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A NASH EQUILIBRIUM RELATED TO THE POISSON CHANNEL∗

P. HARREMOËS† AND C. VIGNAT‡

Abstract. An information theoretical game is considered where both signal and noise are

generalized Bernoulli sums with upper bounds on their mean values. It is shown that a pair of

Poisson distributions is a Nash equilibrium pair.

1. Introduction. We consider the following setup: an emitter transmits a signal
X through a channel; a jammer sends noise Y on the same additive channel, and the
received signal is Z = X + Y. The signals X and Y are assumed to be independent.
The emitter wants to maximize the transmission rate i.e. the mutual information
I (X;Z) by choosing an appropriate distribution of X. Conversely, the objective of
the jammer is to choose the distribution of Y such that the transmission rate is
minimized.

X −−−−→ ⊕ −−−−→ Z
x
Y

For continuous random variables X and Y with power constraints of the form
E

(
X2

) ≤ P and E
(
Y 2

) ≤ N, this problem has been studied by T. Cover and S.
Diggavi in [1, Exercise 1, p. 263] and in more detail in [2]. In this case the normal
distributions with mean 0 and variances P and N respectively form a Nash equilibrium
pair, in the sense that none of the players has any benefit of changing his strategy if
the other player does not change his strategy either. The Entropy Power Inequality
plays an essential role in the proof of the Nash equilibrium condition. For Bernoulli
sources with addition modulo 2, the existence of a Nash equilibrium has been proved
in a series of paper ([3], [4], [5], [6] and [7]). In this paper we shall consider a similar
setup with discrete random variables and usual addition. This paper follows ideas
related to discrete Fisher information (see [8], [9] and [10]) and the results should be
considered as a step in the direction of a discrete Entropy Power Inequality.

The Poisson distribution with mean value λ will be denoted Po (λ) . The bino-
mial distribution with number parameter n and success probability p will be denoted
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†P. Harremoës is with Department of Math., University of Copenhagen, Denmark, E-mail:

moes@math.ku.dk
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Bi (n, p) . When no confusion seems likely Po (λ) and Bi (n, p) will also be used to
denote random variables with these distributions. We denote by Bn (λ) the set of
sums of n independent Bernoulli random variables, each having success probability
pi; 1 ≤ i ≤ n with

∑n
i=1 pi = λ. Define the set of Bernoulli sums B∗ (λ) as the union

∪∞n=1Bn (λ) . Further, B∞ (λ) shall denote the set of infinite sums S =
∑∞

i=1 Xi where
Xi denotes independent Bernoulli random variables such that

∑∞
i=1 pi = λ. Finally

the set of generalized Bernoulli sums B (λ) is the total variation closure cl (B∗ (λ)) .

In this paper we shall consider the situation where the input signal X is the su-
perposition of a number of independent signals Xi (i = 1, ...,m) with values in {0, 1} .

Thus X =
∑m

i=1 Xi. Similarly the noise Y is superposition of a number of independent
noise signals Yj (j = 1, ..., n) with values in {0, 1} , and Y =

∑n
j=1 Yj . Thus the output

signal is Z =
∑m

i=1 Xi+
∑n

j=1 Yj and the mapping (X1, X2, ..., Xm, Y1, Y2, ..., Yn) → Z

can be considered as a multiple access channel with m + n senders, where the first
m senders want to send information to the receiver and the last n senders want to
prevent the communication. We observe that we have a two-persons zero sum game
with the emitter and the jammer as players.

X1 X2y
y

⊕ −−−−→ ⊕ −−−−→ · · · −−−−→ Zx
x

Y1 Y2

If X is fixed and Y is binomial distributed Bi (n, 1/2) then I (X;Z) → 0 for n →∞.

Similarly, if Y is fixed and X is binomially distributed Bi (m, 1/2) then I (X;Z) →∞.

Therefore, if there are no restrictions on the Bernoulli sums sent by the players, then
the two-persons zero sum game will not reach an equilibrium. In this paper the
strategies of both players are subject to constraints

E (X) ≤ λin, E (Y ) ≤ λnoise

where λin and λnoise are positive constants. Thus we shall consider the case when the
messages X and Y are supposed to be generalized Bernoulli sums: X ∈ B (λ) , λ ≤ λin

and Y ∈ B (µ) , µ ≤ λnoise. The reason to allow distributions from B (λ) and not only
from B∗ (λ) is for mathematical convenience. This game will be called the discrete
transmission game. The sets of strategies are not convex so Von Neumann’s classical
result on existence of a game theoretic equilibrium cannot be used. The main result
in this paper is that the Poisson distributions form a Nash equilibrium pair of the
discrete transmission game. Thus the Poisson channel, i.e. an information channel
with Poisson distributed noise, is in a natural way related to the discrete transmission
game.
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2. Results.

Lemma 1. Let S be a generalized Bernoulli sum with E (S) = λ. Then, for any
k ≥ 0,

P (S = k) ≤ exp (λ) · Po (λ, k) .

Proof. Assume that S is the Bernoulli sum
∑n

i=1 Xi where Xi are indepen-
dent Bernoulli random variables with success probabilities pi = P (Xi = 1) . For the
Bernoulli random variable Xi we have P (Xi = k) ≤ exp (pi) · Po (pi, k) . Then

P

(
n∑

i=1

Xi = k

)
=

∑

(ki)

n∏

i=1

P (Xi = ki)

≤
∑

(ki)

n∏

i=1

exp (pi)Po (pi, ki)

=
∑

(ki)

exp

(
n∑

i=1

pi

)
n∏

k=1

Po (pi, ki)

= exp

(
n∑

i=1

pi

)
· Po

(
n∑

i=1

pi, k

)
,

where the summation is over all generalized indices (ki) ∈ {0, 1}n which satisfy∑n
i=1 ki = k. The inequality follows because

∑n
i=1 pi = λ.

A generalized Bernoulli sum satisfies the same inequality because a generalized
Bernoulli sum can be approximated by a sequence of Bernoulli sums.

Proposition 2. For any generalized Bernoulli sum T ∈ B (λ) , there exists a
real number µ ∈ [0;λ] and a random variable S ∈ B∞ (λ) such that T = S + Po (µ) ,

where S is independent of the Poisson random variable.

Proof. Let G be the set of random variables of the form S + Po (µ) where S ∈
B∞ (λ− µ) . First let us prove that G is closed. There is a correspondence between
distribution of random variables of the form S + Po (µ) and the set of decreasing
sequences (pi)i∈N such that

∑∞
i=1 pi ≤ λ. The set of such sequences is compact when it

is equipped with the topology of pointwize convergence. The mapping from sequences
to distributions of the corresponding Bernoulli sums is continuous. Therefore G is
compact and therefore also closed.

Now we have to demonstrate that for any element S + Po (µ) ∈ G there exists a
sequence of Bernoulli sums (Sn)n∈N with Sn ∈ Bn (λ) such that the distribution of
Sn converges to the distribution of S + Po (µ) . The Poisson distribution Po (µ) can
be approximated by a sequence of binomial distribution Bi (n, µ/n) , and therefore it
is sufficient to prove that S ∈ B∞ (λ− µ) can be approximated by Bernoulli sums.
Assume that S =

∑∞
i=1 Xi where Xi are independent Bernoulli random variables with

success probabilities pi = P (Xi = 1) . Then
∑∞

i=n+1 pi converges to zero. Thus, for n



186 P. HARREMOËS AND C. VIGNAT

sufficiently large,
∑∞

i=n+1 pi ≤ 1, and there exists a Bernoulli random variable Yn with
P (Yn = 1) =

∑∞
i=n+1 pi. Then the distribution of

∑n
i=1 Xi + Yn will approximate S.

To prove this it is sufficient to check that
∥∥∥∥∥S −

(
n∑

i=1

Xi + Yn

)∥∥∥∥∥ ≤
∥∥∥∥∥

∞∑

i=n+1

Xi − Yn

∥∥∥∥∥

=
∞∑

k=0

∣∣∣∣∣P
( ∞∑

i=n+1

Xi = k

)
− P (Yn = k)

∣∣∣∣∣

≤
∞∑

k=1

2 exp

( ∞∑

i=n+1

pi

)
Po

( ∞∑

i=n+1

pi, k

)

→ 0 for n →∞.

We need the following extension of Hoeffding’s theorem [11, Theorem 3].

Lemma 3. If S ∈ B (λ) and f is a strictly concave function, then E [f (S)] is
minimized for S ∼ Po (λ) .

Proof. Assume that E |f (Po (λ))| = ∞. The function f is concave and therefore it
is upper bounded by a linear function. Thus the positive part of f is upper bounded on
R+ by a linear function and therefore the mean value of the positive part is bounded,
and the mean value of the negative part must be unbounded. This implies that
E [f (Po (λ))] = −∞, and this bound is obviously minimal.

Assume that E |f (Po (λ))| < ∞. Let Pn be a sequence of distributions of Bernoulli
sums converging to Q. Then

|f (k)Pn (k)| ≤ |f (k)| eλPo (λ, k)

and by the dominated convergence theorem

∞∑

k=0

f (k)Pn (k) →
∞∑

k=0

f (k) Q (k) for n →∞.

Therefore S → E [f (S)] is a continuous function with a compact domain and thus
has a minimum.

Assume that the minimum is reached at a generalized Bernoulli sum S of the form
T +U where T is a Bernoulli random variable with success probability P (T = 1) = p

and U is an independent generalized Bernoulli sum. Then

E (f (T + U)) =
∞∑

k=0

Pr (U = k)E [f (T + k)] .

Now, replace T by a random variable V ∼ Bi (2, p/2) . This random variable has the
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same mean value as T and

E [f (V + k)] =
(
1− p

2

)2

f (k) + 2
p

2

(
1− p

2

)
f (k + 1) +

(p

2

)2

f (k + 2)

= (1− p) f (k) + pf (k + 1) +
(

p2

4
f (k)− p2

2
f (k + 1) +

p2

4
f (k + 2)

)

= E [f (T + k)] +
p2

2

(
f (k) + f (k + 2)

2
− f (k + 1)

)

≥ E [f (T + k)] .

Equality holds if and only if p = 0. Thus, at the minimum all the Bernoulli random
variables in the generalized Bernoulli sum are deterministic and S ∼ Po (λ) .

The following theorem is a slight extension of theorems in [12] and [13].

Theorem 4. In the discrete transmission game the Poisson distribution is the op-
timal input distribution for any noise distributed according to a generalized Bernoulli
sum, i.e.

Po (λin) = arg max
X∈B(λ), λ≤λin

I (X; Z) .

Proof. Rewrite the mutual information as

I (X; Z) = H (Z)−H (Z|X)

= H (X + Y )−H (X + Y |X)

= H (X + Y )−H (Y ) .

We look for the distribution of X which maximizes H (X + Y ) . We have H (X + Y ) ≤
H (X + Po (λin − E (X)) + Y ) , and therefore we may assume that E (X) = λin. Put
f (k) = log (Pr (Po (λin) + Y = k)) . All Bernoulli sums are log-concave [12] and there-
fore the same property holds for generalized Bernoulli sums. According to [14, Theo-
rem 6.1] it is sufficient to prove that E (f (X)) is minimal for the Poisson distribution,
but this follows from Lemma 3.

Knowing that the Poisson distribution is the optimal input distribution, we choose
a Poisson input, and look for the optimal noise from the jammer’s point of view.

Theorem 5. If X ∼ Po (λin) in the discrete transmission game then the Poisson
distribution is the optimal distribution for the jammer, i.e.

Po (λnoise) = arg min
Y ∈B(λ), λ≤λnoise

I (X; Z) .

Proof. Assume that X ∼ Po (λin) . We thus have to solve the following optimiza-
tion problem

Y = arg min
Y ∈B(λ),λ≤λnoise

I (X;Z) .
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For λ ≥ 0 we denote by
{
Pλ

k

}
the point probabilities of Y + Po (λ) , and remark that

these probabilities satisfy the following differential equation

∂Pλ
k

∂λ
= − (

Pλ
k − Pλ

k−1

)
.

Therefore the entropy satisfies

∂

∂λ
H

(
Pλ

k

)
= − ∂

∂λ

∞∑

k=0

Pλ
k log Pλ

k =
∞∑

k=0

Pλ
k log

Pλ
k

Pλ
k+1

.

For k = 0, 1, 2, ... define

Qλ
k =

k + 1
λ + λnoise

Pλ
k+1 ,

and note that Qλ
k is a sub-probability measure (

∑∞
k=1 Qλ

k ≤ 1). Now we write

log
Pλ

k

Pλ
k+1

= log
Pλ

k

Qλ
k

+ log
k + 1

λ + λnoise
,

so that

∂

∂λ
H

(
Pλ

k

)
=

∞∑

k=0

Pλ
k log

Pλ
k

Qλ
k

+
∞∑

k=0

Pλ
k log

k + 1
λ + λnoise

= D
(
Pλ

k ||Qλ
k

)
+

∞∑

k=0

Pλ
k log

k + 1
λ + λnoise

,

where D
(
Pλ

k ||Qλ
k

)
denotes the information divergence from Pλ

k to Qλ
k (also called

Kullback-Leibler information). Thus, the mutual information to be minimized can be
written as

I (X;Z) = H (Po (λin) + Y )−H (Y )

=
∫ λin

0

∂

∂λ
H

(
Pλ

k

)
dλ

=
∫ λin

0

(
D

(
Pλ

k ||Qλ
k

)
+

∞∑

k=0

Pλ
k log

k + 1
λ + λnoise

)
dλ .

This integral is clearly minimized if the integrand is minimized simultaneously for all
λ. Moreover, the information divergence D

(
Pλ

k ||Qλ
k

)
is positive, and equals zero if

and only if Y ∼ Po (λnoise) . The second term can be written as
∞∑

k=0

Pλ
k log

k + 1
λ + λnoise

= EP λ [log (Y + 1)]− log (λ + E (Y )) .

Now, according to Lemma 3 the term EP λ [log (Y + 1)] is minimized when Y is Poisson
distributed with mean λnoise.

The main result of this paper is now proved:
Corollary 6. A pair of Poisson distributions is a unique Nash equilibrium pair

in the discrete transmission game.
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[9] I. Kontoyiannis and P. Harremoës, Entropy and the law of small numbers, In: Proceedings

2003 IEEE International Symposium on Information Theory, pp. 26, June 2003.
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