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Explosive Poisson shot noise processes with
applications to risk reserves
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We consider explosive Poisson shot noise processes as natural extensions of the classical compound Poisson
process and investigate their asvmplotic properties. Our main result is a functional central limit theorem with a
self-similar Gaussian limit process which, in the classical case, is Brownian motion. The theorems are derived
under regularity conditions on the moment and covariance functions of the shot noise process. The crucial
condition is regular variation of the covariance function which implies the self-similarity of the limit process.
The model is applied to delay in claim settlement in insurance portfolios. In this context we discuss some specific
models and their properties. We also use the asymptotic theory for studying the ruin time and ruin probability
for a risk process which is based on the Poisson shot noise process.
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1. Introduction

We consider the explosive shot noise process

S(=3_X(t-T), 20 (1.1)
=l
where X, X}, X,.... are i.i.d. random non-null measures with support on R™, X, (1) = X,([0,1]),
t > 0,and (T,),n are random variables such that N{1) := # {n : T, < r} is a homogeneous Poisson
process with intensity a > 0.

Traditionally, the Poisson shot noise process as in (1.1) has been investigated for i.i.d. stochastic
processes (X, (t));=¢, 7 € N, whose sample paths decrease to zero (see, for example, Bondesson 1988;
1992; Parzen 1962). Shot noise processes have been proposed, for example, for bunching in traffic
(Bartlett 1963), for computer failure times (Lewis 1964) and for earthquake aftershocks (Vere-Jones
1970).

A stationary version of (1.1) is defined by

S(4)=) X, (4-T,)
nel
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for any bounded Borel set 4 C R, where (T,),-z are the jump times of a homogeneous Poisson
process on R as above and (X,,), -z are i.i.d. non-negative random measures with support on R*.
Asymptotic properties of this process have been investigated by, among others, Daley (1972) and
Lane (1984).

Our interest is focused on the transient process (1.1) as a natural generalization of the classical
compound Poisson process. We mention that our model includes the counting process in a Poisson
clustering point process and might be of some interest in that context as well. For theoretical
background on random measures we refer to Kallenberg (1983) and Daley and Vere-Jones {1988).

Our paper is organized as follows. In Section 2 we derive numerical characteristics of the process
(8(1)) =0 such as the moment and covariance functions. Furthermore, we recall a particular notion
of regular variation in R* which is a basic tool for proving our main resuits.

In Section 3 we describe the asymptotic properties of the explosive Poisson shot noise process
(8(1)) =0 for large 1. These include strong laws of large numbers (SLLN), a central limit theorem
(CLT) of Berrv—Esseen type and a functional central limit theorem (FCLT). Here we need regular
variation of the covariance function of § which implies in turn that the limit process is self-similar
and Gaussian. As mentioned above, the model contains the counting process in a Poisson clustering
process; the FCLT seems to be new in this context as well,

In Section 4 we apply our results to some specific insurance problems. The explosive shot noise
process can be viewed as a natural model for delay in claim settlement: the T,,n € M, are considered
as the claim arrival times, and the measure X, (- — T,,) describes the evolution of the pay-off process
for the nth claim. Since every realization of the process X, (1) is a non-decreasing function of ¢, the
limit lim,_. X,(f) = X, (oc) exists (possibly infinite) and is the total pay-off caused by the nth claim.
Then (5(t));=p as defined in (1.1) is the total claim amount process.

If the random measure X degenerates at zero the process (1.1) reduces to the classical total claim
amount process which is a compound Poisson process. We specify some models via the explosive
Poisson shot noise process and investigate their properties. Furthermore, we propose a risk
premium and a risk process and derive an approximation for the ruin probability and the
distribution of the first ruin time via the FCLT.

2. Preliminaries

2.1. MOMENT AND COVARIANCE FUNCTIONS OF THE PROCESS (S(1)) >0

We consider model (1.1):
Nir)
S=Y X (1-T)=) X,(t-T,), >0,
n=1

rxl

{as usual Z'f' = (1) where the processes (X, ),y are i.i.d. copies of X. Throughout we assume that for
n € N the functions (X, (t)),=¢ are non-decreasing and cadlag. Hence the realizations of (X,(7)):0
are measure-defining functions. The process (5(f)),o is a.s. finite for every fixed ¢ and defines a
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random measure 5 on the Borel sets. For simplicity we write
X,la,b] = X,({a, b]) = Xu(b) — X,(a), a<b,

and use analogous notation for other measures and sets.

In this section we derive numerical characteristics of the stochastic process (5(¢)),-o such as the
moment and covariance functions. One way is to calculate the Laplace functional of the random
measure S. This allows for extensions to shot noise processes with general counting processes
(N(1));>0. However, in the context of a Poisson shot noise process numerical characteristics of 5 can
be derived using the special properties of the Poisson process. For example, using the well-known
fact that for N(¢) = k the random vector (T7,. .., T;) has the same distribution as the order statistics
of a sample of k i.i.d. random variables with uniform distribution on [0, 1], we conclude that

E pypr t r k G}
R SR R A 1 o)
: L] L i=1

k=0

- Q.&'{ 1 r _ &
= ol =F Ee AN ) dll‘.
— Kl Jo

- Exp{-m(l i L Ee*¥(¥) du) }

Then S(r) has representation S(r)£ X" ¥, (1) for iid. (¥,) independent of (N(r)) such that
}’n(r}g,‘t’ (Ut) where U is uniformly distributed on (0,1) and independent of X. Moreover, for
0 < s < rthe random variable S(s, 1] has the same distribution as the sum of two independent terms;
more precisely,

Nis)

S 1]2Y Z,(s,0) + 8" (¢~ 3), (2.1)
n=l

where Z,(s, 1) 2 X(Us, Us + (t=s)]areiid.and §' L5is independent of 5. This can be seen by the
following argument. Given (N (x))oc s and (X, ),<n(s). We can use the stationarity of the Poisson
process to write 5(s, t] in distribution as

Nis) N'[1=5)

ZXRI:.{E‘I]_TRJ+ Z X_.-:U-J"-T:;I.

=] n=]

where (T, ). (X, ) are independent copies of (T,), (X, ). and (N'(x)) is defined in the natural way.
Then the “order statistics property” of the Poisson process which led to the Laplace transform of S(1)
can be applied to obtain (2.1).

Having these formulae in mind it is not difficult to calculate the following moments and
covariances which are versions of Campbell's theorem (ef. Dalev and Vere-Jones 1988). We write

ult) = p(0,t] = a L E{X(u)} du,
) (2.2)
a’(t) = o*(0,t] = uL E{X*(u)} du.
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Proposition 2.1 Suppose 5 < 1.
(a) Assume puit) < oc. Then

E(S(s.1]) = u(s, 1], E{S(0)} = pl1), 1Z=0.
(b) Assume o7 (¢) < oc. Then

var (S(s, 1]) = (1) — 0%(s) = hJ:E{Xl:u}X[u.u +1—s} du,
=gt —13) +=::J: E{le:u,u+ t—s]) du,

var (S(1)) =o*(1). t>0.
(c) Assume that [* E{X*(r — u)} du < oc. Then

E{S(s,1] — E(S(s,t])}* = 3o*(s,1] + QJ:_E E{X*(u)} du+ aJ: E(X*(u,u+1—3]) du.
(d) Assume o7 (f) < oc. Then

cov {S(s), S0} = a L E{X () X(u+1 — 5)} du

=ci(s) + o j: E{X(u) X (u,u+ 1t — 5]} du.

Remark 2.1
The moment functions of § are not invariant under shifts except for the compound Poisson process.
Hence (S(t))o is not stationary of any order.

2.2. REGULAR VARIATION OF THE COVARIANCE FUNCTION

In Section 3 we will need the notion of a regularly varying (at infinity) function in B*: The measurable
function f : B™ x B~ — R is regularly varying if for all x,y > 0 the limit

W Slxtyt)
Clmp) = hm 11

exists finite and is positive. In this case, C(x, y) is homogeneous which means that
Clkx,ky) = k°Clx,y)

holds for all x. y. k > 0 and a fixed number g, and C(1, 1) = 1. The quantity p is called the index of
regular variation and C is the limit function of f. For other notions and properties of multivariate
regular variation, we refer to Bingham er al. (1987, Appendix 1).

We also mention the notion of univariate regular variation. The measurable function
f:R™ — R 15 said to be regularly varying if, for all x > 0, the limit

S(xt)

C(x) = im ——

=z (1)
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exists and is finite. In this case, C(x) = x*, and pis called the index of regular variation. We refer to
Bingham er al. (1987) as a standard monograph on one-dimensional regular variation and its
ramifications.

Proposition 2.2 If E{X{s)X(r)} is regularly varying with index o — 1 and limit function ¢, then
cov {S(s), S(¢)} is regularly varying with index p and limit function C where
x

Clx,y) = pl cla,u+ y —x) du, x < p.
0

Moreover, p = 1.

Proof
Let0 < x < y. Then

cov {8(x1), S yr)} B L E{X(u)X(u+(y—x)1)}du

40 er{Xz[u}}du
0
J"‘ E{X(ut)X((u+y—x)1)} d
= 0 E{XE{IJ} 5 C‘{x v)
J' E(X (u)} . i
o E{X*(1)}

where the existence of the limit C(x,y) is guaranteed by Lebesgue dominated convergence. In
particular, this implies that (1) varies regularly with index p. Since X is different from the null
measure we have lim inf, .. #%(1)/t > 0. Therefore p > 1. O

Remark 2.2
For x < y we have the estimates
o?(xt) < cov {S(x1),S(y1)} < o*(yt) — o {(y — x)1}.
Hence regular variation of #° with index p implies that
P ECEN Sy - r—x)"

In particular, if p = 1 then C{x, ¥) = ¥, i.e. it is the covariance function of Brownian motion.

3. Asymptotic theory

3.1. LAWS OF LARGE NUMBERS

We start with a law of large numbers in order to get an impression of the order of magnitude of 5(1).
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From Chebyshev's inequality we know that
p(| S0, ) ¢ 220
u) | € p(1)
Hence a sufficient condition for the weak law of large numbers (S(1)/u(r)) Zlast—oois
(1)
u (1)

It is not difficult to prove an SLLN under simple conditions on the rate of decrease of £(1).

1) = =0, t— o (3.1)

Proposition 3.1 Suppose there is a sequence f; T oo such that

Y &n) < o, (3.2)
&
and
()
) el

Then the SLLN (5(1)/u(1)) = 1 holds.

Proof
From (3.2). Chebyshev's inequality and the Borel-Cantelli lemma we conclude that (S(t;)/
plre)) = 1. Now (3.3) and a sandwich argument applied to the inequalities

S(te_y) S0} _plt) _ S(h) pln)

plte_y) = ple) plte—1) = plie) plte—y)

for 1 € [1,_,.1;] vields the statement. O

Remark 3.1
The assumptions of Proposition 3.1 can easily be checked. For example, if 1°(r) and &*(r) vary
regularly with index p’ and p, respectively, and if p' > p then the conditions are obviously satisfied.

Remark 3.2
The assumptions of Proposition 3.1 can be weakened as follows. Suppose that for every d > | there
exists a sequence f; T oo such that
o i)
oo !
and (3.2) is satisfied. Analogous arguments as in the proof of Proposition 3.1 and a sandwich
argument yield that

Si1)

s ke ay
1 < liminf < limsup —= < 4 a.s.
=T W) " e <

Since d > | is arbitrary this implies that lim, .. (5(2)/u(f)) =1 a.s.
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3.2. BERRY-ESSEEN THEOREM

The limit distributions of the process
S{1) — plr)
a(r)
have been characterized by Lane (1984) as infinitely divisible laws. We restrict ourselves to studying

the asymptotic normality. We start with a Berry—Esseen estimate under the Lyapunov-type
condition (3.4) (cf. also Lane 1987).

for t — o¢

Theorem 3.2 Suppose that

J E{X*(u)}du
lim L(r) = lim . —=0. (3.4)
U E{X:(u}}du)
i}
Then
sup P(%;i{-’—:' < x) -®(x)| < CL(), t>0, (3.5)

where C is a positive constant and ¥ denotes the standard normal distribution function.

Proof
We follow the lines of the proof of the classical Berry—Esseen result (see Petrov 1995, Theorem 35.5).
According to Esseen’s inequality we have

P(M < _r) — ®(x)

1 1/ (4L{1)) Jr;[),.} _Q{A]I =
S < —J dn O L G, (3.6)

T J—1/14L(1)) : A |

sup
X

where C is a positive constant and f, and ¢ denote the characteristic functions of (S(1) — u(1))/e(f)
and of the standard normal distribution, respectively.
For | A| < 1/(4L(r)) and | A| = 1/(2L"*(1)) we have by Taylor series expansion that

FACVIEES ew(—h[f — L R“{E“""(i"ﬁ) d“}D

< exp{=X+§|A°L(1)}

).
MNow suppose that || < 1/(4L(¢)) and [A| = 1/ (ZLM[III}. Again using a Taylor series expansion

we obtain o =_ik@_ T X
2 fi(A) =0 Q(L[I E{exp(m ,,[;})Hd”)

3 L{r 3
e o < .
2+€ 3 | A7, |6] <1

2

<exp(—3A
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Analogous arguments as in Petrov (1995) vield that
|/:(A) = o(A)| < 16L(1)| A|* exp{~| | ?/3}.

The result now follows from (3.6). O

3.3. FUNCTIONAL CENTRAL LIMIT THEOREMS

Next we prove a functional version of the CLT. To this end recall that D[0, 1] is the space of cadlag
functions on the unit interval (see Billingsley 1968; Pollard 1984). We suppose that D[0,1] is
equipped with the supremum-norm topology and with the projection o-algebra. We define

_ S{xt) = p(xt)
N a(t) i
It is easily seen that the sample paths of S (¢) belong to D[0, 1] for every t > 0. The following result
establishes the convergence of the finite-dimensional distributions of the processes S (7).

S.(1) 0<x< 120

Theorem 3.3 Suppose that E{X(s) X(r)}.5 ¢ = 0, is regularly varving. Then the limits
Clx,y) = rt_m; cov {S,(1), 5,(1)}, x,y€[0,1],
exist and are finite. Moreover, there exists a Gaussian process (B, )ycc; with zero mean and

covariance function C{x,y),0 < x,¥ <1, and with a.s. continuous sample paths. The finite-
dimensional distributions of the process 5 (1) converge to those of B if and only if

] == P
;%-Jm”}'jﬂ P{X(u) > y}dudy— 0, Ve = 0. (3.7)

Proof

The existence of the limit function C is a consequence of Proposition 2.2. Since C is non-negative
definite there exists a Gaussian process B with C as its covariance function. Moreover, from
Remark 2.2 we conclude that for p as in Proposition 2.2

E(B,~B,)Y =x"+y?=2C(x,5) < y* —x".

Therefore by Kolmogorov's continuity theorem there exists a version of B with continuous sample

paths.
For notational ease we resirict ourselves to the two-dimensional distributions. Let 0 < x; <

x; = 1 and A;, A; be fixed positive numbers. The process
S0 () = (D) #(0)7 {M Sy, (1) + 228, (1)}
has zero mean and unit variance where
F2(t) = Mo (xy1) + Ao (xa1) + 20 Mo ¥ (1) cov {8, (1), S, (D)}

Hence §, . (1) satisfies the assumptions of Theorem 3 in Lane (1984) according to which the
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condition

ﬁ_lit}jx yl:CP{AlX{x]r —8) + M X (%0 —5) = yhdsdy — 0, Ve = 0,

1)
is necessary and sufficient for convergence towards a standard Gaussian variable. Hence it suffices to
show for normal convergence that for every fixed A > 0,¢ > 0,x £ (0. 1]

J-erjj er{AX[x:—s)}y}»dsdyza'z{x:}r yrtP{)v.X(uj:-y}dudyﬁﬂ,
R o &

ol xr) 0

but this follows from (3.7). Therefore S, . (f) converges weakly to a standard Gaussian distribu-
tion. By the regular variation of the covariance function we obtain that

M Sy () + AaSs, (1) 2 N(0, Mxf + Mx? + 22 M Clxy, %2))

S 0B, +MB,..
This and the Cramér—Wold device prove the convergence of the finite-dimensional distributions.
The necessity part follows from Theorem 3 in Lane (1984). O
Remark 3.3

Lane (1984) showed in a more general framework that (3.7) is necessary and sufficient for the normal
convergence of 5,(1).

Remark 3.4
A sufficient condition for (3.7) is the Lvapunov-type assumption

P ] )| ]; E{X***(u)}du—0

for some & > 0.

Next we show the tightness of the processes S (f). For the compound Poisson process it is well
known that S (r) converges to Brownian motion (e.g. Gut 1988, Section V.2). But as soon as we
depart from this model to the more general case (1.1) we lose the stationary and independent
increments and the method of proof is no longer applicable. However, if X (o) < oo a.s. and if X(r)
approaches X (oc) sufficiently fast, then. under appropriate moment conditions, one can derive an
FCLT with Brownian motion as a limit for S (1).

First we suppose that

X{oo) < oc as.

The basic idea is to approximate the process S (1) by the compound Poisson process Zﬂl’ Y X,(o0).
We will frequently make use of the fact that if 0 < EX*(xc) < oo for some k > 0 then

'l r
?L E{X*(u)} du — E{X*(c0)}.
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Proposition 3.4 Suppose that E{X?(oc)} < sc. If the conditions

%L;E{Xf_x:l} — E{X(1)}]du 0, (3.8)
1 Nis) P
73w Z]{XJ{MJ — Xi(s — T)}| =0, (3.9)
are satisfied then
SMSB, 10,

for a standard Brownian motion B on [0, I] where the convergence holds in D0, 1] equipped with
the supremum norm.

Proof

Since E{X*(2c)} < oc and E{X(x1) X (1)} — E{X*(oc)} for all 0 < x < y, C(x, ) is necessarily
regularly varying with index p = 1. It follows that C{x, ¥) = min (x, v) (cf. Remark 2.2) and, that B
is Brownian motion. We have for x £ (0, 1]

Nixr)
S.(1) = e"m( S Xixt—T;) —w{-w})
i=1

N{xr) Nixi)

= [arE{X?(00)}]73{1 + o(1)} ( Y {Xi(xt = T,) - Xi(oc)} + 3 [Xi(o0) — E{X(0)}]
i=1 =1

+ {N(xt) —axt} E{X(x)} + laxtE{X (=)} - ;_.:{x:}i)

= ni(x) + Lix) + Lix) + Ii(x).

In view of (3.9), [; converges to zero uniformly in probability. Moreover, for some positive
constant ¢

e [7 :
11:09)| < 2 [ [BAX(60)} — E{X()

Hence, and by (3.8), we conclude that J; uniformly converges to zero. It follows from Gut (1988)
that

1 1 il < NEul¥Y s s
—{N(x1) — axt}, — % [X{oc) — E{X(oc)}],—— | =(B8M, B, x
({m}]_,ﬁ )~ euxth e i O Mi00) ~ BLX )= 2 B, x)
where B'" and B'¥ are two independent standard Brownian motions on [0,1] and the convergence
2, is weak convergence in D([0, 1], E*) equipped with the supremum norm. (Gut actually proves the
results for the Skorokhod J)-topology but since the limit processes have continuous sample paths
and are independent the convergence also holds with the supremum norm.) An application of the
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continuous mapping theorem implies that

(var (XN, o (EX ) e

which concludes the proof. O
In the following result we reformulate condition (3.9).

Theorem 3.5 Suppose that EX () < oo and that (3.8) holds. Assume that there exist positive
functions /& and g defined on the non-negative real axis such that

VIE{X(00)} = E[X{h()}]) =0, 17— oo, (3.10)
g(1) ﬁﬁ.:?q(.mj — N(s—h(1))) = Op(1), 1= o0, (3.11)
and
1P{X(x) > g(Vi} = 0. 11— . (3.12)
Then
S_[r}iﬂ_, I — oc,

for a standard Brownian motion on [0, 1] where the convergence holds in D[0, 1] equipped with the
SuUpremum norm.

Proof
By Proposition 3.4 it remains to show (3.9), For € > 0 fixed we obtain that

Nis)
P(sup 3 {Xi(ec) - Xi(s - T} > eﬁ)

< P(sup 3 {Xi(o0) — Xils — TO}{s — T, > h(D)} > w’?ﬂ)

<5< 51

Ns)
+ P(sup 3 {Xi(o0) = Xils — T)M{s = T, < h(1)} > fwz)

D5t =

¥
< P(Z[Jﬂ-{x - X:{n(n)}] > E\.sz)

i=l... 0<sst 4T

Nis)
+P( max Xr oo) sup Zf{s— T; < h(n)} }fyf’_,.’l)
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Nir)
< (eVi/2)'E (Z [Xi(o0) - x.-{h{rn-:)

=]

+P(=max Xi(oc) sup {N(s)— N(s—h(1))} }f'ﬁg’l)

i=1,..., N(t) h{r)<s<r

= (ev/1/2)" at(EX (0) — EX(h(1)))

- P(I=max Xi(oc) sup {N(s) = N(s—h(1))} > EV-’E'Q)

1., N(r) hif)€s<e
- .Ir| + .rz.

From (3.10) we conclude that I, — 0. For I; we get for any fixed § = 0, in view of the LLN and by
(3.11) and (3.12), that

L= P( max  Xj(oc) sup {N(s)— N(s—h(1))} > e-ﬁﬂ) + P(N(t) > at(l + &)

i=1..., (18] h{fy=sr

- P( ((s0v _ max | x(o0) o) sup (N(5)= N(s—h(1)} > fﬁ) +o(1)
= o(1). s
In the last step we also made use of the fact that

(e)VD™ _ max  X(%0) 20
=1, loer(1+8]]

which is a consequence of (3.12) (cf. Leadbetter et al. 1983, Theorem 1.5.1). O

Corollary 3.6 Suppose that one of the following conditions holds:

(a) X(x) = X (=) as. for x > x; and E{X‘T‘*'E'[m}} < oo for some § > 0.
(b) (3.10) holds for (1) = 1° and E{X*"3¥)(ac)} < ¢ for some 4 € (0,0.5).

Then S5 (1) 4 B as 1 — oo in D|0, 1] equipped with the supremum norm.

Proof
(a) If E{X(x)} = E{X(o0c)} for x = x;. then conditions (3.8) and (3.10) are satisfied. If we choose
2(f) = (Inr)"" and A(r) = x, then, in view of E{X***(2c)} < 2c and the exponential tail behaviour
of a Poisson random variable, it is not difficult to check the validity of (3.11) and (3.12). Hence the
conditions of Theorem 3.5 are satisfied and the statement follows.
(b) We conclude from Deheuvels and Steinebach (1989, Theorem 1), that

sup {N(s) = N(s —1%)} = Op(¢”)

1F sy

which implies (3.11) for a function g such that g(r) = Op(t ™), 3 £ (0,1). We choose g(1) = 177 for
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8 < 0.5. Then EX¥""?")(50) < oo implies condition (3.12). Moreover, (3.10) implies (3.8). An
application of Theorem 3.5 yields the statement. O

Remark 3.5

Using some more sophisticated results on the increase for increments of renewal processes, the
conditions of Theorem 3.5 on the functions k and g can be modified in various ways. We refer to
Deheuvels and Steinebach (1989) for a recent treatment of this topic.

Notice that the results above do not apply if X(t) — 2o as t — oo. For a corresponding result we
need some additional regularity assumptions:

o) (A=) + o [ Bt (- 0N ) SRO)-REN (13

e (1) ( L“ E{X*(u)} du + L EX*{u,u+ 1(y - )} du) <{RO)-RE)E (.19

for some g; > 1,i = 1, 2, for non-decreasing continuous functions F.i = 1,2, on [0, 1] uniformly for
0 < x < y < 1 and sufficiently large 1.

Condition (3.13) requires more than a linear growth of -::1(:}. Conditions (3.13) and (3.14) are
essentially of the same type. The lefi-hand sides consist of two summands. The first of them
describes the increase of the sample paths in time and the second one can be interpreted as an
integrated modulus of continuity of the second and fourth moments of the process X. The second
terms describe the dependence structure of the increments in the process X'; in the case of the
classical compound Poisson process these terms disappear.

Theorem 3.7 Suppose the assumptions of Theorem 3.3 are satisfied and that (3.13) or (3.14) hold.
Then
S() 5B, t—o,

in D[0, 1] equipped with the supremum norm.

Proof

By Theorem 3.3 it remains to show the tightness of the processes S (t). Since the limit process has
a.s. sample paths in C[0,1], the space of the continuous functions on [0, 1] equipped with the
supremum norm, it suffices to show that for each ¢ > 0,5 > 0 there exists some & > 0 such that

t—e0 x€[j&( +1)8)

lim sup Z P( sup | 5¢(8) — S;a(t) | = ﬂ) <€
jedt

(see Pollard 1984, Theorem 3 in Chapter V.1). We follow the lines of the proof of Billingsley (1968,
Theorem 12.3). We fix n > 0,¢ > 0. For the moment we also fix & and 1. Choose m large enough that

3. (P( sup | Sc(1) — S;5(0)| > n) - P(_ max | Sjs:sim(t) = Sjs(1) | > n)) f:g

j<él x| jE [ j+1)6) i=l,...
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which is possible in view of the right continuity of the S,.(t). Next we show that
E
3 P, max | IS = S0 > n) <5

Ly (3.15)
_.l{él'l i=],..

b

provided 1 and m (depending on r) are chosen large enough. First suppose that (3.13) holds. Then in
view of Proposition 2.1(b)

E(Snam(t) - Seam®F < {Fi(jo+o0) ~R(je+o0) 1 (1

uniformly for 1 < i< k< (m — 1), m, j. Next suppose that (3.14) holds. With Proposition 2.1(b) we
have

¥ -

o~*(1)o*[xt, y1] < o~4(1) (L E{X(u)} du)_
<o {0ty - x) E{X* ()}
< et E{X*())}]*[t(y — x) E{X* ()}
=e(y—x)? (3.17)

for some ¢ > 0 and sufficiently large r. Here we have used the regular variation of EX*(1).
Combining (3.17) with assumption (3.14) and recalling Proposition 2.1(c) we conclude that for k > i

B e~ Sersan B2 {Fa (s6+6%) - m(s+52) )" (3.18)

uniformly for k.7, j,m, for sufficiently large ¢ and for a continuous, monotone non-decreasing
function F; on [0, 1],4; > 1. Relations (3.18) and (3.16) and an application of Billingsley (1968,
Theorem 12.2) vield that

P(max | |Siseim(®) = S| > ) < [E{l + 18} - o)

for a continuous non-decreasing function Fy on [0.1], g4 > 1. which implies (3.15) provided we
choose & sufficiently small. This concludes the proof. O

The restriction to the unit interval in the FCLTs above is not necessary. From the uniform
convergence theorem for regularly varying functions we obtain that

S(cke) — p(xke) _ alke) S(xke) — p(xke) o
al(t) ol (ki)

for any k£ > 0. Hence

k"B, 0<x<l,

S(xt) — plxt)

d 2 .
a(1) —k"Byy,  0<x<k
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Thus 5 (7) converges weakly in D[0, k] (equipped wudh the supremum norm) to a Gaussian process B
on [0, k] with a.s. continuous sample paths and B = k”*B ;.. We define convergence in D[0, oc) as
uniform convergence on compacta (see Pollard 1984, Deﬁm!mn 22, p. 108) where D0, ) is
equipped with its projection o-algebra. By Pollard (1984, Theorem 23, p. 108), we conclude the
following:

Theorem 3.8 The processes S (1) converge weakly in D[, oc) to a Gaussian process B with zero
mean and covariance function C(x, v) such that

Clkx,ky) =k*Clx,y),  xy20k>0,

i.e. B is a self-similar Gaussian process.

This result extends the FCLT for the classical compound Poisson process to the shot noise process
S(#). In both cases the limit process is self-similar Gaussian. The crucial condition which ensures this
property is regular variation in B” of the covariance function of the underlying process §(¢). This
shows that regular variation is a natural concept in this context.

The FCLT allows for sensitive estimates of the probability of the oscillations of $(r) around its
mean value in a given interval and also for the estimation of moments of continuous functionals of
S,(1). Define

m, = min S,(r) = ;Eﬁgsljg_ﬁ(ﬂ - pls))
M, = max 5.(1) = Ln'1=1>{|:.“_5+“|:.-.-] — (5]}

The following is an immediate consequence of the continuous mapping theorem.
Corollary 3.9 Suppose the assumptions for the FCLT in Theorems 3.5 or 3.7 are satisfied. Then

(5,(6),m, M) — (E;.ﬂnunﬁ maxB_)

=1 D=x=l

Remark 3.6
If B is Brownian motion, then the joint distribution of B, and the minimum and maximum of
Brownian motion are well known (see, for example, Billingsley 1968, formula (11.10)). For other
Gaussian processes the tail behaviour of suprema has been studied under entropy conditions and/or
conditions on the regularity of C(x, y). We refer to Adler (1990) and Samorodnitsky (1991) for some
recent studies.

We continue with an application of the FCLT proved above. First define the integrated shot noise
process

D_rm=j S,(0dy, 0<x<l
s

From the FCLT and the Cramér-Wold device we conclude that forany 0 < x; < --- < x, < 1 the
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finite-dimensional distributions satisfy the relation

(D (1) s Do (8) i(j

0

X X

1
Bydy,...,J

"B.dy .
, B.)

We prove a functional version of this result.
Corollary 3.10 Suppose that the assumptions for the FCLT of (S (t)),5¢ are satisfied. Then
D_(:}i]'gydy
0

in C[0, 1] equipped with the supremum norm. Moreover, [; B, dy is a Gaussian process with mean
function zero and with covariance function

'CU"I'(J : Evd-_]'::J‘.: E}d_]r') =J : j ) C[II:}'E:' d}'| d}z
;- 0 o Jo

Proaf
For the FCLT it remains to show the tightness. According to Billingsley (1968, Theorem 12.3), it
suffices to show that

I(x,p)(t) = E{D,(1) = D,()} < {F(») - F(x)}*

for a non-decreasing continuous function Fon [0,1],g > 1.0 < x < y < | and sufficiently large r.
We have

¥

105,0)(0) = || [ cov (84,0, 51,(0) ey e
X JX
In view of the uniform convergence theorem for regularly varving functions (Bingham er al. 1987,

Theorem 1.5.2) and since cov (S, (1), ., (1)) < (var S, (¢) var S,,(1))"* we conclude that

I{x.3)(1) < cJ‘-L J'ydxldx: <ely—-x)°

for large ¢ and a constant ¢ > 0. This proves the tightness. O

4. Some applications in insurance

The shot noise process can be considered as a natural model for delay in claim settlement. In that
case,
S()=)_X(t-T,), 120,
rzl

is the total claim amount process and the process X; describes the pay-off procedure of the ith
individual claim. If the random measure X degenerates at zero the process reduces to the classical
total claim amount process. Here it is assumed that the claims are settled by the insurer at the time
they occur. In reality this is rarely the case; very often a claim is unknown to the insurer at the time it
occurs and it is reported after a certain time delay. Moreover, the future cost development is also
often unknown as, for example, in rehabilitation following accidents.
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In Section 4.1 we introduce some specific models and investigate their properties. In Section 4.2
we give approximations to the probability of ruin related to our model. For those interested in more
details on delav in claim settlement we refer to Norberg (1993), Arjas (1989) and Neuhaus (1992)
and references therein.

4.1. MODELS FOR DELAY IN CLAIM SETTLEMENT

4.1.1. Finite individual claims
Suppose that
X, (x) = rlln:}: X, () < ¢ a.s. (4.1)

for every n. i.e. the total size of every claim is finite with unit probability. In particular, if the X, are
a.5. uniformly bounded measures then assumption (4.1) is satisfied. From L'Hépital's rule and
Proposition 2.1 we obtain that

p(t) = aE{X (20} }H1 + o(1)}1, o2 (1) = aE{X }(ac)}{1 + o) }1, [ — oo,

provided the corresponding moments are finite. Furthermore, from Propesition 3.1 we immediately
obtain that
5(1)

:H_JE__:_ = aE{X ()} a.s.

If EX () < o0 we conclude from Theorem 3.2 that the Berry—Esseen estimate
- . 3
P00 < ) — g s o ELOED

o(t) [E{x?(c0)}]*?

holds. Moreover, under the moment conditions of Corollary 3.6 the FCLT applies with standard
Brownian motion as limit process.

These results show that the asymptotic theory for 5(¢) under condition (4.1) is very much like the
theory for the sums

<

sup =0,
x

Nir)

Y Xa(oo),
n=1

i.e. the classical total claim amount process.

4.1.2. 4 simple multiplicative model

A large subclass of processes (1.1) has the representation

Nt}

SO =Y Yarlt—-T) =) Ynlt-T,) (4.2)
n=]

=l

foriid. ¥.¥,, Y5, ... and a fixed non-decreasing function -.
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The mean, variance and covariance functions under suitable moment conditions are

pli) = aEYJ: y{u) du
o) = &EYEL:TE{R} du

F
cov (5(5), 5(1)) = u:EIr’Zj Fu)ylu + ¢ — 5) du, s< I
0
If v(oc) < oc an application of L'Hépital's rule yields that

u(r) = aEY~(oc){1 +o(l)}t,  o*(t) = aE¥*y*(e){l +o(1)}t, — ox.
Hence if the appropriate moments of Y are finite the SLLN holds, and the Berry—Esseen theorem is
valid with rate ¢ '/%. In particular, if ~ varies regularly with index a > 0, then E{X(s)X(1)} =
EY*4(s) 7(z) is regularly varying with index 2a = p — 1. Then, by Proposition 2.2, for x < ¥
x
Clx,») = (2a+ ]]J u'(u+y—x)°du,
o

and C is then regularly varying with index p. For @ = 0 the FCLT applies with standard Brownian

o |
[
-
g
g
E
=
2] |
1
]
o |
|
: i
| |
<4 |
o 10 20 30
Time

Figure 1. Sample path of the shot noise process of Example 1 and the path of the corresponding
compound Poisson process
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Figure 2. Sample path of the shot noise process of Example 2 and the path of the corresponding
compound Poisson process

motion as limit process (see Section 3.3) and for a > 0 the limit process is a self-similar Gaussian
process with covariance function C.

Example 1
X(i=Y(l-e ”J_.r = 0, for some A > 0. This means that the pay-off of each claim decreases
exponentially fast. Notice that v(r) = 1 — e~ is regularly varying with index 0. Hence, for ¥ with
sufficiently high finite moments, the above asymptotic results apply for large r. Moreover, for any
finite ¢ and given ¥ we can calculate the Laplace transform and the moments of {5(7)),-q explicitly;
we omit the details, -

Figure 1 shows a simulated sample path of 5(¢) and the evolution of each individual claim in
comparison with the corresponding classical total claim amount process (staircase). The variable ¥
has a standard exponential distribution.

Example 2

X(t)=Yt*,a=0,1>0. For a=0 this is just the compound Poisson process. For a > 0 the
assumptions of the FCLT in Theorem 3.7 are satisfied. For example, for a=1 and x < y the
covariance function of the limit process is given by

Cix,y) = ixl['j_v - x).
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Figure 2 shows a simulated sample path of (5(1)),-p and the evolution of each individual claim, in
comparison with the corresponding classical total claim amount process. The variable ¥ is standard
exponential and ~(z) = 1. It is obvious that for small time the sample paths of ($(t)),~ and of the
classical model (staircase) are almost indistinguishable. -

4.2, RUIN PROBLEMS

We define the risk process
Yii)=u+ P(1) — S(1), t >0,

where (S(1)),o denotes the total claim amount process given by model (1.1), u is the initial capital
and P(¢) the premium income up to time t. The finite time ruin probability is defined as

tiu,t) =P(¥(s) <Oforsome 0 <s<1)
= P(DLI}L{P{S:] - S(s)} < —u), =0

In our situation it is difficult to calculate ¢ explicitly; instead we will apply the FCLT for an
approximation. The method is related to the so-called diffusion approximation (see, for example
Grandell 1992, and references therein).

In order to avoid ruin with unit probability the pure risk premium g(r) = ES(1), has to be loaded,
1.e. increased by a positive function. We propose here as the premium function

P(1) = u(t) + col1), t=0,
for some positive constant ¢ which corresponds to the so-called srandard deviation principle (see, for
example Gerber 1979). Then for 1, = 1/n and uy = u/z(n) we obtain

Ul 1) = P(DLni {u(s) + cols) — 8(5)} < ‘”)

A T R O
() <)

Now, if t; and 7, behave asymptotically as constants, i.e. if ¢ is of order n and u is of order #{n), and
if o is regularly varying with index p. then an application of the FCLT in Section 3.3 yields for u
and ¢ sufficiently large the approximation

s i pl _ -
Ylu, 1) P(D%ﬂ'ro[cs B,) < u.;,) (4.3)
{cf. Grandell 1992), For a more thorough treatment of modelling delay in claim settlement by
explosive shot noise processes we refer to Kliippelberg and Mikosch (1995).

We conclude the paper with a result which is related to (4.3). First we translate the ruin problem
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into a first hitting time problem: For u, ¢ > 0 define
T.=inf{t>0:B,=u+ct .0.-"2}_
Then

P(T, < tg) = P( inf (es”* - B,) < -u).

D=5y

Because of the strong link between the hitting time T, and the approximation of the ruin probability,
every property of T also yields some insight into the ruin problem. Unfortunately, first hitting times
of Gaussian processes are rather complicated objects in the general case, but also for Brownian
motion (see Durbin 1985; Lerche 1986; and references therein).

In our approximation Brownian motion B corresponds to the case p = and hence one has to
consider the first hitting time of B with a square root boundary. We present some results for this
particular case.

Proposition 4.1 For every u, ¢ > 0 define T, = inf {1 = 0: B, = u + ¢4/}, then
T.=L,exp{2V.}
for independent L, and ¥, where
L,=inf{t>0: 8 =u}
is the first hirting time of u by Brownian motion and
Ve=inf{r=0:U,=¢}
is the first hitting time of ¢ by an Ornstein—Uhlenbeck process starting at zero.
Proof

Using the strong Markov property and the scaling property of Brownian motion we obtain for
independent Brownian motions B and B that

T.=inf{t>0: B, =u+cvit}

=L, +inf{t=0:B, ,,—u=c\/L,+1}
Lr,+inf{r>0:8 =cyL,+1}

=L, +inf{L,w20: By, = c/L,(1+v)}
1.0 +inf{v20:8,=cvI+e})
=L,(l+inf{e*—1>0:e7Ba_, =¢}).

Notice that
U=e Ba_, 520,

is an Ornstein—Uhlenbeck process with covariance function e™"**(e* — 1) for s < r and satisfies
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Uy =0 a.s. Hence
T.LL,exp2inf{s >0: U, =c}| =: L exp(2V,).
O

So the ruin problem can be reduced to first hitting time problems of Brownian motion and of an
Ornstein—Uhlenbeck process with constant boundaries. The distributions of the variables V. and L,
have been studied. For L, we refer to Revuz and Yor (1991) and for ¥, to Breiman (1967)
(Greenwood and Perkins 1983 give a detailed proof of the main result in Breiman 1967). We list
some of these resulis:

Lemma 4.2 L, is a-stable, with o = { and positive with density

1 H:
_}I—L*l:.rj—?elp{—a}. >0

¥, has an exponential tail, i.e. there exist constants ¢ > 0 and 5(¢) > 0 such that
PV, = x) ~ aexp {-2b(c) x}, X — oo

Moreover, b(c) is decreasing in ¢ with b{c) — 0 as ¢ — o, and b(c) — o as ¢ — (.

We also mention that the probability P(infy.,-, (¢/5— B,) < 1) in (4.3) can be given as the
solution to the heat equation with special boundary conditions. This allows for the numerical
calculation of this probability. For more details we refer to Klippelberg and Mikosch (1995).
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