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OPTIMAL CONTROL OF VARIATIONAL INEQUALITIES*

ALAIN BENSOUSSANT, KEERTHI CHANDRASEKARAN?!, AND JANOS TURI*

Abstract. We consider control problems for the variational inequality describing a single degree
of freedom elasto-plastic oscillator. We are particularly interested in finding the ”critical excitation”,
i.e., the lowest energy input excitation that drives the system between the prescribed initial and
final states within a given time span. This is a control problem for a state evolution described by
a variational inequality. We obtain Pontryagin’s necessary condition of optimality. An essential

difficulty lies with the non continuity of adjoint variables.

1. Introduction. We showed in [4], [5], and [6] that the models used in the lit-
erature for non-linear elasto-plastic oscillators ( see e.g., [8], [11], [12], [15], [16], [17],
[18] and the references therein) are equivalent to stochastic variational inequalities.
The main objective of this paper is to develop a framework to study control problems
for these variational inequalities. We are particularly interested in finding the critical
excitation of the system, which can be defined as the input excitation with the lowest
energy that connects prescribed states of the system in a given time interval. The
study of critical excitation has an extensive literature (see e.g., [1], [2], [9], [10], [14],
[19]), and in case of nonlinear hysteretic systems, it has relevance in the understand-
ing of nonlinear response of structures under severe loads (like earthquakes).

In this paper, we present a complete solution to the optimal control problem for the
variational inequality describing the single degree of freedom elasto-plastic oscillator.
First, we derive Pontryagin’s necessary condition for optimality using a penalized
problem and limiting arguments. Then we formulate conditions on the non continu-
ity of adjoint variables at instances of phase changes and obtain a two point boundary
value problem with additional internal boundary conditions at the phase changes for
the state and adjoint variables. The solution of this problem gives an expression for

the optimal control.

2. Control of the Variational Inequality. Consider the variational inequality

describing a single degree of freedom (sdof) elasto-plastic oscillator

(2.1) ytcoy+hkz=0v(Z-y)(C—2)20,[¢| <Y [|2(t)| £,
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where, y = &, 2z = x — &, x is the displacement of the oscillator, Z(t) is the total
plastic deformation accumulated by time ¢ by the oscillator, Y > 0 represents the size
of the elastic region, and v denotes the control input. We shall assume zero initial

conditions

(2.2) y(0) = 0,2(0) = 0.

With zero initial conditions we seek to minimize the control input energy which takes
the system to a prescribed state at time 7" > 0, i.e.,

T
Min J(v()) = % /0 v2dt subject to 2(T) =z,y(T) = .

Introducing Lagrange multipliers A,y to satisfy the constraints and noting that

0 —-jgtyds

we have the optimal control problem

T T
(2.3) Min J(v(")) = %/0 vidt + /\/O y(t)dt + py(T),

where y, z satisfy (2.1) - (2.2).

2.1. The Penalized Problem. Let € > 0. The penalized problem correspond-

ing to (2.1) is

y+coy+kz=v,

1 1

(2.4) Emy—c(=Y) T+ o(4Y)”

y(0) =0,2(0) =0
where y = y-(v(+)) and z = z.(v()) and v(-) minimizes the functional

1 /T T

@5)  MinJ0)=; [ ater [ ne)od+ o))
0 0

Note that the penalized problem has a solution uc(-) such that

Je(ue(+)) < Je(v(v))-
Indeed J.(v(-)) is continuous in L*(0,T) and J.(v(-)) — oo as ||v||p2(0,r) — o©.

2.2. Necessary Conditions for the Penalized Problem. When we replace
the variational inequality by the penalized system, we can apply standard techniques
of control theory to obtain the necessary conditions of optimality. We shall use the
notation u(-) = u.(-) for the optimal control of (2.4)-(2.5). Let y(t), z(¢) and &(¢), n(¢)
be solutions of (2.4)-(2.5) with controls u() and u

—~

-) + 0v(-) , respectively. Then

(n—2)

S R

_ 1 -
g=5€~-y) and 2=
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satisfy the equations

§+cog+k2=v,

. 1 1
Z+0zg =y +0yg — g(2+959—Y)++g(z+929+Y)’
with initial conditions
7(0) = 0 and 2(0) = 0.

It follows that

: 1 1 1 1
0z9 = 05y + g(z—Y)Jr - g(z—i—Y)_ - g(2+6‘29 -Y)" + g(z+9£9+Y)‘.

Then we have
- - 1.
|Zo — G| < —|Zs].
€

It is easy to check that gy, Zg are bounded in H(0,7T) as § — 0 (¢ is fixed here).

Let us extract a subsequence such that
(2.6) Jo — i, 20 — Z in H'(0,T) weakly and C°(0,T) strongly.

We claim that
(2.7)
1

5(_2(2@) +0%5(t) — V)T + é(z(t) -Y)") = —%llz@)_wo%(t) in L*(0,T)

weakly, as 6§ — 0.
It is sufficient to prove the convergence a.e.t. But a.e.t z(t) > Y or z(t) < Y. Since
2(t) +0zp(t) =Y — 0,
necessarily
2(t) +02(t) =Y >0if 2(t) =Y >0o0r 2(t) +0Zp(t) - Y <01if 2(t) - Y <0

for 6 sufficiently small, depending on ¢. Therefore the left hand side of (2.7) is equal

to

1 -
_E]Iz(t)fY>OZO

for 0 sufficiently small, depending on ¢. Since

Zo(t) — Z(t) a.e.t,
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we obtain (2.7).
It then easily follows that the limit g, Z is the solution of the system

i+ cof + kZ =,

—_

(2.8) F=g-— Z 21 )—v>o0 — gf]lz(t)+Y<o
§(0) = 2(0) =

We next compute

ul - v = l 2 T’U2 T’U U Tu2
Je(u(-) +0v(-) = 29 /O (t)dt—|—6‘/0 (t) (t)dt—i—/o (t)dt
T T
o [ u®de+ 03 [ Gty + (D) + 0ui(T)
0 0

:Jg(u(-))—i-H[/o U(t)u(t)dt-i-)\/o gg(t)df+ﬂgé(T)]+%92/o v (t)dt
and

(o) 4 00()) = Tew) = [ otu(tyde+ A [ ga)ar + pi(T)

SV

and from the optimality of u(-) we deduce

(2.9) /0 v(t)u(t)dt + )\/0 g(t)dt + pg(T) = 0.

2.3. Adjoint System. Introduce (p(t),q(t)) = (pe(t), g=(t)) solution of the cor-

responding adjoint system

—]5 = —cop+4q+ A
(2.10) —q=—kp— g(]lsz>0 + L4v<o)
with p(T) = p, ¢(T') = 0.

Then straightforward calculations yield that
T
| i+ contt) = oy + p(r)ir)
T .
= [ w0 + @) - awo)a
T
:/O (p(t)(v(t) — kZ(t)) — q(t)y(t))dt

T T
=/ p(f)v(t)df+/ (2(1)(=4(t)) — a(t)y(t))dt
0 0
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- /0 p(t)v(t)dt + /0 q(t)(Z(t) — g(t))dt

T
= / p(t)v(t)dt.
0
Substituting into the Euler condition we get for all v,
T
/ (u(t) + p(t))v(t)dt = 0.
0

It follows that

u(t) + p(t) = 0.

Hence we have obtained the following set of necessary conditions for the penalized

problem:
Ye + coYe + kze +pe = 0,
. 1 1 _
Ze = Ye — E(Za — Y)+ + E(ZE +Y) y
(211) —Pe = —CoPe + = + A,

—Ge = —kpe — %(]Izs—Ym + 1. 1v<o),

with y.(0) =0, 2.(0) = 0, p-(T') = p, ¢-(T") = 0.
3. Estimates and Convergence. To the control v(-) = 0 correspond the tra-

jectories y(+) = z(-) = 0 and therefore, for the optimal control u(-). of the penalized

problem we have

1

T T
(3.1) : / (e (1))t + A / ye()dt + py(T) < 0.

From the state equations we get

1d

§E|y€|2 + CO(ys>2 + kzsys = UeYe,
1d 1 1 _
§E|Z€|2 = YeZe — gza(za - Y)+ + gza(za + Y) < YeZe,

hence we have the estimate

t

300+ 3R + o [ (0Ps < [Cne)Pas+ 5 [ (o)
Using (3.1) we obtain

300+ 5h=02 + [ to)Pas <=2 [y = Ly,
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Applying this inequality with ¢ = T yields

T T
30T+ L)+ 5h P + [ eo)as+ 2 [ <o

from which we get immediately for some constant C' that

T
(3.2) | o< €. < 0, ana m)2 <

Hence also,

T
(3.3) |/ ye(8)dt] < C, and |y.(T)| < C.
0
Going back to the previous inequality we also get that
T
(3.4) lye(t)] < C,|z:(t)| < C, Vt € [0,T], and / (uc(t))?dt| < C.
0

Considering the state equations

Ye + CoYe + kze = u.,

. 1 1 _
(3.5) Ze =y — g(zE -+ g(zE +Y)

y:(0) = 0,2:(0) =0,

we get easily
T
| Gewra<c
0

Using (3.5) we get

[z = [z - (a0 =) = (G0 + )
and hence
T 1 1
(3.6) / (2:())2dt < C, =((z(t) = Y)")2 < C ,and —((z(t) + Y)7)2 < C.
0 € €
Note that for all ¢ with || <Y we have

(3.7) (22 (1) = y=(£))(¢ — 2:(t)) = 0.

We extract a subsequence such that

ue — u in L*(0,T) weakly,
(3.8) ye — y in H*(0,T) weakly and V¢ uniformly,
2. — z in H'(0,T) weakly and V¢ uniformly.
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From (3.6) we get —Y < z(t) <Y, and we see easily that

y+coy+kz=u

(3.9) . .
(Z2—y)(¢—2) >0, V¢ with |¢| < Y.

Let us prove that u is an optimal control for the original problem.

THEOREM 3.1. Let u(-), y(-) and z(-) obtained as in (3.8). Then u(-) is an
optimal control for (2.1)-(2.3).
Proof. Clearly,

J(u()) < liminf[3 /O (e ()2t + A /O ye(t)dt + o (T)]

T T
< %/0 U2(t)dt+)‘/0 Ye(ts v())dt + pye(T50(),

where y.(t;v(+)) is the solution of

ys + coye + kzs =,
1
(3.10) 28:y€—g(za—Y)++—(z€+Y)_,
with y.(0) =0, 2.(0) = 0.

M | =

As easily seen

ye(t;v(-)) — y(t;v()) in H(0,T) weakly and V¢,

(3.11) _
ze(t;0(4)) — 2(t;0(+)) in H(0,T) weakly and V¢,

which is the solution of the variational inequality corresponding to the control v(-).

Therefore, we have obtained

J(u(-)) < J(()) , Vo()

which proves that u(-) is optimal. O

Consider the adjoint equation

—Pe = —Cope + G + A,
(3.12) 4 = —hpe = L(Loys0+ Lty <o),
with pe(T) = p, ¢(T) = 0.

We obtain by straightforward calculations

1d
_55(198@))2 = _CO(pa)2 + gepe + e,

2
) = —hpeg. — 2

(3.13)

(I..—y>o+ I._4v<o),
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and then by integrating these equations over the interval (¢,T) we get
k
2

T
o0 = 5+ ok [ (pePds + 5 (ac(0)?

1 T T
by [P (emya 4 Loy co)ds = 3k [ puds,
t t
Therefore
1 T
B10)  Jpe(0] < C.lac(t)] < C and 2 [ (@) (Lyso + Ly coldt £ C.
0

where we have used the fact that 1, _y—o =0,1, 1y=0 =0 a.e.t.

Next from the adjoint equations

(3.15) pe| < C,
: d . t
_aME(t” = —kpesigng:(t) — |q<€£ ) (I..—y>o0+ ..y v<o),
hence
1 T
(3.16) 2 [0 OIL s + Lyt < €.
0
Therefore
(3.17) g is bounded in L'

We can extract a subsequence such that

pe — p in H'(0,T) weakly and V¢ uniformly,
(3.18) ?5 — q %n L?(0,T) weakly,
ge — ¢ in the space of measures on (0,7,

ge — q in BV(0,T) weakly.

4. Study of the System Governed by (y, z,p, q). We derive relations for the
system governed by (y, z,p, q).
We have clearly

Y+ coy +kz+p=0,
(4.1) (Z=y)(C—2)>0,,YC[¢] <Y,|z(t)] <Y,
—]5: —cop—i—q—i—)\.

The equation for ¢ is the difficult part.
In the sequel it is convenient to extend u(t) = u(T) and u.(t) = u.(T), for ¢t > T and

to consider y, z, Y., z. extended accordingly for ¢ > 7. We assume initial conditions
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y(0) = 0,2(0) = 0 and y-(0) = 0,2:(0) = 0 and define the sequences tg = 0 < t; <

ta <t3 <ty < ..andty<ti <t5<..with

ti=inf{t >0:|2(t)] =Y }t] =inf{t >0: |z| > Y}
(4.2) to =1inf{t > t1 : |2(t)| < Y}, t5 =inf{t > 5 : |2(t)| < Y}
01 = signz(ty), if t1 < 00,07 = signz.(t7), if 5 < oo,

and more generally

tajr1 = inf{t > to; ¢ [2(t)] = Y}, 5,1 = inf{t > 15, : [2()] > Y}
(4.3)  tojro = inf{t > toj41 1 |2(t)| <Y}, 15,0 = inf{t > 15, : [2:(t)] <Y}

d2j41 = signz(tojr1), if taj41 < 0o and 05;, 1 = signz.(t5;,1), if 15,41 < oo.

We also have

2(taj41) = 2(tajpa) = Vo1, 2:(t5,41) = 2 (t5,12) = Y5;44
(4.4) signy(taj41) = 02j41, if Y(taj41) # 0

signys(t‘;jﬂ) = 05,41 and signys(t§j+2) = —0341-

Next, for j > 1, t9;_1 < t < tg; we have that

z = 0,signy(t) = d25-1, and z(tej—1) = 2(t2;) = Yo 1.
We necessarily have
(4.5) y(te;) =0,if to; < T, 5> 1.

Indeed suppose that y(ta;) # 0, then signy(ts;) = d2;—1, by the continuity of
function y(¢). Also, for sufficiently small ¢ > 0 we have signy(t) = d2;—1 for

the
t €

(toj,t2; +¢€). But for t € (ta;,t2; +¢), y(t) = £, which implies signz(t) = d2;_1, which

is impossible.

The function 2 is continuous at tp;. At t2;41 it satisfies the relations
Z(t2j41 +0) =0 and Z(t2j+1 — 0) = y(t2;+1).
PROPOSITION 4.1. We have for all j > 1 that
tgj_l — toj—1 and tgj — toj.
Proof. Let us prove that
(4.6) t{ — t.
Assume t; < oo. Let § > 0, then

sup |z(t)| < Y.
0<t<t,—5
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Since z. converges to z in C°([0,#; — d]), we can assert that for ¢ sufficiently small

sup  |z(t)| < Y-
0<t<t,—§

Therefore t§ > t; — ¢ for € sufficiently small depending on 6. Hence liminf. ot >
t; — 6. Since 9 is arbitrary we get liminf._,ot > ¢;.
Suppose limsup,_,,t] = t] > t;. Pick a sequence t] — t]. Let 6 be sufficiently small
with ¢; + 0 < t]. For € sufficiently small depending on § we ¢ > t; + 6. Therefore
Ze = ye on (0,t; + 0). Going to the limit we would have 2 = y on (0,¢; + ). This
contradicts the fact that 2 =0 on (¢1,¢1 + J).
If t; = 400, then supy<,<p [2(t)] < Y, VT > 0. Therefore supg<,<7|2:(t)] < Y for
¢ sufficiently small. Hence ¢ > T, and hence liminft¢{ > 7. Since T is arbitrary
t§ — +4o0.

Let us next prove that
(4.7) t5 — to.

The case t; = to is trivial. Assume t5 < oo and consider the case t; < to < oco. For
d sufficiently small |z(t2 4+ )| < Y. Therefore for € sufficiently small depending on §
we have |ze(t2 + 9)| < Y. Since t5 — t1 < t2 + J, we can assume that t5 < t2 + 6.
Therefore to + § > t5. It follows that limsuptj < ¢2 + . Since § is arbitrary, we get

(4.8) limsupt5 < ts.
Let us check that
(4.9) to <liminf¢5.

Without loss of generality we can assume that 5 = 1, so z.(t§) = z.(t5) = Y.
Necessarily z(t1) = z(t2) = Y. Recall that y(t1) > 0 and y(¢t) > 0 for t; <t < o
with y(¢t2) = 0. From the uniform convergence of y.(t) to y(t) on compact intervals,
we deduce that y.(t) > 0 for ¢ € [T1,t2 — J], for € sufficiently small depending on 4.
Since t; — t1, we can also assume that y.(¢t) > 0 for ¢ € [t],t2 — 9.

Now, on (t5,t5) we have

. 1
Zs:ys_g(zs_y)

hence

d
E[(zE —Y)e

] = yae%-

Therefore z.(t) —Y > 0 as long as y.(t) > 0, ¢ > ¢§. This implies that ¢5 > t5 — 6.
Therefore liminf t§ > t2 — 0. Since ¢ is arbitrary, we have obtained (4.9).

If to = 400, we have z(t) =Y , V¢t > t;, and y(t) > 0, Vt > t1. Also y.(¢t) > 0 for
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t € [t1,t1+T] , VT, and ¢ sufficiently small. This implies t5 > t; + T, for ¢ sufficiently
small. Hence t5 — +o00.

Suppose that the property is proven for t5; ;,¢5;. We want to prove it for 5, 1,5, 5.
Assume t2j+1, t2j+2 < 00.

We begin with 3, ;. The situation is different from that of 7, (j=0), since z(t2;) =
Y d2; (and not 0). To fix the ideas, suppose that do; = 1. We have y(t2;) = 0 and
y(t) > 0, for t € [toj_1,t25). Moreover y(tz;) < 0, since for to; <t < ta;41

2(t) = #(ta) + / (t — )i (s)ds

taj

and z(t) < z(ta;) =Y for ty; <t < ty; + 9, ¢ sufficiently small. Hence

t
/ (t — s)y(s)ds < 0 for tgj <t< t2j + 4.

taj

Since ¢(s) is a continuous function, necessarily 7(t2;) < 0. Since g. — ¢ in C°[0, 77,

we can assert that
Ye(t) < —Cj for togj —0 <t <ty; +96

for e sufficiently small depending on §. Moreover since ¢5; — ta;, we can also assert
that to; — 0 < 15; < t2; + 0 for £ sufficiently small depending on ¢. Therefore

Ue(t) < —Cs for t € [t§j7t2j +4].

Also, y:(t5;) < 0. This is because z:(t5;) = Y, 2z:(t) <Y for ¢ > ¢5; sufficiently close

to t5; and

Therefore
ye(t) < —Cs(t — t5;) for 5, <t <ta; +0.
Hence also
05 € \2 5
(4.10) 2e(t) <Y — T(t_tzj) for 15, <t <ty +0

and ¢ sufficiently small depending on 4.
Next on tg; + 0 <t < tg;41 — d we have |z(t)| < Y. Therefore for e sufficiently small
depending on §

|Z€(t)| <Y for toj + 0<t< toj11 — 6.

From (4.10) and this property we can assert that ¢5;,; > t2j41 — d. Therefore

liminf#5,, 1 > t2;41. Suppose limsup,_,ot5;,1 = t3;,7 > l2j+1. Pick a sequence
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5,41 — t3j11- We then proceed as in the case of j = 0 to obtain a contradiction.

Hence
limsupty;, ) < f2;41
e—0
and then
(411) t;j-‘rl — t2j+1.

We finally prove that
(4.12) 542 — t2j42-

We assume tg;2 < co. Just as we did for (4.8) we prove that limsup5;,, < ta;42.
We then prove that

t2j+2 S lim sup t§j+2'

We suppose to fix the ideas that 05;,, = 1, then 2.(t5,,,) = 2:(t5;,,) = Y, and
z(taj41) = z(t2j42) =Y. Also,

y(t2j+1) > 0, y(t) > 0 for t2j+1 <t< t2j+2 and y(t2j+2) =0.

We deduce that y.(t) > 0 for ¢ € [toj4+1, 2542 — d] for e sufficiently small depending
on §. Since t5;,4 — 2541, we can also assert that y.(t) > 0 for ¢ € [t5;,, 2542 — J].
We have

2 1 £ 15

Ze =Y — g(zE —Y)forte (t2j+1,t2j+2)

hence

d
dt
Therefore 2.(t) =Y > 0 as long as yc(t) > 0, ¢ > ¢5,, ;. This implies that ¢5; o >

[(ze — Y)e?]| = yee<.

taj+2 — 0, and we conclude as in the case j = 0.

The proposition is proven. O

Let us prove that ¢(t) is zero for ¢ € (t2j41,t2j42)

PROPOSITION 4.2. Assume that tj41 < taj42. Then we have

(413) q(t) =0 on (t2j+1,t2j+2).

Proof. Assume without loss of generality that ;41 = 1, and therefore y(t) >
0 on [t2j+1,t2j+2). By (45) y(t2j+2) =0. So y(t) Z cs > 0 on [t2j+1,t2j+2 - 5], for ¢
sufficiently small. Since y. — y(t) on C°([0,T]) we have

(414) yg(t) >¢s > 0on [t2j+1,t2j+2 — 5]
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Now since z:(t2j+1) — 2(t2;41) = Y there exists a point 6. 2511 € [t2;41, 2542 — 0]
such that z.(0;2,11) > Y.

If ze(t2j+1) > Y, then obviously 6. 241 = t2jt+1-

Suppose that z.(t2;4+1) < Y and since we can assume that z.(t2;11) > —Y, we have

Ze(t) = ye(t) = &
as long as z.(t) < Y. So we have
ze(t) > ze(t2j41) + (t — t2j41)Cs.
Since
Ze(toj1) + (t2j42 — 0 —t2j41)Cs > Y,
for € > 0 sufficiently small, the point 6, 2,41 exists for e sufficiently small. Also
(4.15) Oc2j+1 — tojy1 as € — 0.
This is because
ze(t2j+1) + (0c2j41 — t2j41)Cs =Y.

Consider the initial value problem

. 1 .
(4.16) Ze =Y. — E(ZE =Y), 2e(0c2j41) =Y, t > O 0541, t is close to Oc 2541.
This implies
d

a[(zs - Y)eﬁ] = yseé,

and thus z. — Y > 0 as long as y. > 0, which is true up to ¢t = tg;42 — 4.
Now using (3.16) we have

tojy2—0
/ g (D]t < Ce

Oc,2j+1
and
toj12—0 Oc 2j+1
[ e sces [ g
t2j+1 t2jt1
S Ce + 0(95)2]’_’_1 - t2j+1) — O, as ¢ — 0.
Therefore

q(t) =0 on (tgjt1,t2j42 — 0)



216 ALAIN BENSOUSSAN, KEERTHI CHANDRASEKARAN, AND JANOS TURI

and since d is arbitrarily small we have (4.13).
(]

Let us next prove that ¢(¢) satisfies the following differential equation on (t2;,t2j+1).
PROPOSITION 4.3.

(417) q = kp on (t2j7t2j+1).

Proof. Indeed, let ¢(t) be a smooth function on (f2;,t2;4+1) with compact support
on (tgj, t2j+1). We have

2541 241 2541 qe
/ getpdt = / kpedt + / 80?(][%7Y>0 + 1.4 v <o)dt.

tgj t2j tgj

On the domain of ¢ we have |2(t)] < Y, hence |z.(t)] < Y for ¢ sufficiently small,

therefore
t2j41 2541
/ detpdt = / kpedt
tgj tgj
for € sufficiently small. Since ¢ is arbitrary (4.17) follows. O

The function ¢(t) is discontinuous. We will next argue the continuity of ¢(¢) at toj+1

if toj11 # tojyo.
PROPOSITION 4.4. Consider the case ta; < tojy1 < tojy2 (we assume strict
inequality). Then

q(t2j+1 —0) =0 = q(tzj41 +0).

Proof. We have already established the weak convergence in L2. We also know
that 15, — t2,15,,1 — t2j4+1, and 15,5 — f2j12. Assume, to fix the ideas, that
d2j4+1 = 1, and hence 65, = 1 for ¢ sufficiently small. Therefore for ¢ sufficiently

small we have the relations
tQj,tgj < t2j+1 -0< t;jJrl < t2j+1 + 4.

For t € [t5,,t2j4+1 + 0) we have

_(ja + q_a = —kpg
€
and then
d o .
—E(Qse c) = —kpee .
Hence
541 toj i1+ tojr1+0 .
Ge(t1)e” = —geltyp +0)e = = _k/ pe(s)e” =ds
tE

2541



OPTIMAL CONTROL OF VARIATIONAL INEQUALITIES 217

It follows that

P51~ t2+1+9 t2jt1+d s 251
{85y 10) = et +0)e Tk [T e T
t§j+1
Since |g.(s)], |pe(s)| < C we have
t5, 11 —t2 4148 tojr1+6 1§
(85, < CPT e [T e T s
t§j+1
BBj41—t2j 4149
< (Ce c +Cd —0,ase — 0.
Therefore
qs(tgj_H) — 0.
But on (t2;41 — 6,15,,1) we have
Ge = kps
hence
. t§j+1
e85y 0) =tz = 8) =k [ pu(pyi
t2j+1—0
from which it follows that
t§j+1
QE(t2j+1 — 5) — —k/ p(t)dt
toj+1—0
But
Ge(taj+1 — 0) — q(t2j41 — 9)
hence
t§j+1
q(t2j+1 — 6) = —k/ p(f)dt
tajr1—0

and letting 6 — 0 we obtain

q(t2j+1 —0) = 0.

We have established the following result on system vy, z, p, q.

THEOREM 4.5. Let ye, e, Pe, g Satisfy the necessary conditions given in (2.11)
and y, z,p,q be obtained through the limiting relations (3.8) and (3.18). The optimal
control, u(t), for the variational inequality (2.1)-(2.2) is given by u(t) = —p(t) (see
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Theorem 3.1). Then there exists a sequence to = 0 < t1 < tg < t3 < tg < ... of
switching times with ta; < T < toj41 or tajp1 < T < tajpo, where J > 0, such that

y()? Z('),p(-), CI() Satisfy

y+coy+kz+p=0 forte(0,T)

2=y ifty; <t <ty

2 =Y02541 if taj+1 <t < tojyo void if taj41 = toj42
—p=—cop+q+ A forte(0,T)

Gg=kp ifty; <t <ty

g =0 iftoj41 <t < tyjye void if toj41 = toj42.

(4.18)

Moreover y(-), z(-), p(+) are continuous on [0,T], q(-) is piecewise continuous on [0, T]

with possible jumps at toj42, j = 0,1,.., and satisfy the initial and boundary conditions
(4.19) y(0) =2(0) =0, p(T) =, ¢(T) = 0.

In addition, y(tzj) =0 and q(t2j+1 — 0) = q(t2j+1 + 0) =0 lf t2j+1 < t2j+2.

O
REMARK 4.6. The function q(t) satisfies the following relations for j > 1:
(4.20) q(ta; — 0) = 0% q(t2; +0) if t2j—1 <125, and
q(tz; — 0) # 0 and q(tz; — 0) # q(t2; + 0) if taj—1 = t2;.
O

5. Computation of the Cost Function. We have

T T
(5.1) J(u) = %/0 pQ(t)dt—i—)\/O y(t)dt + py(T).

However from (4.18) we get easily

T T T
/ p2(t)dt + py(T) + )\/ y(t)dt + / (qy + kzp)dt =0,
0 0 0

and hence
1, (" 1 17
(5.2) J(u) = 5/\ y(t)dt + E,uy(T) ~5 (qy + kzp)dt.
0 0
We have that
T J—1 g t2j42
/ (qy + kzp)dt = | / (g2 + ¢2)dt + 82541 / kY pdt]
0 §=0 tgj t2j+1

T
(53) +]It2J<T<t2J+1 / (qZ + qZ)dt
tag

t2g+1 T
+]It2J+1<T<t2J+2 [/ (qz': + qz)dt + 52J+1 / kYpdt].

tog t2g+1
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Note that in (5.3) the integrals over [toj41,t2542] disappear if to; 11 = t2j42 and the
last term disappears if o411 = toj42.
Easy calculations yield the following expressions:

to

t1 ta
/ (q,é’ + qz)dt + 51 / kYpdt = q(tQ - 0)Y51 ][t1:t2 + 51 / kYpdt,
0

t1 t1

tojt1 ta
/ (g% + ¢z)dt + 02541 / kY pdt = q(taji2 — 0)Y 0254114y, =ta;

ta; t1
tajt2
—q(t2; +0)Y o1 + 52j+1/ kY pdt, for j=1,..,J —1,
(5.4) . t2y 41
/ (qz+qz)dt: —q(t2J+O)Y52J_1, ifto; <T < t274+1,
tag

togt1 T
/ (qz" + Gz)dt + da541 / kY pdt = —q(tQJ + 0)Y§2j_1

tog tag41

+62J+1 LZJ+1 kY pdt.

Therefore
T J
~/O (qy + kZp)dt = Z Yé?j—l(‘](th - O)]Itzj—lztzj - Q(t2j + O))
j=1
J (t2j4+2)AT
(5.5) +> a1 / kY pdt.
=0 t2j+1
If J =0, then
T
(5.6) / (qy + kzp)dt = 0.
0
Hence

T
Tu() = A [ wle)dt+ g7
J—-1

Y tajt2
(57) +5 Z 52j+1[Q(t2j+2 + 0) - Q(t2j+2 - 0)]It2j+1:t2j+2 - k/ p(t)dt]
0 to 41
Y ! (t2,]+2)/\T !
_5k62J+1 / pdt.
(t2J+1)/\T

6. Conclusions. In Theorem 4.5 and Remark 4.6 we obtained a two point
boundary value problem with additional internal boundary conditions for the state
and adjoint variables, i.e., (4.18), with (4.19) and (4.20). For the solution of this prob-
lem an iterative process is needed because the phase changing instances ¢;, j = 1,2, ...
are only defined implicitly. The computation proceeds segment by segment fashion,
where a segment is a pair of consecutive elastic and plastic phases including the pos-
sibility of a one point plastic excursion (i.e., when the oscillator just touches on the
plastic boundary). A detailed description of the corresponding algorithm is discussed
in [3] and [7].
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