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Abstract
The representation of a high dimensional machine learning (ML) feature space F as a
function space for the purpose of denoising data is introduced. We illustrate an applica-
tion of such a representation of feature vectors by applying a local averaging denoising
method for functions on Euclidean and metric spaces (together with its graph general-
ization) to the regularization of feature vectors in ML. We first discuss this technique
for noisy functions on R, and then extend it to functions defined on graphs and net-
works. This method exhibits a paradoxical property of the bias-variance problem in
machine learning, namely, that as the scale over which averages are taken decreases,
the error rate for classification first decreases and then increases. This approach is
tested on two benchmark DNA microarray data sets used for classification of breast
tumors based on predicted metastasis.
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1 Introduction

In this announcement we illustrate the transfer of some functional and numerical analysis
tools to the solution of certain machine learning problems, and apply these to machine-
learning based analysis of gene expression arrays (microarrays). Such biological array
measurements produce feature vectors z = (z1, . . . ,zk) whose entries zi are expression levels
of genes qi, yielding diagnostic and predictive information.

We view the feature vectors z = ( f1(q1), . . . , f1(qk)) as (noisy) functions f1(q) = f (q)+
e(q) on the space G = {q1, . . . ,qk} of genes qi, with f the underlying signal and e(q)= εg(q)
an error term with g(q) an independent N(0,1) standard Gaussian distribution for each
q ∈ G.

We will try to extract the underlying f (q) from measurements f1(q) with function de-
noising approaches used in analysis on Euclidean and other metric spaces, and extend them
to functions on G. The denoised functions f1t will be more useful as approximations of f in
further analysis, e.g., of gene expression arrays. This process requires a metric or network
structure on G. Rappaort, Vert, et al. [11] have implicitly applied such an adapted denois-
ing approach to regularize microarray feature vectors z using gene network structures on G.
Yang and Kolaczyk [15] have studied network-based wavelets for denoising microarrays,
again using networks on G, by extending analytic techniques such as wavelet denoising
(e.g., Coifman and Donoho [2]). Chuang, Lee, et al. [1] have used local network-based
averages based on protein-protein interactions (PPI), using local optimization methods to
maximize discriminative ability of clusters. Clustering based on biological pathway mem-
bership of genes has also been investigated in [10, 8].

A gene network is a graph structure
{

G,wi j
}

with vertices G and edge weights wi j

(between genes i and j) which measure levels of interaction between pairs of genes. These
might indicate for example their co-expression [16] (level of correlated gene expression),
or existence of a protein-protein interaction (PPI) [9, 12] between their protein products.

Our discussion here is restricted to the adaptation of an analytic denoising tool which
takes local function averages, adapted to microarray and other feature vectors which are
functions on underlying networks or metric spaces. We denote this as martingale-based de-
noising, based on the notion of projection of noisy functions f1 onto functions f1t constant
on increasingly refined partitions At = {Gt

i}i (t = 0,1,2, . . .) of a base space G =
S

i Gt
i . We

point out that, as occurs in function denoising, accuracy of denoising based on such succes-
sively refined clustering initially increases and then decreases, as discussed in Theorems 2.1
and 3.3 below. Thus as At becomes less refined the decreasing variance due to microarray
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noise is offset by a successively increasing bias due to local averaging, in another illustra-
tion of the bias-variance problem (Cuker and Smale [3], Geman et al. [5], Härdle et al.
[6]).

Given an underlying expression function f (q), the sequence of refined clusterings At

(t = 0,1, . . . ,T ) of a graph or network G and its associated sequence of denoised (flat-
tened) functions f1t forms a martingale in t, i.e., a series of conditional expectations f1t =
E ( f1|Ft), where Ft is the field of sets generated by At . Assuming the final refinement
AT = G consists of singleton sets, we note f1t converges to f1 (since in fact f1T = f1). As
shown below, the error || f1t − f || typically decreases and then increases, being minimized
at an intermediate value t = t0. In applications we will seek an approximation to t0, and
use the regularized gene expression array f1t0 (q) for further inferences (e.g., biological pre-
dictions). We will illustrate this optimal averaging level by analyzing two gene expression
datasets using two clustering methods.

An outline of the paper is as follows. The second section presents Theorem 2.1 on op-
timal martingale denoising for functions on the real line. Theorem 3.3 in section 3 extends
this to an analogous denoising optimization theorem for functions on graphs and networks.
Section 4 gives an application of Theorem 3.3, illustrating the existence of an intermediate
level t0 of refinement in a clustering which gives the best correspondence between denoised
gene expression feature vectors f1t and the ideal ‘noise-free’ vector f (as evidenced by the
predictive accuracy of a denoising-based procedure). The networks giving our prior ‘spa-
tial’ structure on the gene set G are gene co-expression [16] and protein-protein interaction
(PPI) [9, 12] networks. The algorithm is then applied to two benchmark gene expression
data sets used to test prediction of breast cancer metastases. These results are compared
with classification results with no regularization, and also for regularization using random
clustering. The numerical results imply that co-expression-based adjustment of PPI net-
works improves prediction scores. This validates the assumption that genes in the derived
clusters should have similar expression behavior.

2 Optimized martingale denoising for functions on R

We start in the Euclidean case by assuming an idealized machine learning feature vec-
tor in the form of a continuously differentiable function f on the interval [0,1] ⊂ R. We
assume that the measurement f1 of f is noisy, i.e. that f1(q) = f (q) + e(q), is a mea-
surement perturbed by a local error e(q), normal and independent at each q ∈ G. More
precisely, we assume that e(q) = εg(q), where g(q) is a Gaussian noise distribution, of the
form g(q) = B′(q), the derivative of Brownian motion B(q). To illustrate the continuous
version of our network result, we try to recover f by averaging its measurement f1 with
respect to a hierarchical family (filter) of σ-algebras {Ft}t of subsets of G = [0,1]. Specif-
ically, for t = 0,1,2, . . . let Ft be the algebra of sets generated by the partition (clustering)
At =

{[ i
2t ,

i+1
2t

)
: (i = 0,1, . . . ,2t −1)

}
. Averaging f over these clusters forms conditional

expectations ft = E ( f |Ft), which are successively more accurate L2 approximations to f .
However, when f is perturbed by noise e as above, there is an optimal value t0 for which
the perturbed function f1 has a conditional expectation f1t = E ( f1|Ft) which minimizes the
L2 error, and after which (when t > t0) the error begins to increase. We illustrate this bias-
variance effect on the real line, and will then do so for functions on networks, with an illus-
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tration involving genomic data sets. Throughout this paper all function norms || · ||= || · ||2
are L2 square integral norms.

Theorem 2.1. Let the function f be defined on the unit interval be non-constant and con-
tinuously differentiable. Then for any δ > 0, with probability greater than 1− δ, if the
noise level ε is sufficiently small, the denoising approximation error || f − f1t ||2 decreases
monotonically for sufficiently small t, and increases monotonically for sufficiently large t.

Sketch of Proof. The Gaussian form of the noise term e(q) = εg(q) together with a calcu-
lation of its square integral yields the identity

|| f1t − f ||2 = || ft + εgt(q)− f ||2 = || ft − f ||2 + ε
2||gt ||2 = || ft − f ||2 + ε

2
χ

2
2t (2.1)

where the last term is a chi-square random variable with 2t degrees of freedom. Clearly, if
ε is sufficiently small and t is bounded, the second term is negligible, while the first term is
decreasing, proving that || f1t − f || decreases in t for t small.

For large t, using (2.1) we see that changes in the error sequence || f1t− f ||2 are bounded
below by −1+ ε2

(
χ2

2t+1 −χ2
2t

)
(since || ft − f ||2 approaches 0). Further, an estimate shows

that ∑
∞
t=1 P

(
ε2
(
χ2

2t+1 −χ2
2t

)
−1 < 0

)
< ∞ for any ε > 0 (regardless of the dependence of the

two χ2 distributions) which together with the Borel-Cantelli lemma shows that || f1t − f ||
decreases only finitely often for t = 0,1, . . .. These two observations (for small and for large
t) complete the argument.

3 Graph Approximation Theorem Using Adaptive Martingales

Our main result is an extension of the above theorem to clustering-based function denois-
ing on graphs. While a weighted graph G provides a measure of nearness, this does not
necessarily lead to a metric on G, and the approach in the above theorem does not directly
extend to graphs. However, if noisy perturbations of network-based data (i.e. a function
f1(q) = f (q)+ e(q) on the network) are given, then the associated graph structure together
with some version of continuity for this function can similarly help eliminate noise. This is
the basis for a graph-based theorem analogous to the one above. But first we define basic
terms.

Definition 3.1. A graph (or network) {G,w} consists of a collection G of elements (nodes),
together with a function w(i, j) (i, j ∈G) defining weights between each pair of nodes i and
j.

Definition 3.2. A filter on a finite graph G is a sequence {Ft}t of σ-fields (or equivalently,
fields) of sets on G indexed by t = 0,1,2, . . ., with the property Ft+1 ⊃ Ft . We define the
clustering At of G defined by Ft to be the most refined partition of G consisting of sets in
Ft . In some cases we will also use the sequence At of clusterings in place of the sequence
of σ-fields Ft .

If f is a function on G, we define the f-martingale on G with respect to {Ft}t to be the
sequence of conditional expectations E ( f |Ft).

As in the continuous case, we assume measurements of the function f on G are subject
to a noise e(q) = εg(q), with ε a (small) parameter and g(q) an independent standard normal
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random variable for each q ∈G. We assume a filter {Ft}t is defined for t = 0,1, . . . ,T , with
F0 = {G,φ} the trivial field of sets, and FT = 2G the full field of subsets of G. Now we
approximate f from knowledge of f1 = f + εg through the projection of the latter onto its
conditional expectations E ( f1|Ft). Under proper values of the parameters, we show that
the behavior exhibited earlier on the real line also occurs on a network.

Below all norms are L2 norms defined on functions f on the graph G, i.e., ‖ f‖2 =
‖ f‖2

2 = ∑q∈G f (q)2, and |A| denotes cardinality of a set A.

Theorem 3.3. Let K(t) (t = 0,1,2, . . .), denote a fixed positive function which is a lower
bound for the change in error in ‖ ft − f‖2, i.e.,

K(t)≤ ‖ ft − f‖−‖ ft+1− f‖ . (3.1)

For a fixed choice of C > 0, let {At}1≤t≤T be any filter satisfying

|At+1| ≥C |At | (3.2)

for some C > 1. Then with probability arbitrarily close to 1, the error ‖ f1t − f‖ is decreas-
ing for sufficiently small t and increasing for sufficiently large t, if the noise ε ≤ ε0 is small
enough, and the graph size |G| ≥ n0 is large enough.

Note that the statement is uniform over all graphs G, all sequences {At}1≤t≤T of refine-
ments satisfying (3.2), and all functions f on G satisfying (3.1), for fixed K(t) and C. That
is, within such a class of graphs, filters, and functions, the theorem holds for all of these
with a single choice of ε0, n0.

Sketch of Proof. The proof relies on the identity

‖et+1‖− |‖et‖− || ft+1− f ||−‖ ft − f‖
≤

∥∥ f1(t+1)− f
∥∥−‖ f1t − f‖

≤ ‖ ft+1− f‖−‖ ft − f‖+‖et+1‖+‖et‖ (3.3)

recalling that e(q) = εg(q) (q ∈ G), with g(q) independent and identically distributed (iid)
standard Gaussian noise. Note that et(q) = εgt(q) = εE (g(q)|Ft), and it is easy to show
that if q ∈ a with a ∈At a minimal set (cluster) in Ft , then E (g(q)|Ft) = 1√

|a|
Za (with each

Za an iid N(0,1) variable), since the left side is simply an average of |a| iid Gaussians; here
|a| denotes the size of the set a. Thus for ε small and if t is relatively small (meaning that
cluster size |a| is large), terms of the form et(q) = ε√

a Za are negligible. Then the right side
of the second inequality in (3.3) is (up to a small additive factor) bounded from above by
−K(t), which is negative and so implies a decreasing || f1t − f ||.

To show that || f1t − f || is increasing for t sufficiently large, we use the first inequality
in (3.3). Since || ft+1 − f || − || ft − f || converges to 0 for large t, it suffices to show that
||et+1||− ||et || becomes arbitrarily large. This in turn follows from the identity

1
ε

E (||et ||) =
√

2
Γ(kt/2)

Γ(kt/2+1/2) =
√

kt +O
(

1/
√

kt

)
, (3.4)
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with k = |At |, and the second equality following from a standard Gamma function estimate.
In addition, letting V denote variance,

1
ε2V (||εt ||) =

1
ε2

[
E
(
||εt ||2

)
−E (||εt ||)2

]
= E

(
∑

a∈At

Z2
a

)
−
(√

kt +O
(

1/
√

kt

))2

= kt −
(√

kt +O
(

1/
√

kt

))2
= O(1) (kt → ∞) (3.5)

From (3.4) and (3.5) together with Chebyshev’s inequality and the fact that kt = |At | ≥
Ckt−1, it follows that et grows sufficiently fast that ||et+1||− ||et || and similarly the left side
of (3.3) is eventually increasing with probability 1 (for a fixed choice of the sequence |At |
and the lower bound K(t)), completing the argument.

4 Application - Regularization of Gene Expression Data

We give an application of the network-based analytic denoising method in Theorem 3.3,
to a machine learning analysis of two data sets of breast tumor gene expression arrays
(microarrays) [14, 13], with respect to predictiveness of tumor metastasis. Biologically
metastasis is the spreading of a disease, particularly cancer, to another part of the body. Our
goal here is to design a test on microarrays that correctly predicts a breast patient’s cancer
tissue samples as either metastatic or non-metastatic. A prediction for a patient is calculated
from measured gene expression levels for the genes G = {q1, . . . ,qk}.

Let the function fi = ( fi (q1) , . . . , fi (qk)) denote the true gene expression values of the
ith patient in a data set D. As above, we assume the measured expression value (including
error) is fi1(q) = fi(q)+ei(q) where the error consists of iid normal random variables. The
measured gene expression feature vector for the ith patient is fi1 = ( fi1 (q1) , . . . , fi1 (qk)) .
Thus the full data set is D = {f1i,yi}n

i=1, where for the ith patient

yi =
{

1 if metastasis occurs
−1 otherwise

Following standard machine learning procedures, the data set of patient samples is sep-
arated into training and test sets. The training set is a subset of D that is used to discover
predictive relationships between f1i and yi (here in training a machine learning algorithm).
The accuracy of this predictive relationship is then tested on the remaining data set (the test
set). Our goal in the test data set is to predict the outcome yi from the measured feature
vector f1i (given we do not know the true underlying expression array fi). This estimate
will be improved by using our cluster-based denoising technique of regularized expression
values fi1t (see below).

We tested the algorithm on two data sets, from Wang, et al. [14] and van de Vijver [13].
For each data set we first trained a classifier based on a support vector machine (SVM), a
standard machine learning (ML) algorithm, using the training portion of the data set D. Af-
ter this, predictions by the trained SVM were made on test data fi1 = ( fi1 (q1) , . . . , fi1 (qk))
from D, and the predictive accuracy of the algorithm was recorded. The cluster sets At ={

Gt
j

}
j
(with G =

S
j Gt

j) which were used were defined from proximity in a protein-protein
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interaction (PPI) network as well as a gene co-expression network, with the a field Ft gen-
erated by At .

We compared the accuracy of predicting yi using the ML algorithm directly on fea-
ture data f1i, as compared to using the denoised (cluster-averaged) feature vectors f1it =
E (f1i|Ft). The latter is constant on clusters Gt

k and so can be represented directly as a func-

tion on them, resulting in a kt-dimensional vector fi1t =
(

fi1t (Gt
1) , . . . , fi1t

(
Gt

kt

))
, with

fi1t

(
Gt

j

)
= ∑q∈Gt

j
fi1(q)/

∣∣∣Gt
j

∣∣∣, and kt = |At |. Practically, the premise is that genes in the
same cluster should have similar expression behavior which is numerically reinforced and
noise-cancelled by averaging.

We now describe the basis for our clustering procedure, whose primary basis is the so-
called protein-protein interaction (PPI) gene network [9, 12]. This is a network of genes
which in which two genes qi and q j are connected if the unique proteins they generate are
involved in chemical interactions with each other. The PPI network is used to identify gene
subgroups that have biologically related functions, and so are likely to have similar gene
expression patterns. Grouping of genes based on PPI relatedness enables identification of
potential macroscopic (group) biomarkers (e.g., indicators of metastasis) which should be
relatively more robust than individual gene expression bio-markers. However, a potential
disadvantage of such a network is that co-functioning proteins may not have similar gene
expressions, since inverse expression patterns for pairs of genes in the same pathways (and
so PPI clusters) is possible. For this reason we sub-clustered the PPI clusters according to
a second network, the co-expression network. The co-expression network relates pairs of
genes which have similar expression patterns among subjects in the training portion of the
data set D. The resulting combined clustering is denoted as a co-expression adjusted PPI
network

{
G,wi j

}
. More specifically, the unweighted PPI network G was modified to in-

clude co-expression correlation by weighting edges (i, j) with weights wi j = exp{−d2
i j/σ2},

with di j a distance defined by hierarchical co-expression clustering. We employed the Gra-
clus software package (Dhillon et al. [4]) to perform graph clustering.

The PPI plus co-expression clustering-based conditional expectation f1t = E ( f1|Ft)
(the regularized gene expression array) was compared against use of unregularized feature
vectors f1 as well as regularization using random clustering. This was tested on the above-
mentioned benchmark breast cancer datasets from high throughput gene expression studies
by Wang, et al. [14] and van de Vijver et al. [13], with the goal to distinguish metastatic
patients from non-metastatic patients based on gene expression feature vectors. Wang’s
dataset contains 286 breast cancer patients of whom 93 had tumors which metastasized,
while van de Vijver’s dataset has 295 patients among which 79 were classified as metastatic.

The algorithm was tested by a 5-fold cross validation, reserving 1/5 of patients in a
data set D as test data, and building the classifier on the data of the remaining patients. The
model was then used to predict metastasis on each test patient and to calculate accuracy,
and the procedure was repeated 5 times until all patients were scored. Sensitivity (or recall)
is the probability that a patient is predicted positive (for metastasis), given the patient is
actually metastatic. Specificity is the probability that the patient is predicted negative (non-
metastatic) given the patient is non-metastatic. Precision is the probability a patient is
metastatic when predicted to be so.

Two measures are computed to compare the performance of the methods:
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• the area under the ROC curve (AUROC) and

• the area under the Precision-Recall curve (AUPRC).

The ROC curve is the plot of sensitivity versus specificity. The precision-recall curve is
the plot of precision versus recall (sensitivity). Both curves are obtained by varying decision
thresholds for positivity, and plotting the two quantities of interest on the graph.

5 Numerical Results and Conclusion

We chose the numbers of gene clusters to be powers of 2, namely, kt = |At | = 64, 128,
256, 512, 1024 and 2048. The predictive performances of support vector machine (SVM)
machine learning algorithms on both datasets are improved after the regularization process,
over use of unregularized individual gene feature vectors z = f = ( f (q1), . . . , f (qk)).

Specifically for AUROC, performance of co-expression adjusted PPI network clustering
on Wang’s dataset attained a value of 73% using |At | = 2048 clusters. Using all the genes
in SVM classification using unregularized expression arrays resulted in a reduction of 20%
in the AUROC. The AUROC performance of the same regularized clustering on van de
Vijver’s dataset attains a value of 73% also for kt = |At |= 2048 clusters, which is decreased
by 7% when using unregularized gene expression arrays. Our co-expression adjusted PPI
clustering also improves the area under the precision recall curve (AUPRC) from 36.2% to
52.4% at kt = 2048 for Wang’s dataset, and from 34.6% to 43.0% at kt = 2048 for the van
de Vijver dataset.

In general as kt increases, classification performance improves until it reaches an op-
timal value at a clustering level between |At | = 1024 and |At | = 2048 clusters, and then
decreases, as suggested by Theorem 3.3. Indeed, the poorer unregularized performance can
be interpreted as a performance at the most refined clustering level AT = G, i.e., with indi-
vidual genes as clusters. Thus, the improvement of bias || f1− f1t || is offset by the increase
variance ||e(t)|| for larger values of t. Put even more briefly, averaging over a gene set
which is too small does not sufficiently dampen out noise ei(t).

As a baseline we also considered random clustering. AUROC performance of random
clustering on Wang’s set was 69% with 512 clusters (as opposed to 53% for unregularized
data), while van de Vijver’s dataset attained values of 69% and 66%, respectively, with
512 cluster regularization and unregularized gene data, respectively, again using the SVM
classifier. In fact for random clustering the best performances often ranged at cluster sizes
from 256 to 512 genes. This apparently implies that the penalty for averaging over relatively
large groups of randomly selected genes (whose expressions also can vary in either direction
among metastatic and non-metastatic tissues) is overcome by the quenching of noise ei(t)
attained by such averaging. In particular, this seems to imply that though most of the 512
random clusters in the Wang data set were not very informative, those few which happened
to have co-expressed informative genes (together with the advantage of averaged out noise)
were sufficient to overcome this disadvantage.

In addition, the strong performance of random clustering in the Wang data set (even
though it did not quite match PPI clustering) implies that the data in that set were dominated
by noise. The relatively worse performance of random clustering in the van de Vijver data
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set indicates that this data set had generically less noise in it. This fact was validated by a
study of standard deviations of accuracies of bootstrapped subsets of both data sets.

This behavior again emphasizes the fact that random noise is a large factor affecting
predictive power of gene expression-based algorithms, and the need for further development
of denoising methodologies for such networks.
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