
~a,

(
∑

i
hk(si)χ(κ̄lk(si))l

k,′
0 (si)∆is,∑

j
hk(t j)χ(κ̄lk(t j))l

k,′
1 (t j)∆ jt

)))
0

.

We need to show that F is bounded. Since ~B0,∗ ⊆ ~H0, we can represent F as F = (·,~η(L))0,
~η(L) = (η(L)0,η(L)1), η(L) ∈ ~B0,∗.

From Equation (2.8), since the link L is bounded, thus we can find a M1 such that
|χ(t)| ≤ M2 for all t ∈ L. Let M2 be a constant such that |lk,′(s)| ≤ M2. Hence,

κ̄

∣∣∣∣∣
((

~a,

(
∑

i
hk(si)χ(κ̄lk(si))l

k,′
0 (si)∆is,∑

j
hk(t j)χ(κ̄lk(t j))l

k,′
1 (t j)∆ jt

)))
0

∣∣∣∣∣≤ 4κ̄M1M2|~a|

for any partition. Thus, F is a bounded linear functional on ~B0 and we can write

κ̄

[Z 1

0
hk(s)a0(κ̄lk(s))lk,′

0 (s)ds+hk(t)a1(κ̄lk(t))lk,′
1 (t)dt

]
=(~a,~η(L))0.

Note that~η(L) ∈ ~B0,∗, which is embedded in a Hilbert space. Using the unitary map Q,
we can represent η(L)0 as a function in L2(R3,volR3). Likewise for η(L)1. Recall that

∂
−1
2 f (x0,x1,x2) =

Z x2

−∞

f (x0,x1,y)dy−
Z

∞

x2

f (x0,x1,y)dy. (4.1)

Let w(lk(s)) = Q−1χ(κ̄lk(s)), a real-valued function on R3. Later on, we will show that
w(lk(s)) is in L1(R3,volR3). See the proof of Lemma 4.2. Under the map Q−1, ~η(L) is
represented as

η(L)0 =∑
k

Z 1

0
hk(s)w(lk(s))lk,′

0 (s) ds,

η(L)1 =∑
k

Z 1

0
hk(s)w(lk(s))lk,′

1 (s) ds.
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Using Equation (4.1), by Fubini’s Theorem,

∂
−1
2

Z 1

0
hk(s)w(lk(s))lk,′

1 (s) ds =
Z 1

0
hk(s)∂−1

2 w(lk(s)) · lk,′
1 (s) ds.

By abuse of notation, using the same symbol ∂
−1
2 to refer to the operator acting on the space

of holomorphic functions, we will writeZ 1

0
hk(s)∂−1

2 w(lk(s)) · lk,′
1 (s) ds =

Z 1

0
hk(s)∂−1

2 χ(κ̄lk(s)) · lk,′
1 (s) ds.

In a nutshell, we are justified in exchanging the operator ∂
−1
2 with the integrals.

Now, Equation (3.13) gives

Z(R3,L) = ECS
κ

[
e((·,~η(L)))0

]
=exp

[
− πiq2κ3

16π
√

2π

〈
∑
k

Z 1

0
hk(s)χ(κ̄lk(s))lk,′

0 (s) ds,∂−1
2 ∑

k

Z 1

0
hk(s)χ(κ̄lk(s))lk,′

1 (s) ds

〉]

=exp

[
− πiq2κ3

16π
√

2π

〈
∑
k

Z 1

0
hk(s)χ(κ̄lk(s))lk,′

0 (s) ds,∑
k

Z 1

0
hk(s)∂−1

2 χ(κ̄ · lk(s))lk,′
1 (s) ds

〉]
.

Further simplification gives

exp
[
−πiq2 κ3

16π
√

2π
∑
j≥k

Z 1

0
ds

Z 1

0
dt δ

k
j

[
l j,′
0 (s)lk,′

1 (t)− lk,′
0 (t)l j,′

1 (s)
]

·h j(s)hk(t)
〈

χ(κ̄l j(s)),∂−1
2 χ(κ̄lk(t))

〉]
,

with δk
j = δ

j
k = 1− (δ jk/2) and κ̄ = κ/2.

The term

κ3

16π
√

2π

Z 1

0
ds

Z 1

0
dt
[
l j,′
0 (s)lk,′

1 (t)− lk,′
0 (t)l j,′

1 (s)
]〈

χ(κ̄l j(s)),∂−1
2 χ(κ̄lk(t))

〉
h j(s)hk(t)

(4.2)
should be the linking number between curves lk and l j, provided both curves do not inter-
sect. To check this, we have to first compute

〈
χ(κl j(s)/2),∂−1

2 χ(κlk(t)/2)
〉

e−κ2(l j,2(s)+lk,2(t))/8.
This is where we need to digress a bit. Here, one has to be careful. The Banach space

~B0 is the space of C∞(C3,R)⊗gC×C∞(C3,R)⊗gC. We identify using Q : L2(R3,volR3)→
L2(C3,e−|z|

2
dω/π3), ω is the standard symplectic form on R6 and

Q : ς
−1/2
0

Hpr(κ·)√
pr!

√
φκ⊗Ei j 7→

zpr

√
pr!

⊗Ei j. (4.3)

See Remark 3.1. Recall Q sends a∗ 7→ z2 and a 7→ ∂z2 . ∂
−1
2 as an operator on ~B0 is not the

same operator as on L2(R3,volR3).
Furthermore, the linear functional a∈R3 : f ∈ L2(R3,volR3) 7→ f (a) is not χa ∈~B0,∗. In

fact, the completion of L2(R3,volR3) will no longer be functions, but generalized functions,



18 Adrian P.C. Lim

hence such a linear functional does not make sense on the completion of L2(R3,volR3).
Recall we complete the Hilbert space into a Banach space using a weaker measurable norm.

However, one can do an approximation to this functional. When integrated with respect
to the function φκ(· − a) ∈ H0, for large enough κ, 〈 f ,φκ(· − a)〉 gives a value close to
any function f evaluated at the point a ∈ R3. In fact, it tends to the Dirac function as κ

approaches infinity. However, one has to check that it is in the dual of the Banach space
containing L2(R3,volR3).

Now, χw = ∑
∞
r=0 ∑pr zpr w̄pr/pr!. Since our links lie in R3, we will only consider w real.

An intelligent guess will suggest that
√

φ(·−a) should somehow be connected to χ. Thus,
we need to find the corresponding function of χa in L2(R3,volR3).

Lemma 4.2. Continue with the discussion as above. Then,

κ3

16π
√

2π
〈χ(κl j(s)/2),∂−1

2 χ(κlk(t)/2)〉e−κ2(l j,2(s)+lk,2(t))/8

=
κ2

8π
e−κ2|Pl j(s)−Plk(t)|2/8

〈
κ√
4π

e−κ2(·−l j
2(s))

2/4,2Φlk
2(t),

√
2/κ

(·)−1
〉

,

where Φx2,
√

2/κ
is the cumulative distribution function of a normal distribution, mean x2

and variance 2/κ2. P is the projection on R2.

Proof. Q−1 maps χκt/2 to

ς
−1/2
0

√
φκ(x)

∞

∑
r=0

∑
pr

Hpr(κx)
(κt/2)pr

pr!
= ς

−1/2
0

√
φκ(x)eκ2(2x·t−t2)/4eκ2t2/8

for t real, which upon simplification gives ς
−1/2
0

√
φκ(· − t)eκ2t2/8. Here, x · t is the usual

scalar product in R3.
In other words, for each t ∈ R3,

Q : ς
−1/2
0

√
φκ(·− t)eκ2t2/8 =ς

−1/2
0

√
φκ

∞

∑
r=0

∑
pr

Hpr(κ·)
κrt pr

2r · pr!

7→
∞

∑
r=0

∑
pr

zpr
κrt pr

2r · pr!
= χκt/2 ∈ ~B0,∗.

This shows that ς
−1/2
0

√
φκ(·−t)eκ2t2/8 is in the dual space of the completion of L2(R3,volR3).

Now ∂
−1
2 f :=

R ·
−∞

f (x2)dx2−
R

∞

· f (x2)dx2. Thus, Equation (4.2) simplifies to

κ3

16π
√

2π
〈χ(κl j(s)/2),∂−1

2 χ(κlk(t)/2)〉e−κ2(l j,2(s)+lk,2(t))/8

=
κ3

16π
√

2π
〈Q−1

χ(κl j(s)/2),∂−1
2 Q−1

χ(κlk(t)/2)〉e−κ2(l j,2(s)+lk,2(t))/8

=−
1

∏
α=0

κ

2
√

2π
e−κ2|l j

α(s)−lk
α(t)|2/8

〈
κ√
4π

e−κ2(·−l j
2(s))

2/4,
Z ·

−∞

−
Z

∞

·

κ√
4π

e−κ2|x2−lk
2(t)|2/4dx2

〉
=− κ2

8π
e−κ2|Pl j(s)−Plk(t)|2/8

〈
κ√
4π

e−κ2(·−l j
2(s))

2/4,2Φlk
2(t),

√
2/κ

(·)−1
〉

,



Chern-Simons Path Integral on R3 Using Abstract Wiener Measure 19

where Φx2,
√

2/κ
is the cumulative distribution function of a normal distribution, mean x2 and

variance 2/κ2. P is the projection on R2. Note also that in the first equality, we made use
of the fact that Q−1 preserves the inner product between the two Hilbert spaces.

The term exp[−κ2(x− y)/8] will vanish as κ goes to infinity unless x = y. If l j
2(t) >

lk
2(s), then the integral gives a +1; if l j

2(t) < lk
2(s), it gives −1. This amounts to giving a +

sign to overcrossing and − sign for undercrossing. Otherwise it is zero. Hence the integral
along the arcs contribute negligibly to the double integral for large enough κ.

As κ goes to infinity, the integral in Equation (4.2) reduces to a finite sum, assigning +1
to overcrossings and -1 to the undercrossings. It computes the linking number between l j

and lk.
However, there is more. One has to take into account of the sign of the orientation at

each crossing. When projected down onto R2, l j,′
0 and lk,′

1 form a frame at p. The orientation
is given by sgn(Pl j~×Plk), where ~× is the vector cross product in R2.

Definition 4.3. (Link Diagrams)
Assume that a link L = {l1, l2, . . . lm} ∈ R3 is C1 and the individual curves do not intersect
one another, i.e. l j∩ lk = /0 for any j, k. Parametrise each curve, l j = (l j

0, l
j
1, l

j
2) : [0,1]→R3

such that |l j,′| 6= 0. Note that in the following definitions, it applies if L is just a knot.

1. Let π : R3 → R2 be the projection on the x− y plane. Define a standard projection of
the link onto R2 if the following conditions are satisfied:

a for any point p ∈ R2, π−1(p) intersects at most 2 distinct arcs in L. p is called a
crossing if π−1(p) intersects exactly 2 distinct arcs.

b at each crossing p = l j(s0) = lk(t0), there exists an ε > 0 such that for all |s−s0|< ε

and |t− t0|< ε, the vector cross product πl j(s)~×πlk(t) 6= 0, i.e. the 2 arcs at the
crossing p are linearly independent.

Denote the set of crossings between curves l j and lk by DP(l j, lk). DP(l j)≡DP(l j, l j)
will denote the set of crossings in l j. We will write DP(L) to denote the set of cross-
ings of the standard projection of the link L.

2. For each curve l j, write the interval [0,1) as a union of intervals
Sn(l j)

i=1 A(l j)i, where
in each interval A(l j)i, s ∈ A(l j)i 7→ (l j

0(s), l
j
1(s)) is a bijection. Write C(l j)i :=

(l j
0(A(l j)i), l j

1(A(l j)i)) ∈ R2 be the image of the interval A(l j)i under l j. Without
loss of generality, further assume each interval C(l j)i

α ≡ l j
α(A(l j)i) contains at most

one crossing which is an interior point in C(l j)i
α.

3. Given 2 arcs C(l j)i,C(lk)î which intersect at p, define sgn(J(C(l j)i,C(lk)î)) to be the
sign of the determinant of the Jacobian J(C(l j)i,C(lk)î) = l j,′

0 (s)lk,′
1 (t)− lk,′

0 (s)l j,′
1 (t)

at the crossing p = (l j
0(s), l

j
1(s)) = (lk

0(t), l
k
1(t)). Otherwise, define it to be zero if the

2 arcs do not intersect at all. We will also write sgn(p; l j : lk)≡ sgn(J(C(l j)i,C(lk)î)),
p = C(l j)i∩C(lk)î and call this the orientation of p.
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4. Using the same notation as the previous item, for each crossing p ∈C(l j)i ∩C(lk)î,
define

sgn(C(l j)i : C(lk)î) =

{
1, l j

2 > lk
2;

−1, l j
2 < lk

2.

If the 2 arcs do not intersect, set it to be 0. We will also write sgn(p; l j
2 : lk

2) ≡
sgn(C(l j)i : C(lk)î) and call this the height of p.

Remark 4.4. The set DP(L) only makes sense for a link diagram projected on R2. Different
link diagrams will give a different set of crossings. Thus it is not well defined for a link L,
but rather on a link diagram.

Lemma 4.5.

lim
κ→∞

κ3

16π
√

2π

Z
A(l j)i

ds
Z

A(lk)î
dt
[
l j,′
0 (s)lk,′

1 (t)− lk,′
0 (t)l j,′

1 (s)
]〈

χ(l j(s)),∂−1
2 χ(lk(t))

〉
· e−κ2(l j,2(s)+lk,2(t))/8

=−sgn(J(C(l j)i,C(lk)î))sgn(C(l j)i : C(lk)î)

Proof. Write Λ
lk
2(t)

κ (·) = 2Φlk
2(t),

√
2/κ

(·)−1. Then the integral becomes

−
Z 1

0
ds

Z 1

0
dt
[
l j,′
0 (s)lk,′

1 (t)− lk,′
0 (t)l j,′

1 (s)
]

φκ/2(Pl j(s)−Plk(t))
〈

φ
κ/
√

2(·− l j
2(s)),Λ

lk
2(t)

κ

〉
.

Make a change of variables: Pl j : s ∈ A(l j)i 7→ x0 = (l j
0(s), l

j
1(s)) ∈ R2 and y j : x0 7→ l j

2(s).
Similarly, Plk : t ∈ A(lk)î 7→ x1 = (lk

0(t), l
k
1(t)) ∈ R2 and yk : x1 7→ lk

2(t). Then the integral
becomes (dω = dx0∧dx1.)

sgn(J(C(l j)i,C(lk)î))
Z

C(l j)i×C(lk)î
φκ/2(x0− x1)

〈
φ

κ/
√

2(·− y j(x0)),Λ
yk(x1)
κ

〉
dω

=sgn(J(C(l j)i,C(lk)î))
Z

C(l j)i×C(lk)î×R
φκ/2(x0− x1)φκ/

√
2(x2− y j(x0))Λ

yk(x1)
κ (x2) dωdx2.

(4.4)

When C(l j)i∩C(lk)î = /0, the integral goes to 0. The only case is when p ∈C(l j)i∩C(lk)î.
We will only consider the case when y j(p) > yk(p). The other case is similar. Then Equa-
tion (4.4) becomes

sgn(J(C(l j)i,C(lk)î))
Z

C(l j)i×C(lk)î×R
φκ/2(x0− x1)φκ/

√
2(x2− y j(x0)) dωdx2

+ sgn(J(C(l j)i,C(lk)î))
Z

C(l j)i×C(lk)î×R
φκ/2(x0− x1)φκ/

√
2(x2− y j(x0))

[
Λ

yk(x1)
κ (x2)−1

]
dωdx2

−→κ→∞ sgn(J(C(l j)i,C(lk)î)).

The last step requires the following explanation: For any |x2−y j(x0)|< δ, δ small enough,
x2 > yk(x1) by assumption. Furthermore, there exists a σ(δ) such that for all κ > σ,

|Φyk(x1),
√

2/σ
(x2)−1|< ε

for any given ε.
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Definition 4.6. (Algebraic crossing number.)
For each crossing p ∈ DP(l j, lk), the quantity sgn(p; l j : lk)sgn(p; l j

2 : lk
2) is actually well

defined on an oriented link diagram, independent of the parametrization used. Denote it by
ε(p) ∈ {+1,−1}.

Corollary 4.7. (Linking number between l j and lk.) For j 6= k,

lim
κ→∞

κ3

16π
√

2π

Z 1

0
ds

Z 1

0
dt
[
l j,′
0 (s)lk,′

1 (t)− lk,′
0 (t)l j,′

1 (s)
]〈

χ(l j(s)),∂−1
2 χ(lk(t))

〉
e−κ2(l j,2(s)+lk,2(t))/8

=− ∑
yi∈DP(l j,lk)

sgn(yi; l j : lk)sgn(yi; l j
2 : lk

2) :=−lk(l j, lk),

the linking number between l j and lk.

There is a problem when j = k. In this case, one has to integrate over the arcs. Thus,
the linking number between l j and itself is ill-defined. The solution as explained in [4]
would be to consider a framing v j whereby v j(·) ∈ R3 is a normal vector field along the
curve C j that is nowhere tangent to C j. Define l̂ j,ε := l j + εv j, ε is some small number.
Essentially, l̂ j,ε is a small shift of l j in a direction v j. The framing v j chosen depends only
on the topological class of v j. Then, one computes lk(l j, l̂ j,ε) and take ε going down to zero.

Explicitly, the limit is computed as

lim
ε→0

lim
κ→∞

κ3

16π
√

2π

Z 1

0
ds

Z 1

0
dt
[
l j,′
0 (s)l̂ j,′

1 (t)− l̂ j,′
0 (t)l j,′

1 (s)
]

·
〈
χ(l j(s)),∂−1

2 χ(l̂ j(t))
〉

e−κ2(l j,2(s)+lk,2(t))/8.

We will define the above expression as the self-linking number of l j, written as lk(l j,v j).

Remark 4.8. The self-linking number of l j depends on the framing v j.

Taking the sum over all pairs of curves, the Chern-Simons path integral, when N = 1,
will give the linking number of the link for large enough κ.

Corollary 4.9. For an abelian gauge group G with N = 1, the Wilson Loop observable
Equation (3.1) for the limit as κ goes to infinity, is given by

Z(R3,L;q) =
1

ZCS

Z
A∈A

l

∏
k=1

W (Ck;q)eiCS(A)DA

= exp

[
πiq2

2 ∑
j

lk(l j,v j)

]
exp

[
πiq2

∑
j>k

lk(l j, lk)

]
.
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