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Let X be a standard Brownian motion. We show that for any locally square integrable function f the quadratic
covariation [f(X'), X'] exists as the usual limit of sums converging in probability. For an absolutely continuous
function F with derivative f, td's formula takes the form F(X,) = F(Xy) + [y f(X,)dX, +1[f(X), X],. Thisis
extended to the time-dependent case. As an example, we introduce the local time of Brownian motion at a
continuous curve.
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1. Introduction

Let X = (X,)p<,< be a standard Brownian motion, and let F be an absolutely continuous function
with locally square integrable derivative /. Our purpose is to prove the following extension of Itd’s
formula:

F(X;}=F{X.;}+Jﬂf{X,JiY5+§[f(X],X],, (1.1)
where
FX0).X), = lim Y {f(X,,) X)X, - X,). (12)
el <t

denotes the quadratic covariation of the processes f(X) and X. In particular, we are going to show
that the guadratic covariation exists for any locally square integrable function f, as a limit in
probability along a sequence of partitions D, of the time interval [0, 1].

If f is absolutely continuous with derivative /' then the quadratic covariation is given by

LF(X), X], = ju 7'(x,) ds, (1.3)
and so (1.1) reduces to It6’s formula in its classical form (Ttd 1994). If / is locally bounded then we have
[F(X),X], = —jf[a}a’.,r.f (1.4)
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where LT denotes the local time of Brownian motion at level a. and so (1.1) reduces to the formula of
Bouleau and Yor (1981).
The quadratic covariation in (1.2) admits the representation

(), X], = L S(X)EX, ~ L f(X,)dX, (1.5)

in terms of a backward and a forward stochastic integral, and this is the key to our existence result.
In fact, the existence of quadratic covariation will follow from an approximation of these inte-
grals by forward and backward sums. In Section 2 we motivate our approach by looking at the
discrete version of (1.1) along a fixed partition. In Section 3 we prove the basic existence result for
the quadratic variation [ f(X.-),X] in the general time-dependent case where f(x.1) is locally
square integrable in x and satisfies a mild continuity condition in ¢. In general, the quadratic
covariation will not be of bounded variation. But we show that it is always a process of zero energy,
i.e. a process with continuous paths of zero quadratic variation. In Section 4 we derive our Ito
formula (1.1). Thus, the process of zero energy appearing in Fukushima's (1980, Chapter 5)
decompaosition of the Dirichlet process F(Y') is identified as a quadratic covariation. Our formula
also shows that the Stratonovich integral can be defined on the same level of generality as the
It6 integral, without additional restrictions on the function /. In Section 5 we extend these results
to the time-dependent case where F(x, 1) is absolutely continuous in x and where the derivative
f(x, 1) satisfies our conditions for the existence of [ f(X, - ), X']. In this case the It6 formula takes the
form

F(X,.1) = F(X,,0) + J S(X,,)dX, +1[f(X, -), X], + j F(X,.ds), (1.6)
0 0
where
JJF{Xj.ds} =1lim Y F(X,_ .t)-FX,,,.5) (1.7)
o J!_:‘:r.-EJ'.I"...r.x::

exists as a limit in probability. If F(x, - ) is absolutely continuous in ¢ with derivative F,(x, - ) then
the last term in (1.6) takes the usual form

Jrr(z;,ds} =J F,(X,.s)ds. (1.8)
(1] o

In the case where f(x,1) = I (x) for some continuous function a{-), the existence of the
quadratic covariation [f(X,-),X| amounts to a construction of the local time of Brownian
motion at a continuous curve, and (1.6) may be viewed as a time-dependent version of the
Tanaka formula.

The idea of using time reversal and the duality (1.5) for extended versions of the Stratonovich
integral and of Ité’s formula also appears in recent work by Lyons and Zhang (1994) and by Russo
and Vallois (1994), under stronger regularity conditions on the function f. Section 5 shows that, in
contrast to the Dirichlet space techniques used in Lyons and Zhang (1994) and Fukushima (1980},
our approach admits a straightforward extension to the time-dependent case. Extensions to higher
dimensions and applications to the existence of solutions of Stratonovich stochastic differential
equations will be discussed elsewhere.
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2. Preliminaries
Let F be an absolutely continuous function of the form

F(x) = F(0) + J: Fly)dy (2.1)

where f is locally square integrable. In order to motivate our approach, let us first see how the
structure of our Itd formula (1.1) appears in discrete time. Let D, denote a partition of the form
0=t <... <=1 and let us write |D,| = max |t;.; — #;|. An increment

X,

F(X, )-F(X,) = L' ' f(dy (22)

can be written as

x’.-.-l
FX) X, - X,) +L_ L) = f(X,)} by (2.3)

and also as
Lo
FENX — ) H{AX, ) =X N, — X))+ L' {f(»)-SiX,.,)}dy. (2.4)

Averaging both expressions and summing the increments up to time ¢ € D,, we obtain

F(X)-F(Xo)= Y fIX)X,., -X,)+40! + R} (2.5)
:_.‘E‘:.[i,

with discrete quadratic covariation

Q=Y {f(X,.,)—fX)HX,., - X,) (2.6)
Leb,
and remainder terms
X’:-I. z
Ri=> L, () =3 (X)) +1(X,,. )} dy. (2.7)
:,-.Eﬂ,, '

[

The first sum in (2.5) is the discrete analogue of the stochastic integral in (1.1), and 07 is the discrete
version of the quadratic covariation in (1.1). Let us now pass to the limit along a sequence of
partitions D, such that | D,| converges to (. Let us say that a sequence of processes ™ = (¥} o<y
converges uniformly in probability (in u.p.) to some process ¥ = (Y,)o <, < if the supremum norm of
the difference converges to 0 in probability. The proof of our Itd formula (1.1) will involve
convergence in u.p. of the following terms:

Iim 3 f(X,)(X,_, - X,) = L S(X,) dx,, (238)
LED,



152 H. Fillmer, P. Protter and A.N. Shiryaev

Jim 07 = [£(X),X]. 29)
lim R =0. (2.10)

Remark 2.1
In each case, convergence in u.p. is known to hold under certain regularity conditions on the
function

(a) For f £ C the convergence in (2.8) holds in u.p. (Protter 1990, p. 57).
(b) For f € C' one can proceed in a strictly pathwise manner (cf. Féllmer 1981). In fact, almost all
Brownian paths have the property that the discrete measures
> (X, —X,)s,
neD,
converge weakly to the uniform distribution on [0, 1]. But for any such path one can verify the
following facts, without any further use of probabilistic arguments. Writing

0r=3Y e, - X, (2.11)

reb,
[

for some £; between X, | and X, . we get convergence of (2.11) to the covariation
P
X = [ res. (2.12)

Moreover, the stochastic integral in (2.8) can be defined pathwise as the limit of the sums in
(2.8). and the remainder terms in (2.10) converge to 0 (for the proofs, see Follmer 1981).

(c¢) Fora function f € ¢ the convergence of the remainder terms R" to 0 can also be seen from the
trapezoidal rule

th
L[ff;r) —i{ fla) +f(B)} dy = =5 (b — a)’f"(8). (2.13)
This implies
|RY| < &max| (X)) 31X, - X, (2.14)
L ED,

hence convergence to 0 for any continuous path with bounded quadratic variation.

The main point of this paper is to show that no such regularity conditions are needed and that
each of the three convergence statements (2.8)—(2.10) holds in u.p. for any locally square integrable
function f. Since we can write

=3 fE NE —~%)= Y AGNE. —~X) (2.15)
LeD, 1 €Dy

the existence of the quadratic covariation in (2.9) and its representation (1.5) as the difference of a
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backward and forward stochastic integral will both follow from the discrete approximation (2.8) of
the forward integral and from a corresponding approximation of the backward integral by the first
sum in (2.15). Let us now recall the definition of the stochastic backward integral.

We assume without loss of generality that our Brownian motion X = (X, }g << is defined as the
coordinate process on the canonical path space {2 = C[0, 1] with Wiener measure P. We will have
need of the time reversal operator (RX'), = X, _, on §1. Note that the law P* of RX is the law of the
Brownian bridge process with initial distribution M {0, 1) and terminal value 0. Thus, the coordinate
process X is a semi-martingale under P with decomposition

i xﬁTw+J |ul (2.16)

where W is a Brownian motion with respect to P*. For a measurable function f(x.1) on R x [0, 1]

such that
H {raa-g+ -9l e ]

- E“I{f*(x;.s} + | f(X,. 9] Xs!}m] < oo (2.17)
o F
the stochastic integral
J!f{X‘.l—sjdX =J‘ f(X,,1—s)dW, +rf[;r.1—s) —X; (2.18)
o F 0 F 3 k| o b 5 I - .

is well defined for any r € [0, 1] with respect to P*. Thus, the following backward integral

L: JflX,.s)d°X, = —( J:—r Flx,, 1 -J}dm) sR (2.19)

is well defined in terms of Wiener measure P.

3. Existence of quadratic covariation

Our purpose is to show that the quadratic covariation

X0.X] = lim Y {f(X, ) —f(X)HX,, - X,) (3.1)

LED, St

exists as a limit in w.p., beyond the usual cases where f(X) is a semi-martingale. In order to illustrate
the basic idea we begin with the following preliminary result:

Propesition 3.1  Let f be a continuous function. Then the quadratic covariation | f(X). X exists as
a continuous process, and satisfies

r0.x), = [ rmyax, - [ rxax, (3.2)
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Proaf
Since X is a semi-martingale and f(X') is an adapted continuous process, we know that
Y (X, -X) = | roax, (33)
LED Lt 0

with convergence in u.p. (cf. Protter 1990, p. 57). On the other hand we have

Jim. > (X, )X, - X,) = lim_ 3 fXioe )Xoy, —Xi_,) g oR
hED L€ D,
LEr :,5?

= lim —-¢ Y f(X)(X,, -X)¢oR

A= oG

Since the time-reversed process X ¢ R is also a semi-martingale (as shown by (2.16)), we have
convergence in w.p. of the above sums (again by Protter 1990, p. 57) to

—{ jj ﬂx,}dz:} - J f(x,)d'x,
I=t i
hence

Im S, - X) = [ s, (3.4

-]
LED, =i

If we now subtract (3.3) from (3.4) we obtain the existence of [ /(X), X'] as a limit of sums in u.p., as
well as its identification as the difference of two stochastic integrals. Since both stochastic integral
processes are continuous, so also is [ f(X), X].

Remark 3.1

The process | f(X). X ], while continuous a.s., need not be of bounded variation as it is in the usual
theory when f is taken to be C'. Indeed, if f is continuous but not of bounded variation, then its
primitive F s not the difference of two convex functions, and therefore F{X ) is not a semi-
martingale (cf. Protter 1990, p. 162). Theorem 4.1 will show that F(X,) _I JlX), X, is a local
martingale. Thus, [ f(X), X] cannot have paths of bounded variation if f is not a function of
bounded variation. However, Theorem 3.5 will show that the guadratic covariation is always a
process of ‘zero energy’.

Let us now show that the quadratic covariation [ f{X), X'] exists for any /* which is locally square
integrable. The idea is quite simple. As in the proof of (3.2), it is enough to show that the forward
and backward stochastic integral can each be approximated by the simple sums in (3.3) and (3.4),
without any additional smoothing. The existence of quadratic covariation then follows by
subtracting these sums.
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Proposition 3.2 (a) Let / be a square integrable function on ®'. Then

m Y X)X, - X) = [ f)ax, (3.5

b |
e & Dy, <t 0

in L*(P) and

lim ) I{X;,._.}(Xr,.;—X;,.J=Lf[1}]d'fs (3.6)

=20
LeD, Lt

in L'(P).
(b) If f is locally square integrable then convergence in (3.5) and (3.6) holds in w.p., and so the
quadratic covariation exists in u.p. and satisfies

[£(X), X], = L SX)dX, - L f(X,)dx,. (3.7)

Instead of proving Proposition 3.2, we pass directly to the rime-dependent case and prove the
corresponding general version. Let f(x, 1) be a measurable function on R' x [0 1]. The following
proof shows that the analogue of part (a) holds if f( -, r} is square integrable and continuous in f
as a map from [0, 1] to L*(R'). The analogue of part (b) involves continuity of f{ - . ) as a map from
[0,1] to L§,.(R') in the sense that f(+,)x(+) € L*(R') is norm-continuous in ¢ for any compact
set K.

Theorem 3.3 Suppose that f( -, 1) is locally square integrable and that
f(+.1) is continuous in 7 (3.8)
as a map from [0, 1] to L},.(R'). Then the quadratic covariation

A, X]e=lim 30 (X et) = (X 0)HX, = X,) (3.9)

LED, D<=

exists as a limit in u.p., and

I

XL = [ s ax - [ s ax. (3.10)

Proof
By the usual localization argument, it is enough to consider the case where [ -,1) is square
integrable and continuous in ¢ as a map from [0, 1] to L*(R'). It is also enough to consider the case
=l
First, consider the processes ¢ and ¢, defined by
olw, 1) = f{ X (w), 1) (3.11)
and

Sulw, ) = Y F(X, (), ), 0 (0). (3.12)

0= Dy
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In order to prove

1
lim % f(X, )X, —Xr,.ll=jﬂf{fs~£]df

n—0o0

DzpeD,

in L*(P), we have to show that

1/2

16—l =E “;w{-.m )= 6aent) ]

converges to (. Let us use the notation

1 x*
px) = Emp(— 2{)-

Then
1
||¢||==E{j f u’,,r}d:} [|[reonmaxa
H drsufn%
and
o= 3 [ £3x0) 2,0 dxtaes = 1)
0<neED,
1 1
EJTM%_]IZ{“‘M Z (=2,
hence

im [|¢al13 < |17 13

(3.13)

(3.14)

(3.15)

due to the continuity of [ f(x,1)*dx in r. Now take a continuous function g on & x [0, 1] with
compact support such that ||g — f||; < ¢ and define the corresponding processes ¢+ and 1, as in

(3.11) and (3.12). Then
¢ — dullz < ll6 = ¥llz + [[¥ = tallz + [[¥n = Snll2-

Since lim || — 14|z = 0 by continuity of g and by Lebesgue's theorem, the two preceding estimates

(3.14) and (3.15) applied to /' — g imply
Bm |6 — yll2 < 21 f - gl < 2¢,

hence
Bim (|6 — 6]l = 0.

(3.16)



Quadratic covariation and an extension of 1t6's formula 157

Second, the convergence

fm S, —X) = [ S, (3.17)
reD =1
in L'(P) for t = 1 is equivalent to the convergence
1
im Y f(X1 - 1)K, —X,J;=J £(X,1—1)ax, (3.18)
" o<neD, 0

in L'(P"), where P" is the distribution of the time-reversed process X o R. Recall the decomposition
{2.16) of X under P*, and let us first check that

im 3 S, 1— 1) ,,l—wr,:l=J;f{X=..1—r}de (3.19)

"o Lel,
in L*(P*). But (3.19) is equivalent to the convergence of

2
5“;{ fXl=0= 3 f(X, 1=, ,m} d:l

D eDy

i 2
L{f{xs,sj— 3 f[Xs,,,ism]f;j,.,,.f.;{s}} ds]

1 =540,

=E

to 0, and this follows as in the first part of this proof. In order to prove (3.18) it remains to show, due
to (2.16), that

L.y 1
1inm Z f{X*"l_I":'J, éds:lﬂf(l',,l-r}éd:

<t eD,

Fay? 1+1 : ¢ .'I:IS *

" I>5,.,D,

in L'(P). For a measurable function ¥/(w, f) on Q x [0, 1] we introduce the norm

el EE(J |t{w, 5)| le ) (3.21)

For the function ¢ defined in (3.11) we get

1
ll#ll; = E ( L Ié{wJ}l@dx)

< [ Lot 9y e 2as

J | % ( [ £2(x,5)p,(x) d_x)l"llsll_.-z »

(zi) n( Ex=sjd")]h‘35‘”‘dsfI!flh-
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Similarly, we see that
@)= D XS s
l>5., €0,
satisfies

o= 3 B{istt o] He)

1>5.,ED, &

174 B e
E(ﬁ) Z (J‘fz[xpﬁeﬂlldx) _gr.‘__]fl‘J 12 4

1>5el,
1 1/4 3 12 —1/4 =1/2
<(3) X (] remsa) s s -,
l=5€D,

hence

]

= lias YT 5 2 ;
el < (5) [, (] A@aax) s as=irn (3.22)
Now we choose a function g € C(R' = [0, 1]) with compact support such that ||g — f||; < ¢ and
conclude as in the first part of this proof that
lim || — g3l = 0. (3.23)
This implies (3.20), and so we have shown (3.17).
Finally, subtracting (3.13) from (3.17), we obtain {3.9).

Even though /(X - ) is in general not a semi-martingale, the existence of quadratic covariation
[f(X, -), X] implies the existence of the stochastic integral

L X df(X,s)=lm 3 X (X, tie0) —f(X,, 1)} (3.24)

el <<

and the following integration by parts formula:
Corollary 3.4 Under the assumptions of Theorem 3.3 we have
i ¢
JX.nX, =7%, 0%, + L X, df (X, 5 +L fiX, s dX, + [ f(X, ) X]. {3.25)

Proof
This follows from the relation

JX,, Gis1)Xy = (Xt 1) Xy, = X, { (X, . tis1) = F( X 1)}
+f{rf,1 Ia][X:,.| i X:,-:'

+ { (X i tiad) — (X DHY,, — X))
and the convergence in (3.9) and (3.13). O
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Remark 3.2
(a) If we average (3.13) and (3.17) and use (3.10) then we obtain

Jim S K ten) H (K1)} (X~ X)

LED. 1=t
= L f(X,5)dX, +4[ (X, ). X], (3.26)

in u.p. This will be used in our definition of the Stratonovich integral (Definition 4.1 and equation
(5.9)).

(b) Suppose that f, converges to f in the norms ||+ ||; (i = 1, 2) used in the proof of Theorem 3.3,
The proof shows that the corresponding forward and backward stochastic integrals converge, and
50 (3.10) implies

[f(X, ). X, = lm [fo(X, -}, X, (3.27)

{c) If f{ -, 1) is absolutely continuous with derivative f,( -, 1) then
X)X = [ £ ds. (3.28)

For a smooth function f € C'(R' x [0,1]) this is well known (cf. Protter 1990, p. 75) and can be
checked directly from (3.9). The extension of (3.28) to the absolutely continuous case follows by
approximating f with smooth functions £, in the norms || - ||; ( = 1, 2) and applyving (3.27); see the
proof of Theorem 4.1.

Example 3.1
Let a(r) denote a continuous function on [0, 1]. The function

flx, 1) = ‘r:a[:].x:-':-"':' (3.29)

satisfies the continuity condition of Theorem 3.3, and so the quadratic covariation in (3.9) exists. Let
us define the local time of Brownian maotion at the continuous curve al - ) as the continuous process
et given by

L =[f(X, ). X]. (3.30)
In order to motivate this definition. we take a sequence (¢,) decreasing to 0. By (3.28) the function
l x
160 = 50| Tty (1)

has quadratic covariation
g = A"
X, ). XL = 5 [ Tty (X) 85

But f, converges to f in the norms ||+ ||; (i = 1, 2) used in the proof of Theorem 3.3, and so (3.27)
implies

— ;
1) = tim 5 [ Tt -ewat e () 85 (3.31)
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in u.p. In particular, we can conclude that the continuous process L") has increasing paths, and
that the corresponding random measure on [0, 1] is a.s. concentrated on times where the Brownian
path intersects the given function af « ):

I
L Iix, 2oy di Ly =0. (3.32)

If the function af - ) assumes a constant level a then
{ (X, s i1 =X HX,, - X)) =X, - X[,
where
Cy.i = {sign(X, —a) #sign(X, _, —a)},

with t; € D, denotes the set of paths which exhibit a crossing of the level @ if checked at times 1, and
f; - 1. Thus the existence of the quadratic covariation (3.9) implies the identity

Li=1lm Y |X,, —X/, (3.33)
R_'x:_:(:ﬂ,.:,-f_:e .

for the local time of Brownian motion at a constant level a.

Let us now return to the general situation of Theorem 3.3 and show that quadratic covariationisa
continuous process of zero energy.

Definition 3.1
For a process ¥ = (¥,)y< < with continuous paths we define the quadratic variation
[Yl=1m > (N, -%) (3.34)
T

whenever this limit exists uniformly in probability. If [¥]; = 0 a.s. with respect to P, then Y is called
a process of zero energy.

Remark 3.3
(a) Any process with continuous paths of bounded variation has zero energy.
{b) A local martingale of the form

K=Yﬂhnﬂ;
i

has quadratic variation

¥, = Ljfszf,-rj ds. (3.35)

Theorem 3.5 The quadratic covariation [ f{X, -}, X'] is a continuous process of zero energy.



Quadratic covariation and an extension of Itd's formula 161

Proof
The quadratic covariation ¥, = [ f(X, - ). X', is of the form

Y, =YV +¥" (3.36)

with
L J; flx, 5d'Y, Y%= —J; f(X,5)dX,.
The process ¥ '*/ has quadratic variation
¥, = || £ s (3.37)
Since

i

J: 1(X,,1 - 5)dX,

has gquadratic variation

1
(¥, =j FXo01 = 5)ds

I—1

under P*, the process ¥'") = ¥* o R has quadratic variation
: 1 o I
(Y'Y, = {J X1 =5 ds} oR= J X, 5)ds (3.38)
-1 1]
under P. Thus, the decomposition (3.36) implies the a priori estimate
. I
Y], <27+ (@) <4 120K ds (3.39)
0

if, for the moment, we define [¥]; as the supremum limit of the sums in (3.34).

Assume that f has compact support and take a sequence of functions f, € C'(R' x [0,1])
such that f, converges to f in the norms ||«||; (f = 1, 2) used in the proof of Theorem 3.3. The
process

ylih = p ooy, 2= j;cmtrx_‘.s]ds

has continuous paths of bounded variation and therefore has zero energy. Evaluating the squares in
(3.34) for [¥ = ¥'"], and using Cauchy-Schwarz, we see that

[¥ = YW), =[Y]. (3.40)

Applying our a priori estimate (3.39) to the difference / — f,. we get

Yh= 1Y -0 <4 [ (- 8 (3.41)
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But the expectation of the last term converges to 0 due to our estimate (3.14). Thus we have
E[[Y],] = 0. hence [¥], = 0 almost surely with respect to P.

4. An extension of Ito’s formula

In this section we prove the time-independent extension (1.1) of Ité's formula. For f £ C' the
quadratic covariation takes the well-known form

0= raes @1

which appears in It6's formula

P(X) = F(X) + [ sty ax+3] 7o) es (42)

for FeC? and f = F'. Thus, the following formula is an extension of Itd's formula to the case
where [ is locally square integrable:

Theorem 4.1 Let F be absolutely continuous with locally square integrable derivative . Then

F(X,) = F(X,) -L F(X,)dX, + 4 [£(X), X],. (4.3)

Proof

The quadratic covariation process [ f(X), X'] exists as shown in Proposition 3.2. By the usual
localization argument we may assume that f has compact support. Take a sequence f, € C' such
that f, converges to f in L. The estimates in the proof of Theorem 3.3 show that

im [ 7,0 ax, = [ sonax, (4.4)
n—ox Jg o
in L*(P) and
Jm [ fooex = saex, (45)

in L'(P). By (3.7) and the usual Ité formula (4.2) applied to the functions
X
F,(x) = F(0)+ L fuly) dy, (4.6)

we obtain
4/(X), X, = lim 1/"(X), X],

= Jim {F,00)  F,(%) - | £ ax),
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and this is equal to

F(X,) - F(X) - L f(X,)dX,,

again by (4.4).

Remark 4.1
For t £ D, we can write

X,

F(X)-F(X)) = { fX)X,, - X,) + L (SO -1,

and also

X,

F(X)-FXo)= ¥ { T b AR A jx_ ) -fUX,

€D,
LEt

Equation (4.7), together with (4.3) and (3.5), implies
'r'l-l .
Hr0.x) = lim 3 [ () -1y,
ED, *

54

On the other hand. equation (4.8), together with (4.3), (3.6) and (3.7), implies
1 S

(X)X, = lim > J

LED, Xy
L

L
CS(X,) = (p)dy.

If we subtract (4,10) from (4.9) we obtain the remarkable relation

s
Jm 3 [ 0 - HU) £/ ey =0

uniformly in probability for any locally square integrable function f.

Example 4.1

j}d_l'}
dj}d}'}.
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(4.8)

(4.9)

(4.10)

4.11)

Let us return to Example 3.1 in the case where the function a - ) assumes a constant level a. The
function f(x) = I, y(x) is the derivative of the absolutely continuous function F(x) = (x —a)™.

Due to (3.33), our It6 formula (4.3) takes the form

I
{Xe == a]l_ = I:X.;]. = I‘-I:|+ + L I{a.:-c:-{xs} dX.-: + glLf
where
Li=lm Y |X_ -Xl,

R—a30
€Dy 1St

(4.12)

(4.13)
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Comparing (4.12) with the well-known Tanaka formula (see, for example, Protter 1990, p. 169), we
see that L] coincides with Lévy’s local time at level a. Note that (4.9) and (4.10) imply the alternative
descriptions
179 = lim X, —all
] i Cos
o n_'xff'EEaEf 1
=1lim > |X,, —adl,,. (4.14)
"0 webt

I

1A

Itd (1974; 1975) proposed defining the Stratonovich integral by the following formula (4.15) when
the quadratic covariation | f(X'), X'] exists (see also Protter 1990 p. 216). Proposition 3.2 shows that
this definition makes sense for any locally square integrable function f, and Remark 3.2 shows that
the Stratonovich integral can be described as well as the following limit of sums:

Definition 4.1
For any locally square integrable function f the Stratonovich integral is well defined by
[, rayeax= [ roxyax +4rr00.x1, (3.15)
and can be computed as
[, sty ax, = tim 3 U)K YK, = K (4.16)

L=

With this definition, the Itd formula (4.3) can be reformulated as follows:

Corollary 4.2 For an absolutely continuous function F with locally square integrable derivative
F'=f,
i
F(X,) = F(Xy) +L JiX;) odX,. (4.17)
U

Mote that this is an improvement upon Ito (1974) and Protter (1990, pp. 222-224), where F is
required to be C?. Note also that j;,’ F(X,)odX, need not be a semi-martingale, but that it is a
Dirichlet process in the sense of the following remark.

Remark 4.2

(a) In order to compare Theorem 4.1 with the extension of Itd's formula obtained by Bouleau and
Yor (see Bouleau and Yor 1981, or alternatively Protter 1990, p. 179), let LY denote the local time
of our standard Brownian motion X at level a. Let F be absolutely continuous with a locally
bounded Borel measurable derivative /. Using a vector-valued measure approach Bouleau and Yor
show

F(X) =F(Xo) + [ 10y ax, -3 | r@a.zs. (4.18)
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Comparing the Bouleau—Yor formula (4.18) with our formula (4.3), we see that if / is Borel and
locally bounded, then

[flIX),X)=- L fla)d LY. (4.19)

(b) A zeneral result of Fukushima in the context of Dirichlet spaces implies that, for an absolutely
continuous function F on R' with locally square integrable derivative f, the process F(X) is a
Dirichlet process, i.e. F(X') can be represented as the sum

r
F{X;}:F[Xu‘]%—j S ) A, + A4, (4.20)
0

of a local martingale and a continuous process 4 of zero energy (cf. Fukushima 1980, Chapter 5).
Thus, our Itd formula (4.3). together with Theorem 3.5, identifies the process of zero energy A in the
Fukushima decomposition (4.20) as a quadratic covariation:

A, =3 [7(X), X),. (421)
Note that in our approach the process A is computed directly on the paths of Brownian motion,

without any smoothing of the function f as is usually done in the theory of Dirichlet spaces.

The following section shows that, in contrast to the Bouleau-Yor formula (4.18) and to the
Fukushima formula (4.20), our version (4.3) of the Ité formula for locally square integrable
functions /* admits a straightforward extension to the time-dependent case.

5. The time-dependent case

Let f(x, 1) be a measurable function on R' x [0, 1] such that (-, ) is locally square integrable and
assume that

J(«.1) is continuous in ¢ (5.1)

as a map from [0.1] to L[':,c. Under this assumption, the existence of quadratic covariation

FX ). X) = lim Y { (X f0) =S 0)}X,,, - X,) (52)

LED,. <t

was already shown in the proof of Theorem 3.3. Let us now establish the corresponding time-
dependent version of [td’s formula:

Theorem 5.1 Suppose that F(x.t) is absolutely continuous in x and that the partial derivative
fl+.t) = F,(-.1) satisfies the preceding assumptions. Then Ité's formula holds in the form

F(Xo0) = FOG,0) + || £(X0n) X, + 41708 ). XL+ [ FOxag (5.3)
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where

j F(X,,ds) = lim F(X,, 50} —FX,. .0 (5.4)
o "_x;,eﬂﬂ.r =1 ..

exists uniformly in probability,
Remark 5.1
If Fix, - ) is absolutely continuous in ¢ with derivative F,(x, - ) and if
F,(+.1) is continuous in ¢ (5.5)

as a map from [0, 1] to L;'w then the last term in our Ité formula (5.3) takes the usual form

JrF{X,,ds} = IIF,{X,,s:]dJ. (5.6)
] 1]

Proof
Let us write

FiX,.1)— F{X,,0)=4] + B
where

A= D F ) = X0

nED, =L
and

Bl= . F(X,,,.1)~F(X,5)

By the time-homogeneous [td formula (4.3),

I;

B SX ) dX, + (0 A(X 00, X, — (X, 0), X))

I

FX,. . 1) - F(X,.1) = J

1

=i{ J f'ith_‘Jd’X_r'*JrH I{th}dxa}
f fi

due to (3.7). But under our continuity assumption (5.1), the arguments in the proof of Theorem 3.3
show that the sum B of these terms converges to

I r r
B B:’=-{J 1) X+ | f{x;.s:ldz;}
20 21 Jo 0

= [ 709 X, + 0K ), X,
L]
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uniformly in probability. Thus, the sum A also converges uniformly in probability, and

]
J F(X, ds) = lim A"
1} R—2C

— F(X,,0) - F(X,,0) - L F(Xor5)dX, =3[ (X, ), X],.

This shows that the limit in (3.4) exists and that (5.3) holds.
In view of (5.6) suppose that F(x, - ) is absolutely continuous in ¢ with derivative F,(x, - ). For
1€ D, we have

Brsq I ¥

4= 3 TR, 90= [ FE0se
LED, <t o

where X" = X ..., for s € (t;, ;. 1]. Under an additional continuity assumption on F, we see that

lim A" =J F,(X,,s)ds
R—2x o

uniformly in probability, and this implies (5.6). For example, the arguments in the proof of Theorem
3.3 show that it is enough to assume condition (5.5).

Remark 5.2
{a) Our Ité formula (5.3) shows that the process

F(X,.1) — J; F(X,ds) 0<r<] (5.7)

is a Dirichlet process in the sense of (4.20). Under the additional assumptions in Remark 5.1 the
second term has continuous paths of bounded variation. In this case the process F(X,, 1) is itself a
Dirichlet process.

(b) In analogy to the previous section we see that, under the assumptions on f in Theorem 5.1, the
Stratonovich integral is well defined by

[ 19 cax = [ 109 ax +4ir0x . x, (53)
0 1] Es
and that it can be computed as
L fXo)odX, = tm 3 H /(K1) +7(X, i )HX,, = X,). (59)
LED,
()

Thus, the Itd formula (5.3) takes the form

]

F(X,,f) = F(X,,0) + L f(X,,5) o dX, + L F(X,.ds). (5.10)
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{c) The time-dependent version of the argument for (4.9) shows that

LU
)X = Jim Y [ () =1 ). (5.11)

LED, T
LEt

Example 5.1
Let us return to the situation in Example 3.1 where f(x, 1) = I ;) «(x) is the partial derivative F, of
the function Fix,t) = {x —a(t))”. Ité"s formula takes the form

¥

(X, - alt)* = (Xo - a(0))* +J

. I
T () dX, + § 15 +j F(X,.ds). (5.12)
0 5 0

In the special case where a - ) is a function of bounded variation we get
[, F19) = = [ 0% dato (5.13)
and so (5.12) reduces to
(X, —al))" =(Xy—al0))” + J; L5y, o0) (X)X — a( - ) + %Lff' # (5.14)

In this special case, the process X — af - ) is a semi-martingale, L™ "' may be viewed as the local time
of this semi-martingale at level 0. and (5.14) is the corresponding Tanaka formula. Thus (5.12) is an
extension of the Tanaka formula to the general case of a continuous function af - ).

Asa special case of (5.11) we obtain the following identity for the local time at a continuous curve,
in analogy to (4.14):

i =1m Y |, —a()lie, (5.15)

T LEDL LEL
where
Cpi = {sign(X,, — a(r;)) # sign(X, , — a(1;))}
denotes the set of paths which exhibit a crossing of the level a(r;) if checked at times r; and ;.
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