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In this paper we establish the existence and uniqueness of a solution for different types of stochastic
differential equation with random initial conditions and random coefficients. The stochastic integral is
interpreted as a generalized Stratonovich integral, and the techniques used to derive these results are
mainly based on the path properties of the Brownian motion, and the definition of the Stratonovich
integral.
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1. Introduction

Suppose that W = {Wy, t € [0, 1]} is a standard Wiener process The trajectories of W do
not have bounded variation, and stochastic integrals such as fo ¢s(w) dWs(w) cannot be
defined pathwise. A natural approach to define stochastic integrals of non- adapted processes
(Nualart and Pardoux 1988) is to take the limit in probability of jo ¢SW ds, where
W= {W}, te[0, 1]} is a sequence of polygonal approximations of W. This definition
generalizes the Stratonovich integral in the case of adapted processes, but it is not easy to
obtain LP estimates for this type of integral unless the integrand is a continuous
semimartingale or it has bounded variation paths.

Using the techniques of the Malliavin calculus, one can decompose the Stratonovich
integral as the sum of the Skorohod integral (the adjoint of the derivative operator) plus a
complementary term expressed in terms of the trace of the derivative operator. Furthermore
it is possible to derive a change-of-variables formula for the Skorohod and Stratonovich
integrals (Nualart and Pardoux 1988; Russo and Vallois 1993).

The Stratonovich integral follows the rules of the ordinary calculus. This property can be
used to formulate and solve stochastic differential equations in the Stratonovich sense. In
the case of a random initial condition and constant coefficients, a solution of the form
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Xt = @¢(Xp) can be obtained as the composition of the stochastic flow ¢(x) associated
with the coefficients, with the initial condition Xo (Millet et al. 1992). In order to show the
uniqueness of this solution, and to handle the case of a random drift, Ocone and Pardoux
(1989) have established a generalized It6—Ventzell formula, using the techniques of the
Malliavin calculus. In the one-dimensional case this approach can be applied in connection
with Doss representation of the solution (Kohatsu-Higa and Ledn 1997).

In this paper, by means of a direct approach, we construct a solution for the following
types of stochastic differential equation with random coefficients, and we show the
uniqueness of this solution in the class of processes that are limits of the corresponding
approximated equations.

(i) In Section 2 we discuss one-dimensional stochastic differential equations with
random initial conditions and random coefficients using the approach introduced by Doss
(1977).

(if) Section 3 is devoted to the particular case where the diffusion coefficient is linear
but depends on the time variable.

(iii) Finally in Section 4 we consider two examples of anticipating multidimensional
Stratonovich stochastic differential equations that can be treated with our direct approach.
First we consider the case of non-random diffusion coefficient, random drift and random
initial condition. These equations have been treated by Ocone and Pardoux (1989) by the
technique of the stochastic calculus of variations. Secondly, we discuss the equations with
boundary conditions studied by Garnier (1995).

In the one-dimensional case (Sections 2 and 3) we shall suppose that the stochastic
differential equation is driven by a continuous local martingale. The proof of the main
results are based on the classical stochastic calculus and the definition of the Stratonovich
integral.

2. One-dimensional equations in the Stratonovich sense

Let Z={Z, t€[0, 1]} be a continuous semimartingale defined on a filtered probability
space (@, F, P, {F , t, € [0, 1]}) satisfying the usual conditions. Suppose that Z has a
canonical decomposition of the form

Zi= M+ A,
where M = {My, t€ [0, 1]} is a continuous local martingale such that My =0 and
(M) = jot msds, and A = {A, t € [0, 1]} is a continuous and bounded variation process.

Given a partition #={0=t<t;<...<t,=1} we introduce the polygonal
approximation of the martingale M associated with 7z by

t n-1
Mt' - Mt'
MY :J —lt Th e (s)ds.

t 0 ; ti+l — ti (tlvt|+1]( )

We shall make use of the following notion of stochastic integration with respect to M.
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Definition 2.1. Let Y ={Y, t€[0, 1]} be a measurable stochastic process such that
fé |Ys]ds<oo a.s. The Stratonovich integral of Y with respect to M, denoted by
o YsodMg, is the continuous stochastic process defined by

> e) =0,

lim P sup
|| 10 o<t<1

for all ¢ >0, where || = maXo<i<n_1 (tis1 — ti), and Mg stands for dMZ7/ds, provided that
this limit exists.

t t
JYSodMS—JYSM’S’ds
0 0

Consider the following stochastic differential equation:

t t
Xt:X0+J b(XS)dAS+JO(XS)OdMS! (2.1)
0 0

where Xq is a given random variable (we do not assume it to be F ¢ measurable). The
coefficients b, 0: Q X R — R are measurable functions verifying the following properties.

(i) For all w € Q and X, y € R we have
b(w, X) = b(w, y)| < K(w)[x -],

for some random variable K.
(ii) For all w € Q the mapping x — o(w, X) is of class Cﬁ (i.e., it has bounded and
continuous derivatives of first and second order).

By a solution of (2.1) we mean a continuous stochastic process X = {Xy, t € [0, 1]}
such that {o(X¢), t € [0, 1]} is Stratonovich integrable with respect to M in the sense of
Definition 2.1, and (2.1) holds for all t € [0, 1]. Under the above assumptions we can prove
the following result.

Theorem 2.2. Let Xy be a random variable and b, 0: @ X R — R measurable functions
verifying hypotheses (i) and (ii). Then there exists a solution X to (2.1).

Proof. We shall make use of the representation of the solution in the adapted case given by
Doss (1977). In order to simplify the notation we shall omit the dependence of the
coefficients on w. Let h(x, y) be the solution of

g—*;(x, y) = o (h(x, )

h(x, 0) = x.
Define f(x, y) = b(h(x, y))exp (— foya’(h(x, 2))dz). Note that

y
%(X, y) = exp (Lo’(h(x, z))dz).
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Let Y ={Y, t €[0, 1]} be the unique solution of
't
Yt == XO +J f(Ys, Ms)dAs.
0
Define X; = h(Yy, M¢) and X7 = h(Y;, MT) for any partition 7={0=to<t;<...
<ty =1} of [0, 1]. Clearly

lim sup |X;— X{| =0,
710 0<t<1

for all w € Q. The process X7 can be decomposed as follows:
t

X?=x0+j

o(x’;)l\'/l’;dSJrJlb(h(Ys, Ms))
0 0

VA
X exp (J a'(h(Ys, z))dz) dAs := Al + A2,

Ms

where
t .
Al = J o(XT)MZds
0

t t
= L{a(xg) —0(Xs)}MTds + Joa(xs)l\’/l’;ds .= Bl + B2

Using the fact that supg<s<i M7 — M| converges to zero as |n| tends to zero, we easily
deduce that

t
AZ <xo +J b(XS)dAS) ’ =0,
0

lim sup
[7]10 o<t<1

for all w € Q. As a consequence,

lim sup
710 o<t=<1

t
Al - (xt — Xo —J b(Xs)dAs>‘ =0,
0

for all w € Q. Hence, taking into account Definition 2.1, in order to show that the process X
satisfies (2.1) it only remains to prove that B} converges to zero in probability, uniformly in t,
as || tends to zero. We can write

O(X’Z) —0(Xs) = a(h(Ys, MZ)) —o(h(Ys, My))

= 0'0(X) (M7 = My) + 3{0(a")* + a0 "}(h(Ys, EHMT — M),
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where & belongs to the interval defined by M7 and M. We have

t
| o0 + a0y nre, ez - Moz s
0

t
< C(a))J IMT|(MT — M)?ds
0

t
<C(w) sup |M,— MV|J IM7|[MT — Mj| ds. 2.2)
0

|u—v|=||

The last factor in the above expression can be estimated as follows:

1 . t|1
J|M§||M’f M|ds<Z|AM|J ('AM|(S—t)+|Ms ,)ds
0

tj

n-1 n—-1
<Y IAMP Y sup (Ms— M) (2.3)
i=0 i—0 S€ltitial]

where Ajt = tiy1 — tj and AiM = My, — My,. As a consequence we deduce that

1
lim supP(J |M’S’|M§—Msds>K> =0.
Koo gz 0

Hence (2.2) converges to zero in probablllty, uniformly in t, as || tends to zero. Finally, the
convergence to zero of the term joo o(Xs) (M7 — MS)M”ds follows from Lemma 2.3
below. Il

Lemma 2.3. Let ® = {dy, t € [0, 1]} be a continuous stochastic process. Then

lim P sup >¢| =0,
|10 o<t=<1

Proof. Fix a partition 7 = {0 = to <t; < ... <t, =1} and consider the partition given by
sj=1j/m, 0= j=<m. We can make the following estimation:

t
J D(MT — Ms)M7 ds
0

for all ¢>0.

t . m-1 Sjr1At .
J(IDS(M’ST—MS)M’STds <) cpst (MT — Mg)MT ds
0 j=0 SjAt

+ i= Cy(t) + Ca(1).

m-1 SjriAt i
ZJ (D5 — D5 )(MT — Mg)MT ds
j=0

SjAt

We have that lim; ;o P(supo<t<1 [C1(t)| >¢) = 0 for all ¢>0. In fact,

SjriAt

SjriAt . .
J (M? — Mg)MZ ds = {(M? HM)Z—(M At)} J MsMZ ds.

SjAt SjAt

Then, applying a result of Yor (1977), and using the absolute continuity of the quadratic
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variation of (M), we deduce that fs'““ MsMZ ds converges in probability, uniformly in t as
|z| tends to zero, to

2{(Msj+1/\t)2 - (M?J-At)z}'
For the term C,(t) we have
1
Cald] = sup [, — | 7 — s a7 s,
[s—t|<1/m 0
and this converges to zero in probability, uniformly in t, as m tends to infinity, namely,
lim lim P( sup |C,(t)]>¢) =0,

m—oo[a||0  p<t<1

for all ¢>0, taking into account the estimate (2.3). ]

Using the same method of proof as in Theorem 2.2 one can deduce an It formula for
f(Xy), for f € C2 This remark is also valid for the equations to be studied in the
subsequent sections.

Now we shall state the conditions for uniqueness of solutions to (2.1). Let A be the set
of continuous processes X such that there exists an approximation sequence of processes
M™ with absolutely continuous trajectories, verifying the following properties.

(@ My — My for all t, as.
(b) The unique solution X" of the equation

t t
X = Xo +J b(X D) dAs +J a(XHM?ds,
0 0
converges to X for each t, a.s.

Theorem 2.4. Under the assumptions of Theorem 2.2, the solution to (2.1) is unique in the
class A.

Proof. It is not difficult to prove that X = h(Y{, M) where Y} satisfies
t
Y- x0+[ FYT, MDY dA.
JO

Using the particular expression for the function f and the convergences of X" and M" we
can show that there exists a random variable K; such that

(Yo, MDY — (YD, MDY < Kq|Ys— Y7|,  as.

Then from Gronwall’s lemma it follows that Y — Y for all t, a.s. Therefore, by definition of
A\ one has that X = h(Y, M) and therefore the uniqueness follows. O

In the multidimensional case, similar results can be obtained under the Frobenius
condition.
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3. An anticipating semilinear equation

In this section we study a semilinear equation that is different from the case studied in the
previous section. The equation we study here is

t t
Xt:X0+Jb(s, XS)dAS+JosX5odMS, (3.1)
0 0

where M is a continuous local martingale such that My =0 and (M) = jot msds, and Ais a
continuous bounded variated process. The coefficients b: Q X [0, 1] X R — R and
o: QX [0, 1] — R are measurable functions such that the following hold.

(H1) For all w € Q,s€[0, 1] and X, y € R we have

[b(w, s, X) = b(w, s, y)| < K(w)|x -],
Ib(w, s, 0)| < K(w),

for some random variable K.

(H2) o is Stratonovich integrable and the family of random variables

o]

where st runs over the set of all partitions of [0, 1], is bounded in probability, namely,
liMmk1oo SUPr P(|€x| > K) = 0.
>e> =0,

(H3)
t r X r .
J <J GsMg‘dS—J osodM5>arM’fdr
o\Jo 0

It is not difficult to see that, in the case when o is absolutely continuous and
fol |os|ds<oo, then the conditions (H2) and (H3) are satisfied. Now we define the class
where existence and uniqueness will be given. Let A be the class of continuous processes
X such that the following is true.

r r
J OSMZdS—J os0dMg \arM’r’|dr,
0

0

limP| sup
|z L0 o<t=<1

for all ¢>0.

(H4) oX is Stratonovich integrable, and

t S
lim lim P( J sXsexp (—J Oerdr)(M? — M?)ds
|10 |'| 1O 0 0

for any t € [0, 1] and ¢>0.

>e> =0, (3.2)

Theorem 3.1. Assume conditions (H1)—(H3). Then, there is a unique solution to (3.1) in the
class A . Furthermore this solution is given by

ot t t
X¢=exp (J Os odMs> Xo +J exp (J Os odMs) b(u, X,)dAy. (3.3)

0 0 u
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Proof. First, it is clear that X in (3.3) is well defined. In order to show that X belongs to the
class A and satisfies (3.1) we first claim that for any continuous process & =
{®s, s € [0, 1]} we have

t S S
J d)sos{exp (J orM’r’dr> —exp (J orodM,>}M’s’ds
0 0 0

for any ¢> 0. This follows by using a similar argument as in the proofs of Theorem 2.2 and
Lemma 2.3, using assumptions (H2) and (H3) and developing the exponential up to the
second order.

Let us now show the Stratonovich integrability of o X. Consider the approximation

t t S S u
Josxsl\'/l“;[ds: J g exp (J UrOer>{XO+J exp (—J oroer>b(u, Xu)dAu}I\'/I’;ds.
0 0 0 0 0

From (3.4) with

|10 ost<1

lim P< sup >e> =0, (3.4

S u
(D'[ = XO +J eXp <_J Or OdM r) b(U, XU)dAu
0 0
we get that
t
sup J 0sXsM7ds — BT
o<t<1|Jo

converges in probability to zero as |z| tends to zero, where

t S S u
BT = J osexp <J arM’,’dr){XoJr [ exp <—J aroer> b(u, Xu)dAU}M“;‘ds.
0 0 JO 0

Next one uses integration by parts to deduce that Jot asxsl\'/l’;ds converges in probability,
uniformly with respect to t to

t
Xt — Xo —J b(u, Xy)dAy.
0
This proof also shows that X satisfies (3.1).
Assuming that X satisfies (3.1), and ¢ X is Stratonovich integrable, let us show that (3.2)
holds. One can write, using integration by parts as well as (3.1),
t S
lim J gsXsexp <—J orM’r’dr) M7 ds
0

7|10 Jo

t s t
= J TsXsexp (—J O‘rM?df> M{ ds — Xo + X exp (—J asl\'/l“;’ds>
0 0 0

— Jlt exp (Jlsorl\'/l’r’ dr> b(s, Xs)dAs, (3.5)
0

0
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in the sense of the convergence in probability. Taking the limit as || tends to zero, and using
(3.3), one obtains (3.2).

Now we proceed with the proof of the uniqueness. For this, let X € A such that it
satisfies (3.1). As before the limit (3.5) holds. Finally, taking the limit as |zz| tends to zero
in both members of (3.5) and using (3.2) we deduce that X satisfies (3.3). O

4. Multidimensional Stratonovich equations

In this section we shall present two cases of multidimensional Stratonovich equations where
we can use the technique introduced in Section 2 in order to establish the existence and
uniqueness of a solution. We shall assume that W = {Wy, t € [0, 1]} is an m-dimensional
Wiener process defined on a filtered probability space (Q, F , P, {F , t € [0, 1]}).

4.1. STRATONOVICH EQUATIONS WITH RANDOM DRIFT AND INITIAL CONDITION

We shall deal with the case of a multidimensional Stratonovich stochastic differential
equation driven by W, where o is a deterministic function, the coefficients b and o depend on
the time variable, and b and Xy may be random. Consider the stochastic differential equation
in RY:

t m t
xt=x0+J b(s, xs)ds+ZJai(s, Xs) o dWi, (4.1)
0 i—1 J0

where X € L%(Q; RY), and b: Q X[0, 1] XR? - RY and o:[0, 1] X R? - RY, 1<
i < m are measurable functions. Ocone and Pardoux (1989) proved by means of a
generalized version of the 1td—Ventzell formula that (4.1) possesses a unique non-exploding
solution provided that X and b are smooth in the sense of Malliavin calculus. By a solution
of (4.1) we mean a d-dimensional continuous process X = {Xy, t € [0, 1]} such that
oi(s, Xs) is Stratonovich integrable with respect to W' in the sense of Definition 2.1, properly
extended to multidimensional processes, and (4.1) holds a.s. for all t € [0, 1]. Define

m(t, x) = %Z(%igi)(t, X).
i=1

Theorem 4.1. Assume that o'(t, -) € C3(RY, RY) for te[0,1],1<i<m, o'(t,-) has
bounded partial derivatives of first order and o'(t, 0) is bounded. Also suppose that
m(t, x) is Lipschitz in x uniformly with respect to t, b(w, t, x) is C* in x, o(t, X) is of class
Clint, and

(i) for all €>0, [b(w, t, X)| < C(L+ |x|*), for all (o, t, X) € Q X [0, 1] X RY;
(i) |(ObIAX)(@, 1, X)| < Ck(w), for all (@, t, x) € Q@ X [0, 1] X R¢ with |x| < K.

Then there exists a solution to (4.1).
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Proof. Let ¢(x) denote the flow defined by the adapted equation

t o .
000 = x + L""s' ps(9) 0 dW!

t ) t
=X +J a'(s, ps(x))dW ¢ +J m(s, @s(X))ds,
0 0

where we make the convention of summation over repeated indices. Under the hypothesis of
the theorem, ¢; is a C! diffeomorphism of RY and (Jp:/0x)~* exists. Let
Y ={Y, t € [0, 1]} be the unique solution of

dYt N (8<pt

-1
= 7&) (Yob(t, oi(Yy)),

Yo = Xo. 4.2)
Existence and uniqueness of a solution to (4.2) follows from the fact that
(091/0x) L (X)b(w, t, (X)) is C! in x and a.s. locally bounded together with its derivative
in x. The fact that the solution is global follows from the estimate

-1
’(ai> (b, t, @r())| < Kc(@)(L + [x[*™), for all t,

X
which can be deduced from our hypothesis as in the case of Ocone and Pardoux (1989,
p. 64).
Now we shall show the existence of a solution to (4.1). Define X:= ¢(Y:) and
X7 =07(Yt) where 1= {0=to<t; <...<t, =1} is a partition of [0, 1], and

t . o
o100 = X+ Joo'(s, ()WY ds. 4.3)
We have

i 1 , .
a(()ixt(Yt) (%) (Yob(t, i(Yo))dt + o'(t, (Y)W dt.

As (oT(X), (09T /Ox)(x)) converges to (¢i(X), (Opt/Ix)(x)) in probability uniformly for
(t, x) € [0, 1] X [-K, K]¢, for all K> 0, when || tends to zero, we then have that

XT — oY)

dX7 =

and
o7 acpt>1
W(Yt) <W (Yo) — |
in probability, uniformly in t € [0, 1]. Hence

t . . t
L“'(S' s ()WY ds — X — Xo — Lb(s’ 0s(Y2)) ds,

in probability, uniformly for t € [0, 1]. Ol
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The uniqueness is done in a similar way as in the one-dimensional case. For this let A
be the class of continuous processes X such that there exists an approximation sequence of
processes W " with absolutely continuous paths such that the following hold.

(@ W] — W for all t, as.
(b) The unique solution X" of the equation

t t

b(s, XQ)ds+J o'(s, XMWENds,

X?:Xo-l-J
0

0
converges to X for each t, a.s.

(©) (M(X), (Dl /0x)"1(x)) converges to (pi(X), (Dpt/dx)~1(x)) uniformly in t and for x
in compacts. Here ¢ is defined through (4.3) using W" instead of W7,

Note that for any refining sequence {m,} of partitions of [0, 1] such that |z, | 0, W7
satisfies properties (a) and (c) above if ¢ and b are three times differentiable with Lipschitz
derivatives as can be seen in Kunita (1990, Section 5.7).

Theorem 4.2. Under the assumptions of Theorem 4.1, there is a unique solution to (4.1) in
the class A.

Proof. The proof in this case is similar to the one-dimensional case. It is not difficult to see
that X" = @"(Y ") where Y " solves (4.2) with ¢ replaced by ¢". Using properties (b) and (c)
above, it follows that the solution has to be unique. O

4.2. STOCHASTIC DIFFERENTIAL EQUATIONS WITH BOUNDARY CONDITIONS

We shall use our techniques to prove existence and uniqueness for stochastic differential
equations with boundary conditions of the type

t t
X¢ = Xo +J b(Xs)ds + [ o (Xs) o dWs,
0 JO

Vo = HoXo + H1 X4, (44)

where Hg and H; are d X d matrices. This type of equation has been recently studied by
Garnier (1995) using a stochastic embedding method. To introduce the hypotheses under
which we prove existence, we need to define ¢(x) as the flow associated with (4.4). Also
define  Z(t, xX) = H1(0/0X)@:((Ho + H1)™*x) + Ho(Ho + Hi)™t. Subsequently we shall
assume the following.

(H) The functions b, o: R — RY are three times differentiable with uniformly bounded
and continuous partial derivatives. Furthermore assume that there exists a positive constant
a such that |det Z(t, x)| = a for all (t, x) € [0, 1] X RY, almost surely.
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Theorem 4.3. Assume condition (H). Then there exists a solution to (4.4) given by
¢ot((Ho + H1)~1V(1)), where V is the unique solution of the following adapted stochastic
differential equation:

t
Vi= Vo L(Z*lHlb(m«Ho +HY L)), Ve ds

t
_ L(Z*Hla(w«Ho + HY L)), Vs) o dWs. (4.5)

Proof. First we want to check that the boundary condition is satisfied. For this it is enough to
see Lemma 1 in Garnier (1995). Now we prove that (4.4) holds. For this we shall need the
following evaluation formula:

t t
J otos0n o aWslcx, = | otostxa o aw, (4.6)
where X is a random variable that belongs to LP(2) for some p > 1. This formula is proven,
for instance, in Theorem 5.3.3 and Theorem 6.1.1 of Nualart (1997).

Therefore to finish the proof we only need to prove that V(1) € LP(Q) for some p>1.
This is obtained using standard LP estimation methods in (4.5). In particular we need to use
the fact that |det Z~(t, x)| < a uniformly for (t, x). From here, the existence follows.

[

For uniqueness we define as before a class A of continuous processes such that there
exists an approximation with almost surely absolutely continuous paths W" such that the
following hold.

(@ W] — W, for all t, as.
(b) The unique solution X" of the equation

t t
XD — X0 +J b(xg)ds+J o (XTW! ds,
0 0

Vo = H()XS + Hl)(:rL1

converges to X for each t, a.s.
(©) @R(x), (Op]/0x)(x)) converges to (@i(X), (Opi/OX)(x)) uniformly in t and for x in
compacts. Here ¢ is a flow that is defined through (4.4) using W" instead of W.

In assumption (b) one is supposing that the equation has a unique solution. Conditions
for (c) to be satisfied have been thoroughly studied in recent years (see, for example, lkeda
and Watanabe 1981).

As in the case of the Ocone—Pardoux equation, it is not difficult to see that W7n satisfies
the above conditions (a) and (c), for any refining sequence {z,} of partitions of [0, 1] such
that |,| | O, considering the results obtained by Gydngy (1987).
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Theorem 4.4. Assume condition (H ). Then there is a unique solution to (4.4) in the class
A

Proof. The proof here is similar to the previous uniqueness proofs. Here we have that by (c)
it is enough to prove that X{ — X, a.s. To obtain this result it is enough to apply Lemma 6,
Section 5.2, in Garnier (1995).
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