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Abstract. In this paper a methodology to cluster time series based on measurement data is

described. In particular, we propose a distance for stochastic models based on the concept of sub-

space angles within a model and between two models. This distance is used to obtain a clustering

over the set of time series. We show how it is related to the mutual information of the past and

the future output processes, and to a previously defined cepstral distance. Finally, the methodol-

ogy is applied to the clustering of time series of power consumption within the Belgian electricity grid.
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1. Introduction. Time series arise in many important areas. Some examples
include the evolution of stock price indices, share prices or commodity prices, the sales
figures for a particular good or service, macroeconomic and demographic indicators,
image sequences, acceleration measurements by sensors on a bridge [43], ECG or EEG
recordings1, gene expression measurements at consecutive time points in bioinformat-
ics [14], etc. Typically, the analysis is oriented to estimating a good model that can be
used for monitoring, producing accurate forecasts, providing structural information
and/or information about the influence of a particular set of inputs on the desired
output.
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However, the increasing availability of data sets consisting of a large number of
time series has led to the analysis of similarities between time series. For several
of the aforementioned applications it is now relevant to investigate how similar the
behavior of two or more time series is, e.g. which commodities behave similarly, which
sensors on a bridge are redundant, how many different types of time series exist in a
given sample. These kinds of questions often arise in a broader context, where they
are used as a support for strategic managerial decisions, new pricing policies, long
term planning and investment decisions.

One of the techniques that can be useful in providing answers is a cluster analy-
sis [29], which is a way to find clusters of similar entities in a given data set. Distance-
based clustering is built upon the definition of similarity between the objects. For the
concept of similarity between time series, several suggestions have been made in the
literature. Often, similarities are measured directly between the time series or a trans-
formation of them [23]. The most straightforward choice would be to represent each
time series by the vector of its measurement data and to compute e.g. the Euclidean
distance or the angle between these vectors. These kinds of measures, however, have
several drawbacks [45]. Longer time series can suffer from the curse of dimensionality
(e.g. the ‘concentration of measure’ phenomenon as described in [13, 55]) and some
of the measures are sensitive to time shifting or scaling of the measurements. Despite
several adaptations such as scaling, normalization or more complex transformations
of the data, these kinds of distances are not very appropriate for detecting the type
of similarity we are interested in [34].

In this paper we wish to detect similarities in the dynamics of different time series,
i.e. the way in which consecutive measurements are related to each other. This leads
to the three-step procedure we apply in this paper for the clustering of a set of time
series. This general methodology has been applied previously in different application
areas such as e.g. speech processing [24] and biomedical signal processing [19]. Firstly,
and this is the key step, each time series is represented by a dynamical model, which
is estimated using the given data. Secondly, a distance between the dynamical models
is defined and computed over all the models estimated in the first stage. Finally, a
clustering and/or a classification is performed based on this distance. Each one of
these steps can be filled in and implemented in its own particular way, thus giving
rise to a range of different choices of design and implementation.

In this paper we will mainly focus on the second step, the definition and computa-
tion of the distance. Although a lot of research has been done on defining appropriate
distances for time series models [24, 18, 40, 10, 34, 4, 3], several challenges remain
to be tackled. For instance, while some distances are defined and computable for
both single-input single-output (SISO) and multiple-input multiple-output (MIMO)
models [36, 47, 49, 7], other distances are only applicable to SISO models (e.g. the
ones directly based on the cepstrum [24, 3]), opening a research challenge for the
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multivariable extension.

In this paper however, we will consider only SISO autoregressive moving average
(ARMA) processes. We will define a model norm and a corresponding distance for
ARMA models, based on the concept of subspace angles within and between models.
We follow the approach described in [7] of defining the norm of a model by measuring
the change it causes to a particular input signal, namely white noise. In contrast to
the H2 norm in [7] however, we do not measure the root-mean-square gain of the
output with respect to the input, but we compute the angles between the input and
output spaces. This will be further explained in Section 4.

A different set of questions relates to the clustering. How to graphically visualize
the results of a clustering of time series when there is no explicit use of vector co-
ordinates or they have infinite length? A possible solution for this will be described
in Section 6. Practical difficulties also arise due to the fact that different clustering
algorithms lead to different clustering results. Other important issues are the choice
of the number of clusters, the interpretation and the evaluation of the clustering. We
will come back to these issues in the application of Section 6.

The paper is organized as follows (see Figure 1). In Section 2 we briefly recall the
notion of principal angles between two subspaces. Section 3 describes the model class
we will work with: SISO linear stochastic models. In Section 4 the subspace angles
within a model and between two models are defined by applying the geometrical
concept of principal angles to these models. In Section 5 we show how the (weighted)
cepstral distance of [40] is related to the subspace angles between two models and
how the corresponding cepstral norm relates to the angles within a model and to the
mutual information of the past and future output processes. In Section 6 the distance
is used for the clustering of time series of electricity demand. Section 7 concludes the
paper.

2. Principal Angles between Subspaces. The concept of principal angles be-
tween two subspaces goes back to Jordan in the nineteenth century [31]. This notion
was translated into the statistical notion of canonical correlations by Hotelling [26].
Applications include data analysis [20], random processes [17, 32] and stochastic real-
ization [1, 8, 52, 54] (and references herein). Numerically stable methods to compute
the principal angles and vectors via a singular value decomposition have been proposed
in [5, 22] and can also be found in [21, pp. 603–604].

2.1. Definition and Notation. The principal angles between two subspaces
are a generalization of an angle between two vectors. Suppose we are given two linear
subspaces S1 and S2 of the ambient space Rn of dimension d1 < n and d2 < n,
respectively. A natural extension of the one-dimensional case is to choose a unit
vector u1 from S1 and a unit vector v1 from S2 such that the angle between u1 and
v1 is minimized. The vectors u1 and v1 so obtained, are the first principal directions
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Fig. 1. Overview of the paper.

and the angle between them is the first principal angle θ1. Next, choose a unit vector
u2 ∈ S1 orthogonal to u1 and v2 ∈ S2 orthogonal to v1 and minimize the angle θ2
between them. This is the second principal angle and u2 and v2 are the corresponding
principal directions. Continue in this way until min(d1, d2) angles and corresponding
principal vectors have been found.

This informal description is now formalized.

Definition 2.1. Principal angles and directions

The principal angles 0 ≤ θ1 ≤ θ2 ≤ . . . θmin(d1,d2) ≤ π/2 between the subspaces S1 and
S2 of the ambient space Rn of dimension d1 < n and d2 < n, respectively, and the
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corresponding principal directions ui ∈ S1 and vi ∈ S2 are defined recursively as

cos θ1 = max
u∈ S1
v∈ S2

uT v = uT
1 v1 ,

cos θk = max
u∈ S1
v∈ S2

uT v = uT
k vk , for k = 2, . . . ,min(d1, d2) ,

subject to ‖u‖ = ‖v‖ = 1 and for k > 1: uTui = 0 and vT vi = 0, where i = 1, . . . , k−1.

Let A ∈ Rp×n be of rank ra and B ∈ Rq×n of rank rb. Then, the ordered set of
min(ra, rb) principal angles between the row spaces of A and B is denoted by

(
θ1, θ2, . . . , θmin(ra,rb)

)
= [A ^ B] .

2.2. The Cosines of the Principal Angles and the Principal Directions

as Eigenvalues and Eigenvectors. Let A ∈ Rp×n and B ∈ Rq×n have rank ra

and rb, respectively and assume that ra ≤ rb. It can be shown (see e.g. [22]) that the
principal angles between and the principal directions in row(A) and row(B) follow
from the symmetric generalized eigenvalue problem:

(1)

(
0 ABT

BAT 0

)(
x

y

)
=

(
AAT 0

0 BBT

)(
x

y

)
λ ,

subject to xTAATx = 1 and yTBBT y = 1.

Assume that the p+ q (real) eigenvalues λi are sorted in non-ascending order as

λ1 ≥ . . . ≥ λp+q ,

then one can show that

λ1 = cos θ1, . . . , λra
= cos θra

≥ 0 ,(2a)

λp+q = − cos θ1, . . . , λp+q−ra+1 = − cos θra ,(2b)

λra+1 = λra+2 = · · · = λp+q−ra
= 0 .(2c)

The cosines of the ra principal angles between the row spaces of A and B are equal
to the largest ra eigenvalues. The vectors ATxi and BT yi, for i = 1, . . . , ra where
xi and yi satisfy (1) with λ = λi, are the principal directions corresponding to the
principal angle θi. Furthermore, if A ∈ Rp×n and B ∈ Rq×n are of full row rank with
p ≤ q, then the squared cosines of the principal angles between row(A) and row(B)
are equal to the eigenvalues of (AAT )−1ABT (BBT )−1BAT :

(3) cos2 [A ^ B] = λ
(
(AAT )−1ABT (BBT )−1BAT

)
,

where λ(X) denotes the eigenvalue spectrum of the matrix X.
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3. Model Class: Linear Stochastic Models. In this section, we describe the
model class that we will work with, namely single-input single-output (SISO) linear
time-invariant stochastic models. All models considered in this paper are assumed to
be stable and minimum phase. We give the state space representation in Section 3.1.
Section 3.2 recalls the observability matrix and observability Gramian. In Section 3.3
the inverse model is described and in Section 3.4 the input and output Hankel matrices
are defined.

3.1. State Space Representation and Assumptions. There are many state
space representations for a stochastic process {y(k)}k∈Z, all of which are equivalent,
in the sense that the second order statistics of the outputs generated by the different
models are the same [54, 42, 33]. We will work with the forward innovation form:

(4)

{
x(k + 1) = Ax(k) +Ke(k) ,

y(k) = Cx(k) + e(k) ,

where {y(k)}k∈Z ∈ R, the output of the model, is the stochastic process that is being
modeled, {e(k)}k∈Z ∈ R is the innovation process of {y(k)}k∈Z and {x(k)}k∈Z ∈ Rn is
the state process. The matrix A ∈ Rn×n is called the system matrix, C ∈ R1×n is the
output matrix and K ∈ Rn×1 is the Kalman gain. We will denote the model (4) by
the threesome (A,K,C). The transfer function from {e(k)}k∈Z to {y(k)}k∈Z is equal
to

H(z) = C(zIn −A)−1K + 1 .

The following assumptions are made on the input and state processes of (4). The
input process {e(k)} is a zero-mean, stationary, ergodic and white stochastic process
with variance σ2. It is assumed to be independent of the initial state. The matrix
A is assumed to be stable (all of its eigenvalues lie strictly inside the unit circle) so
that the state process {x(k)} is a zero-mean, stationary and ergodic stochastic process
with covariance matrix Σ. Under fairly general conditions [33], the forward innovation
model is minimum phase. This means that all the zeros of the model, which are the
eigenvalues of A−KC, lie strictly inside the unit circle. Furthermore, the system is
assumed to be minimal, so that the state covariance matrix Σ is of full rank.

3.2. The Observability Matrix and Gramian. For a specified integer i, the
observability matrix Γi of the forward innovation model (4) is defined as

(5) Γi =



C

CA

CA2

...
CAi−1


.
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The observability Gramian Q is the solution of the observability Lyapunov equation

(6) Q = ATQA+ CTC .

Since the model is stable and minimal, the matrix Q is the unique and positive definite
solution of the Lyapunov equation. The explicit solution for Q is therefore given by

Q =
∞∑

k=0

(Ak)TCTCAk = ΓT
∞Γ∞ ,

where Γ∞ is the infinite observability matrix of the model.

3.3. The Inverse Model. For the stable, minimum phase and observable model
(A,K,C), the inverse model is also stable and minimum phase. Its state space de-
scription is readily derived from (4):

{
x(k + 1) = (A−KC)x(k) +Ky(k) ,

e(k) = −Cx(k) + y(k) .

We will also need the observability matrix of the inverse model, denoted by Γzi , for a
specified integer i:

Γzi =



−C
−C(A−KC)
−C(A−KC)2

...
−C(A−KC)i−1


.

The observability Gramian of the inverse model is denoted by Qz and it is equal to

(7) Qz = ΓT
z∞Γz∞ .

It is the solution of the observability Lyapunov equation for the inverse model

(8) Qz = (A−KC)TQz(A−KC) + CTC .

3.4. Input and Output Hankel Matrices. We will compute principal angles
between the row spaces of input and output Hankel matrices of linear stochastic
models. If s output observations y(0), y(1), . . . , y(s − 1) are given, then the output
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Hankel matrix is equal to

Y =



y(0) y(1) · · · y(j − 1)
y(1) y(2) · · · y(j)

...
...

...
y(i− 1) y(i) · · · y(i+ j − 2)

y(i) y(i+ 1) · · · y(i+ j − 1)
y(i+ 1) y(i+ 2) · · · y(i+ j)

...
...

...
y(2i− 1) y(2i) · · · y(2i+ j − 2)


,(9)

=

(
Yp

Yf

)
,(10)

where 2i+ j − 1 = s and i and j are user-defined parameters with j � i and i larger
than the model order n. The submatrix of the first i rows is denoted by Yp, where the
subscript p stands for ‘past’, while the submatrix of the last i rows is Yf , the subscript
f referring to the ‘future’. The past and future input Hankel matrices, Ep ∈ Ri×j

and Ef ∈ Ri×j are defined in a similar way.

4. Subspace Angles between Two Models and Subspace Angles of a

Model. In this section we define a notion of subspace angles between two models.
They are the principal angles between certain subspaces derived from the models.
The subspace angles between two models will define a distance between the models.
In Section 5, we will show how these angles lead to a cepstral distance. There are also
interesting angles within a model, the subspace angles of a model. They will lead to
the cepstral norm of a model. We discuss the subspace angles between two models in
Section 4.1 and subspace angles of a model in Section 4.2.

4.1. Subspace Angles between Two Models.

4.1.1. Definition. By looking at the principal angles between certain output
spaces derived from two linear stochastic models that are driven by the same white
noise sequence, we can define subspace angles between two models. LetM (1) andM (2)

be SISO linear stochastic models that are driven by the same white noise sequence.
The order of the models is n(1) and n(2), respectively. The largest n(1) +n(2) principal
angles between the row spaces of the output Hankel matrices can then be expressed
in terms of the model parameters, while the other principal angles are all equal to 0.

Theorem 4.1. The largest n(1) + n(2) principal angles between the row spaces of
the output Hankel matrices of M (1) and M (2), denoted by Y (1) and Y (2), are equal
to the principal angles between the column spaces of

(
Γ(1)
∞ Γ(2)

z∞

)
and

(
Γ(2)
∞ Γ(1)

z∞

)
,

provided the number of rows and columns of the Hankel matrices goes to ∞. The
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other principal angles are equal to 0:

(11)
[
Y (1) ^ Y (2)

]
=
[(

Γ(1)
∞ Γ(2)

z∞

)T

^
(
Γ(2)
∞ Γ(1)

z∞

)T
]
, 0, 0, . . . ,

where Γ(1)
∞ and Γ(2)

∞ are the observability matrices of the two models and Γ(1)
z∞ and Γ(2)

z∞

the observability matrices of the inverse models.

The proof for the equality in (11) is given in [9, pp. 133–134]. A much more elegant
proof would be possible after proving the conjecture in [11], which we offer as a
challenge to the reader.

We call the principal angles between the column spaces of
(
Γ(1)
∞ Γ(2)

z∞

)
and(

Γ(2)
∞ Γ(1)

z∞

)
the subspace angles between the two models:

Definition 4.1. The subspace angles between two models

The subspace angles between the model with transfer function H(1)(z) and the model
with transfer function H(2)(z) are defined as the principal angles between the column
spaces of

(
Γ(1)
∞ Γ(2)

z∞

)
and

(
Γ(2)
∞ Γ(1)

z∞

)
:

[
H(1) ^ H(2)

]
=
[(

Γ(1)
∞ Γ(2)

z∞

)T

^
(
Γ(2)
∞ Γ(1)

z∞

)T
]
.

It is interesting to see that the subspace angles between two models do not change
when the transfer functions of the models are both multiplied by a third transfer
function:

Property 4.2. Consider two models with transfer function H(1)(z) and H(2)(z),
respectively. A third model has transfer function H(3)(z) and is of order n(3). Mul-
tiplying both the transfer functions H(1) and H(2) with H(3) does not change the
subspace angles. It only results in 2n(3) additional subspace angles equal to 0.[

H(1)H(3) ^ H(2)H(3)
]

=
[
H(1) ^ H(2)

]
, 0, 0, . . . , 0︸ ︷︷ ︸

2n(3)

.

Said in other words, if two transfer functions share a common pole-zero pair, two
of the subspace angles between them will be zero.

4.1.2. Computation. From the definition of the subspace angles between two
models (Definition 4.1) and the expression for the cosines of the principal angles
as eigenvalues in (3), it follows that the squared cosines of the subspace angles be-
tween the models with transfer function H(1)(z) and H(2)(z) are the eigenvalues of
Q−1

11 Q12Q
−1
22 Q21:

(12) cos2
[
H(1) ^ H(2)

]
= λ

(
Q−1

11 Q12Q
−1
22 Q21

)
,
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where

Q =

(
Q11 Q12

Q21 Q22

)

=


Γ(1)T

∞

Γ(2)T

z∞

Γ(2)T

∞

Γ(1)T

z∞


(

Γ(1)
∞ Γ(2)

z∞ Γ(2)
∞ Γ(1)

z∞

)
.(13)

The matrix Q can be regarded as the observability Gramian of the model with system
matrix

A =


A(1) 0 0 0
0 (A(2) −K(2)C(2)) 0 0

0 0 A(2) 0
0 0 0 (A(1) −K(1)C(1))

 ,

and output matrix

C =
(
C(1) −C(2) C(2) −C(1)

)
.

Consequently, the matrix Q can be obtained by solving the Lyapunov equation:

(14) Q = ATQA+ CTC .

4.2. Subspace Angles of a Model. As we will see in Section 5.2, a particular
cepstral distance between two models, which was defined in [40], can be expressed
in terms of the subspace angles between the models. Corresponding to the distance,
there exists a cepstral norm of a model, which we also want to express in terms of
principal angles. It turns out that the relevant angles are those between the input
and output spaces of the model, which are discussed in Section 4.2.1. In Section 4.2.2,
we look at a second group of angles, the principal angles between the past and future
output spaces of a model. The two groups of angles are complementary and this
complementarity will lead us to the information-theoretic interpretation of the cepstral
norm in Section 5.3.2.

4.2.1. The principal Angles between Future Input and Future Output.

In an analogous way as for the subspace angles between two models, we can express
the principal angles between the future input and output spaces of a linear stochastic
model of order n in terms of the model parameters as follows.

Theorem 4.3. The largest n principal angles between the row spaces of the future
input and future output Hankel matrices, Ef and Yf (see (9-10)), of a model M are
equal to the principal angles between the column spaces of the observability matrix of
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M and the observability matrix of the inverse model M−1, provided the number of
rows and columns of the Hankel matrices goes to ∞. The other principal angles are
equal to 0:

[Ef ^ Yf ] =
[
ΓT
∞ ^ ΓT

z∞

]
, 0, 0, . . . ,

where Γ∞ is the observability matrix of the model and Γz∞ is the observability matrix
of the inverse model.
The proof of Theorem 4.3 is given in [9, p. 137]. Only n principal angles between the
input and output spaces differ from 0. These angles are called the subspace angles of
the model or within the model.

Definition 4.2. The subspace angles of a model

The subspace angles of the model M are defined as the principal angles between the
column spaces of the model’s infinite observability matrix Γ∞ and the inverse model’s
infinite observability matrix Γz∞ .

The squared cosines of the subspace angles of the model M can be computed as
the eigenvalues of Q−1QabQ

−1
z Qba, where

(15)

(
Q Qab

Qba Qz

)
=

(
ΓT
∞

ΓT
z∞

)(
Γ∞ Γz∞

)

is the observability Gramian of

((
A 0
0 A−KC

)
,
(
C −C

))
, which can be com-

puted via the observability Lyapunov equation (6).
Note that the subspace angles of an nth order modelM with transfer function b(z)

a(z)

are equal to the subspace angles between the autoregressive (AR) model with trans-
fer function zn

a(z) and the AR model with transfer function zn

b(z) . They consequently
indicate a certain ‘correlation’ of the pole- and zero-part of the transfer function. The
closer the zeros lie to the poles, the smaller the subspace angles of the model. Con-
versely, the subspace angles between two models with transfer function H(1) and H(2),
respectively, are equal to the subspace angles of the model with transfer function H(1)

H(2)

(or H(2)

H(1) ).

4.2.2. The Principal Angles between Past and Future Output. It can
be shown [9, p. 121] that the principal angles between the row spaces of the past
and future output Hankel matrices, Yp and Yf (see (10)), are complementary to the
principal angles between the row spaces of the future input and future output Hankel
matrices, Ef and Yf :

(16) [Yp ^ Yf ] =
π

2
− [Ef ^ Yf ] .

We will use this complementarity in Section 5.3.2 to derive the direct relation of the
cepstral norm and the mutual information of the past and future output processes.
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5. Cepstral Distance. We describe a cepstral distance and show that it can
be expressed in terms of subspace angles between models (Section 5.2). Similarly, the
associated cepstral norm can be expressed in terms of subspace angles within a model.
This is shown in Section 5.3. In Section 5.4 we explain how the cepstral distance can
be estimated from measurements. But first, we recall in Section 5.1 the definition of
the cepstrum.

Fig. 2. Estimation of the cepstrum of the stochastic process {y(k)}k∈Z. The fast Fourier

transform (FFT) is applied to the observations y(k) (k = 0, 1, . . . , K − 1). Next, the logarithm of

the magnitude squared of the transformed sequence is normalized by the number of observations.

Applying the inverse fast Fourier transform (IFFT) results in an estimate for the cepstrum.

5.1. The Cepstrum. The cepstrum of a stochastic process is defined as the in-
verse Fourier transform of the logarithm of the power spectrum of the process. It can
be easily computed by using the fast Fourier transform, as shown in Figure 2. The
cepstrum has been introduced for the detection of echoes in seismological data [6]. It is
used in speech recognition [44], in fault detection methods for rotating machines [57],
but also for measuring the distance between two signals, see [40, 3] and references
therein. Kalpakis et al. [34] use the Euclidean distance between the cepstral coeffi-
cients of AR models to cluster time series.

The cepstrum of the output process of a linear stochastic model can be expressed
in terms of the model parameters. Suppose the order of the model is n, its poles are
denoted by α1, . . . , αn and the zeros by β1, . . . , βn. Assume that the variance of the
white noise input process {e(k)} is equal to σ2. Then, the cepstral coefficients of the
output process {y(k)} are equal to [41, p. 502]:

(17) c(k) =


log σ2 k = 0 ,

n∑
i=1

α
|k|
i

|k|
−

n∑
i=1

β
|k|
i

|k|
k 6= 0 .

The cepstrum is a real and even sequence.

5.2. A Cepstral Distance. Several distances for signals that are based on the
cepstrum of the signals, have been proposed [3]. As can be seen from equation (17),
the cepstral sequence of a model is in general infinitely long (although the coefficients
decay to zero). That is why e.g. in the clustering approach of Kalpakis et al. [34]
a finite cut-off length was chosen for the cepstral sequences, which had to be equal
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for all time series in order to be able to compute all pairwise distances. The cepstral
coefficients however do not always decay in a similar way. The closer the poles or zeros
of a model are to the unit circle, the slower the decay and the more coefficients are
needed. So when clustering a large set of models, the required number of coefficients
to avoid false positives depends on the ‘worst’ model, i.e. the one with its poles and
zeros nearest to the unit circle.

The cepstral distance defined by Martin [40] does not suffer from this drawback.
Due to the specific weighting of the cepstral coefficients, several closed-form formu-
las exist that calculate the exact distance between the (weighted) infinite cepstral
sequences of the models. No explicit vector representation is needed.

5.2.1. Definition and Properties.

Definition 5.1. A cepstral distance [40]

Let M (1) and M (2) be two linear stochastic models with transfer function H(1)(z) and
H(2)(z) and cepstrum c(1) and c(2), respectively. Then, the squared cepstral distance
between M (1) and M (2) is defined as

(18) d2(logH(1), logH(2)) =
∞∑

k=0

k(c(1)(k)− c(2)(k))2 .

Note that the distance is independent of the zeroth cepstral coefficient of each
process, which is equal to the logarithm of the input variance (see (17)). This implies
that the distance in (18) is not a metric for ARMA processes, since a metric must
obey the condition d(y(1), y(2)) = 0 ⇔ y(1) = y(2). Nevertheless, it is a metric for
the set of ARMA processes that are generated by sending white noise with variance 1
through an ARMA model with transfer function H(z) = b(z)

a(z) , of which the polynomial
coefficients b0 and a0 are equal to 1. In other words, it is a metric on that class of
models.

The distance belongs to a family of distances that are based on the L2 distance
between the smoothed group delay spectra2 of the processes [28]. This can be shown
to correspond in the cepstral domain to a certain weighting of the cepstrum. The
corresponding family of weighted cepstral sequences is denoted by {w(k)c(k)} where
w(k) = ks exp(−k2

2τ2 ), with s and τ nonnegative parameters to be chosen. Distances
are then computed as the Euclidean distances between these sequences. In our case
of the cepstral distance in (18), there is no smoothing and a slight emphasis of the
cepstral coefficients at higher indices k (s = 0.5), i.e. the higher quefrency components.
This corresponds to stressing the more ‘quickly varying’ spectral features, resulting
in sharper spectral peaks than in the unweighted case.

It is easily seen that for the cepstral distance (18) the following property holds,
which is similar to Property 4.2 for the subspace angles between two models.

2The group delay spectrum of a process with transfer function H(z) is defined as the negative

derivative of the phase of the transfer function with respect to the frequency.
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Property 5.1. Let M (1) be a model with transfer function H(1)(z) and M (2) a
model with transfer function H(2)(z). Consider a third model with transfer function
H(3)(z). Multiplying both the transfer functions H(1) and H(2) with H(3) does not
change the cepstral distance.

d
(
log
(
H(1)H(3)

)
, log

(
H(2)H(3)

))
= d

(
logH(1), logH(2)

)
.

This implies that in order to compute the distance between ARMA models, it is
sufficient to consider AR models. Indeed, for H(1)(z) = b(1)(z)

a(1)(z)
and H(2)(z) = b(2)(z)

a(2)(z)

of order n(1) and n(2) respectively, take H(3)(z) = zn(1)+n(2)

b(1)(z)b(2)(z)
, so that

(19) d

(
log

b(1)(z)
a(1)(z)

, log
b(2)(z)
a(2)(z)

)
= d

(
log

zn(1)+n(2)

a(1)(z)b(2)(z)
, log

zn(1)+n(2)

a(2)(z)b(1)(z)

)
.

Because M (1) and M (2) are stable and minimum phase, the two resulting AR models
in (19) are stable.

5.2.2. Relation to the Subspace Angles between Two Models. As was
shown in [40], by using the expression (17), the cepstral distance between two stable
AR models can be expressed in terms of their poles. Let H(1)(z) and H(2)(z) be
the transfer functions of stable AR models of order p and q, respectively, and with
poles α1, . . . , αp and β1, . . . , βq. Then, the squared cepstral distance between the two
models is equal to

(20) d2
(
logH(1), logH(2)

)
= log

p∏
i=1

q∏
j=1

∣∣1− αiβ̄j

∣∣2
p∏

i,j=1

(1− αiᾱj)
q∏

i,j=1

(1− βiβ̄j)

,

where c̄ is the complex conjugate of c. By taking a closer look at (20) for the case of
two first order models, we discover an angle between two vectors. Consider the first
order models with transfer function H(1)(z) and H(2)(z) and pole equal to α and β

(with |α| < 1 and |β| < 1), respectively. Their squared distance equals

d2(logH(1), logH(2)) = log
(1− αβ)2

(1− α2)(1− β2)
= log

1
cos2 θ

,

where θ is the angle between the vectors(
1 α α2 · · ·

)
∈ R∞ and

(
1 β β2 · · ·

)
∈ R∞ .

For higher order models, the squared distance as defined by Martin [40] can be ex-
pressed as the logarithm of a product of 1

cos2 θi
, where the angles θi are the subspace

angles between the models:
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Theorem 5.2. Assume the models M (1) and M (2) have transfer function H(1)(z)
and H(2)(z) of order n(1) and n(2), respectively. The cepstral distance (18) can be
expressed in terms of the n(1) + n(2) subspace angles between the models M (1) and
M (2), denoted by θ(12)1 , θ

(12)
2 , . . . , θ

(12)

n(1)+n(2) , as follows:

(21) d2(logH(1), logH(2)) = − log
n(1)+n(2)∏

i=1

cos2 θ(12)i .

The proof of Theorem 5.2 is given in [10].
This characterization of the cepstral distance gives us a new way to compute it.

Using (21) and (12), leads to

d2(logH(1), logH(2)) = − log det
(
Q−1

11 Q12Q
−1
22 Q21

)
,

= − log
(detQ12)2

detQ11 detQ22
,(22)

where Q11, Q12, Q21 and Q22 are defined in (13).

5.3. A Cepstral Norm. In this section we define a cepstral norm of a model
and indicate how it can be expressed in terms of the subspace angles of the model
(Section 5.3.1). Its relation to the mutual information of the past and future output
processes is given in Section 5.3.2.

5.3.1. Definition and Relation to the Subspace Angles in a Model.

Based on the definition in [40] (see (18)), we can derive the corresponding model
norm:

‖ logH‖2 =
∞∑

k=0

kc(k)2 ,

where c(k) is the cepstrum of the model with transfer function H(z). This is equal to
the Hilbert-Schmidt norm of the doubly infinite Hankel matrix of cepstral coefficients
c(k), k = 1, . . . ,∞ or equivalently to the Hilbert-Schmidt-Hankel norm of logH(z)
(see [12]).

Note that the cepstral norm of a model is equal to the cepstral distance between
the model and the model with transfer function equal to a constant (e.g. 1): ‖ logH‖ =
d (logH, log 1). The cepstral norm of a model is therefore a measure for the whiteness
of the output process of the model. Furthermore, the cepstral norm of an nth order
model M with transfer function b(z)

a(z) is equal to the cepstral distance between the
autoregressive models with transfer function zn

a(z) and zn

b(z) , respectively. Also note
that the cepstral distance between two models with transfer function H(1) and H(2),
respectively, is equal to the cepstral norm of the model with transfer function H(1)

H(2)

(or H(2)

H(1) ): d
(
logH(1), logH(2)

)
=
∥∥∥log H(1)

H(2)

∥∥∥ =
∥∥∥log H(2)

H(1)

∥∥∥. This is all similar to the
observations made about the subspace angles in Section 4.2.1.
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While the cepstral distance between two models is related to the subspace angles
between the models, the cepstral norm of a model is related to the subspace angles
of the model. Let the model be of order n and let its subspace angles be denoted by
ψ1, ψ2, . . . , ψn. Then, the cepstral norm is equal to

∞∑
k=0

kc(k)2 = − log
n∏

i=1

cos2 ψi .

Similarly to the cepstral distance, the norm can be computed as

‖ logH‖2 = − log
(detQab)2

detQdetQz
,

where Q is the observability Gramian of the model, Qz is the observability Gramian
of the inverse model and Qab is equal to ΓT

∞Γz∞ (see also (15)).

5.3.2. Relation to the Mutual Information. Due to the complementarity
property in (16), the norm can also be expressed in terms of the principal angles
between the past and future output spaces, which are denoted by φ1, . . . , φn:

(23)
∞∑

k=0

kc(k)2 = − log
n∏

i=1

sin2 φi .

From the characterization in (23) follows that the cepstral norm of a model is propor-
tional to the mutual information of the past and future output processes (denoted by
yp and yf ), provided the output process is Gaussian. Indeed, the mutual information
of the jointly Gaussian stochastic processes yp and yf can be written as (see e.g. [17])

I(yp, yf ) = −1
2

log
n∏

i=1

sin2 φi .

The mutual information of the past and the future of a Gaussian stochastic output
process of a linear model M with transfer function H(z) is consequently also equal to

I(yp, yf ) =
1
2

∞∑
k=0

kc(k)2 =
1
2
‖ logH‖2 .

5.4. Estimating the Cepstral Distance. Depending on the application, sev-
eral ways to estimate the cepstral distance can be thought of. For instance, if one
wants to cluster time series (as in the example of Section 6), one needs to estimate
the cepstral distance between two time series. This is discussed in Section 5.4.1. On
the other hand, in a classification problem, one has to assign a time series to one class
of a set of given classes. To this end, the distance between the observation and a
representative model of each class is computed and the time series is assigned to the
closest class. Estimating the distance between a given model and measurements is
also relevant for monitoring and fault detection. By monitoring the distance between
measurements and a nominal model, one can detect changes and possibly faults in
the system. How to estimate the cepstral distance between a time series and a model
is explained in Section 5.4.2.
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5.4.1. Estimating the Cepstral Distance between Two Time Series. The
cepstral distance between two time series can be estimated in the following ways:

1. Assume that we use a non-parametric method for the estimation of the cep-
strum (see Figure 2) of the two processes and we obtain K estimated cepstral
coefficients for both, denoted by c(1)(0),. . . ,c(1)(K−1) and c(2)(0),. . . ,c(2)(K−
1). Then, the squared cepstral distance between the underlying models is ap-
proximately equal to

(24) d2(logH(1), logH(2)) ≈
K−1∑
k=1

k(c(1)(k)− c(2)(k))2 .

If the cepstral coefficients were estimated exactly, the expression on the right
side would be a lower bound for the exact squared distance.

2. If we identify two stochastic models, based on the two observed sequences,
we can apply e.g. (22) or (20) to obtain the distance between the models.

5.4.2. Estimating the Cepstral Distance between a Time Series and a

Model. Assume we have a model with transfer function H(1)(z) and K data samples
y(0), . . . , y(K − 1) of a time series, originating from the model with transfer function
H(2)(z). The distance between the time series and the model can be estimated in
several ways.

1. By estimating the cepstrum of the time series and applying (24), where
c(1)(k) (k = 1, . . . ,K − 1) is the cepstrum of the model and c(2)(k) (k =
1, . . . ,K − 1) is the estimated cepstrum of the time series.

2. By identifying a model based on the measurements and applying (22) or (20).
3. By applying a Kalman filter to the data.

Filtering the given data y(0), . . . , y(K − 1) by the inverse model H(1)−1
(z),

can be seen as a series connection of the model H(2)(z) and H(1)−1
(z). Let us

denote the output of this filtering process by z(0), . . . , z(K−1). These samples
thus can be viewed to originate from the ARMA model with transfer function
H(2)(z)
H(1)(z)

. Since the distance between H(1) and H(2) is equal to the norm

of H(2)(z)
H(1)(z)

, we can estimate the distance from the samples z(0), . . . , z(K −
1). For example, construct the 2i × j Hankel matrix Z with the samples
z(0), . . . , z(K − 1). Compute the principal angles between the row spaces of
Zp and Zf and apply (23). Note that filtering the data with the inverse of
the given model, can be seen as applying the Kalman filter of the model to
the measurements by which the residuals of the data are determined.

6. Application: Clustering of Load Series. In this section, the methodology
described is applied to a real-life clustering problem. The time series are derived from
metering observations on High Voltage – Low Voltage (HV–LV) substations within
the Belgian electricity grid. In Section 6.1 some background information is given. The
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data are briefly described in Section 6.2. In Section 6.3 we explain how the models
are identified. Based on the models, we cluster the time series into six clusters in
Section 6.4. The visualization of the clusters is explained in Section 6.5.

6.1. Background. The quantitative analysis of the electricity demand (load) is
currently a key research area [46, 39] with important implications for grid managers.
Not only accurate forecasts are needed for the short-term operations and mid-term
scheduling, but network managers also need to have insight in the type of customers
they have to supply as a support for long-term planning, pricing analysis, etc. The
unbundling between generation, transmission, distribution and supply induced by the
market liberalization has led to network managers being partially blind beyond a cer-
tain substation level with respect to the final customers. It is known that different
types of customers (residential, industrial, business, etc.) will have a different load
consumption pattern over a day; and it is also known that the load series, for any type
of customer, may present important seasonal variations and weather-related effects.
Therefore, usually a model has to be estimated to identify (and remove) the seasonal
and weather-related effects from the load series and later on perform further analysis.
The problem then is to find how many different types of time series can be identi-
fied in a sample of several time series, where each series contains the historical load
measurements at a particular substation. This is, clustering of time series is required.
In the literature, this problem is often tackled by using decomposition techniques to
assess the types of load [37, 25]. Recently, a time series approach was proposed [15]
where each hourly load series containing over 44 000 data points is represented by a
24-dimensional vector, and these vectors are clustered in a second stage. Although
models were identified in [15], the distances between the time series were still measured
through these representation vectors. In this paper, we compute distances between
models directly, thus there is no need to build explicit representations for each time
series.

6.2. Data and Model Definition. Load forecasting has been addressed by a
wide range of models based on different techniques (time series analysis [2, 46, 27],
neural networks applications [48, 16]) with different implementations depending on
the particular objective of the model at hand. The data available for this paper consist
of a set of 245 time series of hourly load values over a 5 years period (approximately
44 000 data points on each time series), where each time series is taken from an
individual HV–LV substation within Belgium, provided by ELIA (Belgian National
Grid Operator). Each time series, therefore, contains the historical load of a particular
substation, and the goal is to perform clustering based on the similarities between
substations. First, individual models are estimated for each of the 245 time series.
We use the daily peak load of each time series (only measurements from working
days are included) as the output of an individual model. In addition to the load
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information, each model also includes temperature variables, to capture (and remove)
the effect of weather fluctuations, and deterministic (binary) seasonal variables, to
capture the load variation which is due to the cycle winter-summer within a year.

6.3. Identification of the Models. The model structure that was used for
the identification of each of the 245 time series, is the linear time-invariant combined
deterministic-stochastic model:

(25)

{
x(k + 1) = Ax(k) +Bu(k) +Ke(k) ,

y(k) = Cx(k) +Du(k) + e(k) ,

with {y(k)}k∈Z ∈ R the output of the model, {u(k)}k∈Z ∈ Rm the inputs and
{e(k)}k∈Z ∈ R the innovations of the model. The variable y(k) contains the peak
load value of day k, while u(k) contains three temperature variables and eleven bi-
nary seasonal variables corresponding to the months.

Each model was identified using the N4SID subspace identification algorithm [53,
54], where the order of the model was chosen based on the singular values of a matrix
which is obtained by obliquely projecting data matrices (see [54] for details). The
data were normalized before the identification was performed.

The accuracy of the models was measured by the adjusted-R2 value. This is
an in-sample indicator that measures the percentage of the output variance that is
explained by importing the inputs into the model, adjusted in order to penalize large
numbers of inputs. One fifth of the models had an adjusted-R2 above 0.90, half of
the models had one above 0.75. The worst twenty percent of the models, which had
a value below 0.50, were excluded from the cluster analysis, which was done on the
remaining 195 substations.

6.4. Clustering of the Substations. For the clustering of the substations only
the stochastic submodel (A,K,C) of each identified full model (25) was used. In this
way, all exogenous influences from the temperature and the seasons are removed and
what remains are the (SISO) ARMA dynamics.

To illustrate the relation of the cepstral distance and the subspace angles between
two models, we consider three identified models: model 18 (order 7), model 187 (order
6) and model 190 (order 8). The distance between model 190 and model 18 is equal to
1.4106, while the distance between model 190 and model 187 is 0.2283. The subspace
angles between the two pairs of models are shown in Figure 3. The cepstral coefficients
(c(1), c(2), . . . , c(40)) of the three models are given in Figure 4. It is clear that the
dynamics of model 187 and model 190 are very similar to each other and different
from those of model 18.

The cepstral distance between each pair of stochastic models was calculated
through (20), resulting in a 195 × 195 distance matrix, which was used to apply
an (agglomerative) hierarchical clustering algorithm. This type of algorithm initially
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assigns each object to a single cluster. The distance between each pair of clusters is
then calculated and the pair with minimal distance is merged. This procedure is re-
peated until one single cluster remains. The final set of clusters is achieved by cutting
the hierarchical tree at a certain level.

Different types of distances between two clusters can be defined, among which e.g.
the minimal, the maximal or the average distance between a member of the first and
the second cluster. A different method of merging clusters is Ward’s method [56]. This
method merges in each step those two clusters whose merger results in the minimal
increase of information loss, which is measured by the change of the sum of squared
quantization errors of representing each object by its cluster’s centroid. The method
can be applied without explicit knowledge of the coordinates of the objects and was
used for this application.

The selection of the optimal number of clusters NC or equivalently the optimal
level of cutting the hierarchical tree was achieved by maximizing over different values
of NC the so-called average silhouette [35] of the resulting partition. The silhouette
of an object i which belongs to a certain cluster is defined as:

s(i) =
b(i)− a(i)

max(a(i), b(i))
,

where a(i) is the average distance from object i to the other members of its own cluster
and b(i) is the minimum over all other clusters of the average distance between object
i and the members of another cluster. The silhouette of an object measures how well
the object belongs to its cluster and always lies between −1 (very badly) and +1
(very well). Figure 5 shows a plot of the average silhouette over the 195 substations
for different choices of NC . A maximum value of 0.39 was attained for NC = 6.
Figure 6 shows the matrix of all pairwise cepstral distances where the substations
were rearranged according to the six clusters.

To examine the influence of the clustering algorithm and the reliability of the
clustering result, the procedure of clustering was also done with a different type of
algorithm, namely a ‘partitioning around medoids’ (PAM) algorithm [51]. With this
algorithm a maximum average silhouette of 0.38 was attained for a number of clusters
NC = 5. These clusters were observed to be very close to the five clusters in Figure 6
(where the sixth cluster contains only one model). Only 12 of the 195 models (6 %)
were assigned to a different cluster in both algorithms.

6.5. Visualization of the Clusters. Although Figure 6 gives a nice visualiza-
tion of all distances between the models of the substations, it does not show how the
models are positioned with respect to one another. In this section we will derive a
way to obtain a vector representation for the models that allows such a visualization.

The definition of the cepstral distance between two models (18) shows that there
exists a representation for each model M (i) (i = 1, . . . , N) that generates the given
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Fig. 5. The average silhouette for different choices of the number of clusters NC . An optimal

value of 0.39 was attained for NC = 6.

distance matrix. The representation is given by the sequence {m(i)(k)}k=1,...,∞ in
which the kth element is given by

√
kc(i)(k), which can be calculated from the model

parameters. The sequence {m(i)(k)}k=1,...,∞ is an element of the Hilbert space l2. The
Euclidean distance between two of these vectors in l2 is, by definition, equal to (18).
The problem for visualization is that these vectors have infinite length, while we need
two or at most three dimensions. Although for a stable and minimum phase model the
sequence {m(k)}k=1,...,∞ generally decays with increasing k (see (17)), keeping only
the first two or three values of the sequence would not give an optimal representation
of the models with respect to the information we have about their mutual distances,
especially for models with poles or zeros close to the unit circle. Therefore we propose
to use another method3, which has close links with Principal Component Analysis
(PCA) [30] and kernel PCA [50].

The method starts with the following observation. Besides all pairwise distances
we also know the cepstral norm of each model (computable by (20)), such that from

3The method we describe is equivalent to the technique of multidimensional scaling (see e.g. [38])

in the sense that the obtained visualization will be the same. In multidimensional scaling one looks

for a configuration of points that realizes a given distance matrix, in this case a Euclidean. In our

method the centered inner product matrix is obtained in a more obvious way.
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Fig. 6. The matrix of all pairwise cepstral distances between the 195 substations where the

stations have been rearranged according to the cluster partition with NC = 6. The color varies from

black (small distances) to white (large distances). There appear to be five clusters, three of which are

more dense than the others. The sixth cluster contains only one substation (on the 59th position)

which clearly has a large distance to all other models. A few other outliers can also be identified,

but they were assigned to one of the larger clusters.

the obvious identity for any two vectors a and b

‖a− b‖2 = ‖a‖2 + ‖b‖2 − 2aT b ,

we can immediately compute the inner product of each pair of weighted cepstral
sequences of the models. This means that we know the N ×N inner product matrix
MTM , which in this application is a 195× 195 matrix, and whereM is the matrix with
the vectors m(i) as its columns. Furthermore the matrix MTM can be transformed
into the inner product matrix of the centered vectors m(i)

c by the formula

MT
c Mc =

(
IN −

~1~1T

N

)
MTM

(
IN −

~1~1T

N

)
,

with ~1 ∈ RN×1 a vector of all ones. We assume for the remainder of this section that
the centering has been done.
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The following step is to project the vectors m(i) in the columns of M onto a lower-
dimensional subspace while preserving as much of their variance as possible. This
leads to the following solution. Let M = USV T be the singular value decomposition
of M . Then, the projected vectors m(i)

pr are the columns of the matrix Mpr ∈ Rdpr×N

(with dpr <∞), where

(26) Mpr = UT (1 : dpr, :)M = S(1 : dpr, 1 : dpr)V T (1 : dpr, :) ,

and where UT (1 : dpr, :) is the matrix with the first dpr rows of UT and all its columns
and similarly for V T (1 : dpr, :). It can be proven (see e.g. [38]) that this projection is
optimal in the sense that it minimizes the sum of the differences between the squared
distances of the original and the projected vectors.

From equation (26) it is clear that the knowledge of the inner product matrix
MTM suffices to obtain the matrix Mpr. Indeed, the singular values of M are the
square roots of the eigenvalues of MTM and the right singular vectors of M (the
columns of V ) are the eigenvectors of MTM . The percentage of variation that is
retained by projecting onto the first dpr principal components can be expressed as

(27) 100

∑dpr
j=1 λj∑N
j=1 λj

,

where λj are the eigenvalues of MTM in decreasing order.
Applying this to the centered inner product matrix of the 195 weighted cepstra

m(i) with dpr = 2, results in a matrix Mpr ∈ R2×195 containing the projections of
m(i) onto their first two principal components. In spite of this large dimensionality
reduction, 74% of the variation (as defined in (27)) was preserved. The resulting
vector representation of the models is shown in Figure 7 where substations belonging
to the same cluster according to the six clusters of Section 6.4 were consecutively
connected by a line.

7. Conclusions. In this paper we applied a general methodology for the clus-
tering of time series, which basically consists of the following three steps.

• Associate a dynamical model with each time series.
• Choose or define a distance for these models.
• Perform a cluster analysis based on the chosen distance.

We proposed for this procedure a particular distance for SISO linear stochastic models
(ARMA models), based on the concept of subspace angles within a model and between
two models. These angles are defined as the principal angles between certain subspaces
derived from the models. The distance we proposed, which is a particular combination
of these angles, was shown to be equal to a previously defined distance based on the
cepstrum of the models. The corresponding model norm was proven to be related to
the mutual information of the past and the future output processes of the model.



CLUSTERING TIME SERIES, SUBSPACE IDENTIFICATION 93

−1.5 −1 −0.5 0 0.5 1
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

M
pr

P
rin

ci
pa

l C
om

po
ne

nt
 2

Principal Component 1

Fig. 7. The resulting two-dimensional vector representation of the models. Each cross on the

figure corresponds to the model of a substation. Substations belonging to the same cluster according

to the cluster partition obtained in Section 6.4 are consecutively connected by a line. The ordering

is the same as in Figure 6. Clearly the five clusters can still be recognized with 74 percent of the

information preserved. The object of the sixth cluster has lost its distinctive position.

We applied this methodology to a set of time series of power demand from the
Belgian electricity grid. In the first step, models were obtained through subspace
identification. The chosen distance was the (weighted) cepstral distance described in
this paper. In the third step, a cluster analysis was performed with a hierarchical
clustering algorithm and an optimal partitioning obtained by selecting the one with
the highest average silhouette. Five clusters appeared to be present, while the sixth
contained only an outlier model. Finally, we described a method to visualize the
models in a two-dimensional plane.

Our further research will be on the investigation of differences between the pro-
posed cepstral distance and other existing distances (see e.g. the references in Sec-
tion 1), as well as on the extension of the distance to MIMO models. As far as we
know, a definition of the cepstrum for multivariable models does not exist. The con-
cept of subspace angles within and between MIMO models can give some ideas to
establish this. Another interesting issue is the computational complexity of our ap-
proach in the case where a large set of time series is given. Based on the various ways
of calculating the cepstral distance described in Section 5.4, different clustering ap-
proaches can be thought of. We wish to investigate the possibility and (dis)advantages
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of not estimating all models beforehand, but making use of the formulas in Section 5.4
and using a mixed procedure of clustering and classification.

REFERENCES

[1] H. Akaike, Stochastic theory of minimal realization, IEEE Transactions on Automatic Control,

19(1974), pp. 667–674.

[2] N. Amjady, Short-term hourly load forecasting using time-series modeling with peak load

estimation capability, IEEE Transactions on Power Systems, 16:4(2001), pp. 798–805.

[3] M. Basseville, Distance measures for signal processing and pattern recognition, Signal

Processing, 18:4(1989), pp. 349–369.

[4] A. Bissacco, A. Chiuso, Y. Ma, and S. Soatto, Recognition of human gaits, in: Proceed-

ings of the IEEE International Conference on Computer Vision and Pattern Recognition

(CVPR 01), volume 2, pages 52–58, Kauai, Hawaii, December 2001. Also available as

black1.csl.uiuc.edu/˜yima/psfile/gait rcgntn.ps.gz.
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3(1875), pp. 103–174.

[32] T. Kailath, A view of three decades of linear filtering theory, IEEE Transactions on Informa-

tion Theory, 20(1974), pp. 146–181.

[33] T. Kailath, A. H. Sayed, and B. Hassibi, Linear Estimation, Prentice Hall, Upper Saddle

River, NJ, 2000.

[34] K. Kalpakis, D. Gada, and V. Puttagunta, Distance measures for effective clustering of

ARIMA time-series, in: Proceedings of the 2001 IEEE International Conference on Data

Mining (ICDM’01), pages 273–280, San Jose, CA, November-December 2001. Available as

http://www.csee.umbc.edu/˜kalpakis/homepage/papers/ICDM01.pdf.

[35] L. Kaufman and P. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analy-

sis, John Wiley & Sons, New York, 1990.

[36] D. Kazakos and P. Papantoni-Kazakos, Detection and Estimation, Computer Science Press,

1990.

[37] H. Liao and D. Niebur, Load profile estimation in electric transmission networks using

independent component analysis, IEEE Transactions on Power Systems, 18:2(2003), pp.

707–715.

[38] K. V. Mardia, J. T. Kent, and J. M. Bibby, Multivariate Analysis, Academic Press, London,

New York, Toronto, Sydney, San Francisco, 1979.

[39] E. Mariani and S. S. Murthy, Advanced Load Dispatch for Power Systems, Advances in

Industrial Control, Springer-Verlag, 1997.



96 JEROEN BOETS ET AL.

[40] R. J. Martin, A metric for ARMA processes, IEEE Transactions on Signal Processing

48:4(2000), pp. 1164–1170.

[41] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, Prentice Hall International,

London, 1975.

[42] D. Pal, Balanced stochastic realization and model reduction, Master’s thesis, Washington

State University, Electrical Engineering, 1982.

[43] B. Peeters, System Identification and Damage Detection in Civil Engineering, PhD

thesis, Faculty of Engineering, K.U.Leuven, Leuven (Belgium), 2000. Available as

http://www.kuleuven.ac.be/bwm/papersBartPeeters PhD.pdf.

[44] L. R. Rabiner and B. H. Juang, Fundamentals of Speech Recognition, Prentice Hall, Engle-

wood Cliffs, NJ, 1993.

[45] D. Rafiei, On similarity-based queries for time series data, in: Proceedings of International

Conference on Data Engineering, pages 410–417, Sydney, Australia, March 1999.

[46] R. Ramanathan, R. F. Engle, C. W. J. Granger, F. Vahid-Araghi, and C. Brace, Short-

run forecasts of electricity loads and peaks, International Journal of Forecasting, 13:2(1997),

pp. 161–174.

[47] F. C. Schweppe, On the Bhattacharyya distance and the divergence between Gaussian pro-

cesses, Information and Control, 11:4(1967), pp. 373–395.

[48] H. Steinherz, C. Pedreira, and R. Castro, Neural networks for short-term load forecasting:

A review and evaluation, IEEE Transactions on Power Systems, 16:1(2001).

[49] A. A. Stoorvogel and J. H. van Schuppen, System identification with information theoretic

criteria, in: S. Bittanti and G. Picci, editors, Identification, Adaptation, Learning, pages

289–338. Springer, Berlin, 1996. Also available on http://www.cwi.nl/ftp/CWIreports/BS/

as file BS-R9513.ps.Z.

[50] J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J. Vandewalle,

Least Squares Support Vector Machines, World Scientific, Singapore, 2002.

[51] M. J. van der Laan, K. S. Pollard, and J. Bryan, A new partitioning around medoids

algorithm, Journal of Statistical Computation and Simulation, 73:8(2003), pp. 575–584.

[52] P. Van Overschee and B. De Moor, Subspace algorithms for the stochastic identification

problem, Automatica, 29(1993), pp. 649–660.

[53] P. Van Overschee and B. De Moor, N4SID – Subspace algorithms for the identification of

combined deterministic-stochastic systems, Automatica, 30:1(1994), pp. 75–94.

[54] P. Van Overschee and B. De Moor, Subspace Identification for Linear Systems: Theory –

Implementation – Applications, Kluwer Academic Publishers, Boston, 1996. Also available

as ftp://ftp.esat.kuleuven.ac.be/pub/SISTA/nackaerts/other/alln.ps.gz.

[55] M. Verleysen, D. François, G. Simon, and V. Wertz, On the effects of dimensionality on

data analysis with neural networks, in: IWANN 2003, International Work-Conference on

Artificial and Natural Neural Networks, pages 209–243, Mao, Menorca (Spain), June 3–6,

2003.

[56] J. H. Ward, Hierarchical grouping to optimize an objective function, Journal of the American

Statistical Association, 58(1963), pp. 236–244.

[57] J. Wismer, Application Note: Gearbox Analysis Using Cepstrum Analysis and Comb Liftering,
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