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We consider the problem of stationary distribution function estimation at a given point by the

observations of an ergodic diffusion process on the interval [0, T ] as T !1. First we introduce a

lower (minimax) bound on the risk of all estimators and then we prove that the empirical distribution

function attains this bound. Hence this estimator is asymptotically ef®cient in the sense of the given

bound.
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1. Introduction

We consider the problem of estimation of a one-dimensional distribution function F(x) by the

observation of a diffusion process fX t, 0 < t < Tg as T !1. We suppose that the process

X t, t > 0, possesses ergodic properties with invariant measure P� and F(x) � P�((ÿ1, x]).

We introduce a lower (minimax) bound on the risks of all estimators, then we de®ne the

asymptotically ef®cient estimators as estimators attaining this bound, and ®nally we show that

the empirical distribution function is asymptotically ef®cient in this problem. The same

program was already realized for several other models of observations. For independent

identically distributed random variables this was done by Dvoretsky et al. (1956) see also

Millar 1983, section VIII, and references therein); then Penev (1991) proved the asymptotic

ef®ciency of the empirical distribution function for exponentially ergodic Markov chains with

state space [0, 1] (the more general case was treated by van der Vaart and Wellner 1990) and

further generalizations were given by Greenwood and Wefelmeyer (1995). The difference

between these results lies in the types of model, the regularity conditions and the choice of

the de®nitions of asymptotic optimality, and common to all of them is the possibility of n1=2-

consistent estimation of the underlying distribution. An exhaustive description of such

situations has been given in Bickel et al. (1993). Our statement of the problem can be termed

semi-parametric because we estimate the one-dimensional parameter ô � F(x), i.e., the value

of the unknown function at one point x only (Bickel 1993, p. 59).

The diffusion process X t, t > 0, is supposed to be a solution of the stochastic differential

equation

dX t � S(X t) dt � ó (X t) dW t, X 0 � x0, 0 < t < T , (1)
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where fW t, t > 0g is the standard Wiener process. The trend coef®cient S(:) is unknown to

the observer and the diffusion coef®cient ó (:)2 is a known positive function. Recall that the

diffusion coef®cient can be estimated without error by the observation of (1) (see, for

example, Genon-Catalot and Jacod 1994).

We suppose that the functions S(:) and ó (:) satisfy the global Lipschitz condition

jS(x)ÿ S(y)j � jó (x)ÿ ó (y)j < Ljxÿ yj;
so (1) has a unique strong solution (see, for example, Liptser and Shiryayev (1977, Theorem

4.6). This condition will not be used directly; so any other condition providing that property

of the solution can replace the given one. We assume for simplicity of exposition that the

functions S(:) and ó (:) are continuous.

We suppose that � y

0

S(v)

ó (v)2
dv! ÿ1, as jyj ! 1,

and the condition

G(S) � G �
�1
ÿ1

ó (y)ÿ2 exp 2

� y

0

S(v)

ó (v)2
dv

� �
dy ,1

are ful®lled. The class of such functions S(:) we denote by È. These conditions provide the

existence of a stationary distribution

F(x) � G(S)ÿ1

�x

ÿ1
ó (y)ÿ2 exp 2

� y

0

S(v)

ó (v)2
dv

� �
dy

for the diffusion process (1) (Mandl 1968). Under this condition the random process X t,

t > 0, has ergodic properties, i.e., for any measurable function g(:) with Ejg(î)j,1 (î has

F(:) as distribution function)

P lim
T!1

1

T

�T

0

g(X t) dt � Eg(î)

 !
� 1

(Mandl 1968, p. 93).

Below we are interested in the problem of nonparametric (S(:) is unknown) estimation of

the function F(x). The empirical distribution function (EDF)

F̂T (x) � 1

T

�T

0

÷fX t , xg dt (2)

is a natural estimator of the function F(x). Recall that the EDF

F̂n(x) � 1

n

Xn

j�1

÷fX j , xg

in the case of independent identically distributed observations fX 1, . . . , X ng is uniformly

consistent, asymptotically normal and asymptotically ef®cient. In this paper it is shown that

for the ergodic diffusion process (1) the EDF (2) has similar properties.
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The density function will be denoted as

f (y) � G(S)ÿ1ó (y)ÿ2 exp 2

� y

0

S(v)

ó (v)2
dv

� �
: (3)

2. Lower bound

To derive the lower minimax bound we shall follow the same approach which was applied in

the density estimation problem for this model of observations by Kutoyants (1995). The idea

of approximating this nonparametric bound by a family of bounds for parametric families and

then choosing the worst parametric family was suggested by Stein (1956) and was realized by

Levit (1973), and Koshevnik and Levit (1976) (see also the monographs by Ibragimov and

Khasminskii 1981, Chapter 4 and Bickel et al. 1993, Chapter 3). In the present work we take

the same approach.

So as in the work of Kutoyants (1995) we ®x some function S(:) 2 È and suppose that

the observed process is

dX t � [S(X t)� H(X t)] dt � ó (X t) dW t, X0 � x0, 0 < t < T , (4)

where H(:) is such that S(:)� H(:) 2 È. Introduce the set

Uä � fH(:): sup
x2R

jH(x)j < ä, S(:)� H(:) 2 Èg

and denote by fP(T )
H , H(:) 2 Uäg the corresponding family of measures P

(T)
H induced by the

process (4) in the space C [0, T ] of continuous functions on [0, T ]. The mathematical

expectation with respect to this measure will be denoted by E H. Further consider the

distribution function

FH (x) � G(S � H)ÿ1

�x

ÿ1
ó (y)ÿ2 exp 2

� y

0

S(v)� H(v)

ó (v)2
dv

� �
dy,

with corresponding normalizing constant G(S � H) and put

I� � 4E
F(î ^ x)f1ÿ F(î _ x)g

ó (î) f (î)

� �2
( )ÿ1

, (5)

where î ^ x � min (î, x) and î _ x � max (î, x). Introduce the set

È� � fS(:): sup
H(:)2Uä

G(S � H) ,1, S(:) 2 Èg:

The set È� is not empty. For example, if ó (:) � 1 and S(y) sgn y < ÿã� for all large values

of jyj with some ã�. 0 then S(:) 2 È� for any ä, ã�.
We suppose that the loss function l (:) has the following `usual' properties:

l (y, z) � l (yÿ z), y, z 2 R; l (:) is non-negative on R; l (0) � 0 is continuous at z � 0

but is not identically 0; l (:) is symmetric and non-decreasing on R�; ®nally the function

l (z) grows as z!1 more slowly than any one of the functions exp (åz2), å. 0 (see, for

example, Ibragimov and Khasminskii 1981).
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Theorem 1. Let S(:) 2 È� and I�. 0; then

lim
ä!0

lim
T!1

inf
FT

sup
H(:)2Uä

E H l [T 1=2fFT (x)ÿ FH (x)g] >
1

(2ð)1=2

�1
ÿ1

l (xI
ÿ1=2� ) eÿx2=2 dx, (6)

where inf is taken over all possible estimators FT (x).

Proof. The supremum on Uä is estimated from below by supremum on some parametric

family with a special parametrization passing through the model with S(:). For this parametric

model we apply the Hajek±Le Cam inequality, then maximize the right-hand side of the last

inequality and ®nd the worst parametric family (with minimal Fisher information). This last

quantity (risk) is just the right-hand side of (6).

Let us introduce the parametric family of functions

Sh(x) � S(x)� (hÿ ô)ø(x)ó (x)2,

where h 2 (ôÿ ã, ô� ã), ã. 0, and the function ø(:) has a compact support, Sh(:) 2 È.

Then, for small ã,

(hÿ ô)ø(x)ó (x)2 2 Uä:

The corresponding family of stochastic differential equations is

dX t � [S(X t)� (hÿ ô)ø(X t)ó (X t)
2] dt � ó (X t) dW t, X0 � x0, 0 < t < T , (7)

with h 2 (ôÿ ã, ô� ã) and the corresponding family of measures is fP(T )
h ,

h 2 (ôÿ ã, ô� ã)g. We can consider the problem of the estimation of h based on

observation of (7). In our assumptions the stochastic process (7) has also the ergodic

properties if h � ô; hence the family of measures fP(T )
h , h 2 (ôÿ ã, ô� ã)g is locally

asymptotically normal at the point h � ô, i.e., the likelihood ratio admits the representation

(see, for example, Kutoyants 1984, Theorem 3.3.8)

dP
(T )

ô�T ÿ1=2 u

dP(T )
ô

(X ) � exp uÄT ÿ u2

2
Iø � rT

� �
,

where u 2 R,

Iø �
�1
ÿ1

ø(x)2ó (x)2 f (x) dx, Pô ÿ lim
T!1

rT � 0,

ÄT � Tÿ1=2

�T

0

ø(X t)ó (X t) dW t, L ôfÄTg ) N (0, Iø):

Thus by the Hajek±Le Cam inequality

lim
ä!0

lim
T!1

inf
hT

sup
jhÿôj, ä

Ehl fT 1=2(hT ÿ h)g > El (æI
ÿ1=2
ø ), (8)

with æ � N (0, 1) and, as was noted by Ibragimov and Khasminskii (1981, p. 217), the

difference hT ÿ h can be replaced by hT ÿ h� o(jhÿ ôj) without changing the right-hand

side of (8).
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We put

Fh(x) � Gÿ1
h

�x

ÿ1
ó (y)ÿ2 exp 2

� y

0

S(v)

ó (v)2
dv� 2(hÿ ô)

� y

0

ø(v) dv

� �
dy:

The function ø(:) has a compact support; hence we can expand Fh(:) in powers of hÿ ô in

the vicinity of the point ô and obtain

Fh(x) � F(x)� 2(hÿ ô)

�x

ÿ1

� y

0

ø(v) dv f (y) dyÿ F(x)

�1
ÿ1

� y

0

ø(v) dv f (y) dy

� �
� o(jhÿ ôj)

� F(x)� 2(hÿ ô)Ef[÷fî, xg ÿ F(x)]Ø(î)g � o(jhÿ ôj),
where î as before has the distribution function F(:) and

Ø(î) �
�î

0

ø(y) dy:

Let us put ô � F(x), ôh � Fh(x) and introduce the class K of functions ø(:) satisfying the

equality

Ef[÷fî, xg ÿ F(x)]Ø(î)g � 1
2
:

Then for ø(:) 2K we have the expansion

Fh(x) � F(x)� 2(hÿ ô)Ef[÷fî, xg ÿ F(x)]Ø(î)g � o(jhÿ ôj)
� h� o(jhÿ ôj)

or ôh � h� o(jhÿ ôj). Let the function ø(:) 2K then

sup
H(:)2Uä

E H l [T 1=2fFT (x)ÿ FH (x)g] > sup
jhÿôj, ã

Ehl [T 1=2fFT (x)ÿ Fh(x)g]

� sup
jhÿôj, ã

Ehl [T 1=2fhT ÿ hÿ o(jhÿ ôj)g],

where hT � FT (x) is an arbitrary estimator of h. So we can choose ã � ã(ä)! 0 as ä! 0

in such a way that for any estimator FH (x)

lim
ä!0

lim
T!1

sup
H(:)2Uä

E H l [T 1=2fFT (x)ÿ FH (x)g]

> lim
ã!0

lim
T!1

sup
jhÿôj, ã

Ehl [T 1=2fhT ÿ hÿ o(jhÿ ôj)g]

>
1

(2ð)1=2

�1
ÿ1

l (xI
ÿ1=2
ø ) eÿx2=2 dx:

The last integral is a monotonically decreasing function of Iø � Eø(î)2ó (î)2; hence to ®nd

the worst parametric family (de®ned by ø(:)) we have to minimize Iø on the class K .
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Fubini's theorem allows us to write

Ef[÷fî, xg ÿ F(x)]Ø(î)g �
�x

ÿ1
f1ÿ F(x)gØ(y) f (y) dyÿ F(x)

�1
x

Ø(y) f (y) dy

� fF(x)ÿ 1g
�0

ÿ1

�0

ÿ1
÷(v> ygø(v) f (y) dv dy

� f1ÿ F(x)g
�x

0

�x

0

÷fv , ygø(v) f (y) dv dy

ÿ F(x)f1ÿ F(x)gØ(x)ÿ F(x)

�1
x

�1
x

÷fv , ygø(v) f (y) dv dy

� fF(x)ÿ 1g
�x

ÿ1
ø(v)F(v) dvÿ F(x)

�1
x

ø(v)f1ÿ F(v)g dv

�
�1
ÿ1

ø(v)[fF(x)ÿ 1gF(v)÷fv , xg � fF(v)ÿ 1gF(x)÷fv>xg] dv:

The function ø(:) belongs to the class K hence by the Cauchy±Schwarz inequality

1
4
� [Ef÷fî, xg ÿ F(x)gØ(î)]2

�
�1
ÿ1

ø(v)fF(v _ x)ÿ 1gF(v ^ x) dv

� �2

<

�1
ÿ1

ø(v)2ó (v)2 f (v) dv

�1
ÿ1

[fF(v _ x)ÿ 1gF(v ^ x)]2

ó (v)2 f (v)
dv

� Eø(î)2ó (î)2E
fF(î _ x)ÿ 1gF(î ^ x)

ó (î) f (î)

� �2

:

Therefore

Iø > 4E
f1ÿ F(î _ x)gF(î ^ x)

ó (î) f (î)

� �2
( )ÿ1

� I�

for all ø(:) 2K and we obtain the equality for the function

ø�(v) � C

ó (v)2 f (v)
f1ÿ F(v _ xgF(v ^ x),

with some constant C . 0. This function does not have compact support but we can introduce

a sequence øN� (v) � ø�(v)÷fjvj, Ng, N !1 to obtain (6). u
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The inequality (6) suggests that we introduce the following de®nition of asymptotically

ef®cient estimator.

De®nition. Let the conditions of Theorem 1 be ful®lled then we say that the estimator F�T (x)

is locally asymptotically minimax (LAM) for the loss function l (:) if for any x 2 R

lim
ä!0

lim
T!1

sup
H(:)2Uä

E H l [T 1=2fF�T (x)ÿ FH (x)g] � El (æI
ÿ1=2� )

where L (æ) � N (0, 1).

We shall show below that for the polynomial loss functions l (:) the EDF is LAM.

3. Empirical distribution function

By the law of large numbers the EDF is a consistent estimator of the value F(x) and even

uniformly consistent.

Theorem (Glivenko±Cantelli).

Pf lim
T!1

sup
x

jF̂T (x)ÿ F(x)j � 0g � 1:

Proof. The proof is well known and coincides with the proof of this theorem in the i.i.d.

case. u

The normed difference

WT (x) � T 1=2[F̂T (x)ÿ F(x)] � 1

T 1=2

�T

0

f÷fX t , xg ÿ F(x)g dt

is asymptotically normal by the following central limit theorem.

Lemma 1. Let the integrals

Eh(î) �
�1
ÿ1

h(y) f (y) dy � 0

and

0 , 4G

�1
ÿ1

h(y)

�0

y

� s

ÿ1
h(z) f (z) p(s) f (y) dz ds dy � D(h, h) ,1,

where

p(s) � exp ÿ2

� s

0

S(v)

ó (v)2
dv

� �
converge absolutely; then
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L
1

T 1=2

�T

0

h(X t) dt

( !
) N (0, D(h, h)): (9)

Proof. For the proof see Mandl (1968, pp. 93 and 94) (see also Lanska 1979 for this

formulation). u

Hence the EDF is a uniformly consistent and asymptotically normal estimator of the one-

dimensional distribution function F(x). Below we calculate its limit variance and compare

with the bound (6).

By Lemma 1 the limit variance of WT (x) is D(hx, hx) with

hx(y) � ÷f y , xg ÿ F(x)

This quantity is calculated in the Appendix and is equal to

D(hx, hx) � 4E
f1ÿ F(î _ x)gF(î ^ x)

ó (î) f (î)

� �2

� Iÿ1� :

Therefore, if the convergence is uniform, then the EDF is LAM for the bounded loss

functions.

Remark. The central limit theorem (9) was proved by Mandl (1968) with the help of the

central limit theorem for sums of independent identically distributed random variables and

the conditions of uniform asymptotic normality for such sums can be found in Ibragimov and

Khasminskii (1981, Appendix 1).

The asymptotic ef®ciency of the EDF can be also proved for the polynomial loss

functions l (u) � juj p with p > 2. To show this we shall use another form of Lemma 1 and

we have to strengthen the conditions.

Let us introduce the functions

I�(H) � 4 f H (x)2E H

FH (î ^ x)ÿ FH (x)FH (î)

ó (î) f H (î)

� �2
( )ÿ1

and

g(y) � 2

� y

ÿ1

FH (v ^ x)ÿ FH (v)FH (x)

ó (v)2 f H (v)
dv

and introduce the following condition.

(C1) There exists a number p�. 2 such that

sup
H(:)2Uä

E H jg(î)j p� ,1,

sup
H(:)2Hä

E H

FH (î ^ x)ÿ FH (î)FH (x)

ó (î) f H (î)

� � p�
,1
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and the law of large numbers

PH ÿ lim
T!1

1

T

�T

0

FH (X t ^ x)ÿ FH (x)FH (X t)

ó (X t) f H (X t)

� �2

dt � I�(H)ÿ1

is uniform on H(:) 2 Uä.

Theorem 2. Let the condition (C1) be ful®lled, and let S(:) 2 È�, I�. 0 and I�(H) be

continuous at the point H(:) � 0; then the EDF F̂T (x) is LAM for the loss functions

l (u) � juj p with p , p�.

Proof. By the ItoÃ formula we have

1

T 1=2

�T

0

[÷fX t , xg ÿ FH (x)] dt � g(X T )ÿ g(X0)

T 1=2
ÿ 2

T 1=2

�T

0

FH (X t ^ x)ÿ FH (X t)FH (x)

ó (X t) f H (X t)
dW t:

The last stochastic integral is, by condition (C1), asymptotically normal, uniformly on

H(:) 2 Uä:

2

T 1=2

�T

0

FH (X t ^ x)ÿ FH (X t)FH (x)

ó (X t) f H (X t)
dW t ) N (0, I�(H)ÿ1)

(Kutoyants 1984, Theorem 3.3.3) and the random variables çT (x) �
l [T 1=2fF̂T (x)ÿ FH (x)gj] are uniformly integrable; for any p , p�,

sup
T , H(:)2Uä

E H jçT (x)j p�= p < C1Tÿ p�=2E Hfg(X T )� g(X 0)g p�

� C2Tÿ1E H

�T

0

FH (X t ^ x)ÿ FH (X t)FH (x)

ó (X t) f H (X t)

� � p�
dt < C:

Therefore

sup
H(:)2Uä

E H l [T 1=2fF̂T (x)ÿ FH (x)g ! sup
H(:)2Uä

El fæI�(H)ÿ1=2g,

and the LAM of EDF now follows from the continuity of I�(H). u

4. Concluding remarks

It is interesting to have the similar lower bound for loss functions such as

l (supx T 1=2 F̂T (x)ÿ F(x)j) and to prove the LAM of EDF in this situation as was done in

i.i.d. case.

Another problem closely related with this model of observations is the density function

f (x) estimation. As was shown by Castellana and Leadbetter (1986) the rate of convergence

Ef®ciency of empirical distribution 453



of kernel-type estimators is T 1=2. It can be shown that the lower bound is similar to that

given above in (6) but with

I� � 4 f (x)2E
÷fî. xg ÿ F(î)

ó (î) f (î)

� �2
( )ÿ1

and the kernel-type estimators as well as an unbiased estimator

f �T (x) � 2

Tó (x)2

�T

0

÷fX t , xg dX t

of the density are LAM in this problem (Kutoyants 1995).

All these results, including those given in the present paper, were given (without detailed

proofs) in Kutoyants (1996).

Appendix

Below we calculate the limit variance D(hx, hx) of EDF F̂T (x) as follows. First we have� s

ÿ1
hx(z) f (z) dz � F(s ^ x)ÿ F(s)F(x):

Then

D(hx, hx) �4

�x

ÿ1
f1ÿ F(x)g2

�0

y

F(s)

ó (s)2 f (s)
ds f (y) dy

ÿ 4F(x)

�1
x

f (y)

�0

y

F(s ^ x)ÿ F(s)F(x)

ó (s)2 f (s)
ds dy,

because

Gp(s) � ó (s)ÿ2 f (s)ÿ1

and for all y , x in the ®rst integral we have s ^ x � s.

Exchanging the order of integration we obtain�x

ÿ1
f (y)

�0

y

F(s)

ó (s)2 f (s)
ds dy �

�0

ÿ1
f (y)

�0

ÿ1
÷fs> yg

F(s)

ó (s)2 f (s)
ds dy

ÿ
�x

0

f (y)

�x

0

÷fs , yg
F(s)

ó (s)2 f (s)
ds dy

�
�0

ÿ1

F(s)2

ó (s)2 f (s)
dsÿ

�x

0

F(s)fF(x)ÿ F(s)g
ó (s)2 f (s)

ds
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and �1
x

f (y)

�0

y

F(s)F(x)ÿ F(s ^ x)

ó (s)2 f (s)
ds dy

�
�1

x

f (y)

�x

0

F(s)f1ÿ F(x)g
ó (s)2 f (s)

ds�
� y

x

F(x)f1ÿ F(s)g
ó (s)2 f (s)

ds

� �
dy

� f1ÿ F(x)g2

�x

0

F(s)

ó (s)2 f (s)
ds� F(x)

�1
x

f1ÿ F(s)g2

ó (s)2 f (s)
ds:

Therefore

D(hx, hx) � 4f1ÿ F(x)g2

�x

ÿ1

F(s)2

ó (s)2 f (s)
ds� 4F(x)2

�1
x

f1ÿ F(s)g2

ó (s)2 f (s)
ds

� 4

�1
ÿ1

F(s ^ x)2f1ÿ F(s _ x)g2

ó (s)2 f (s)
ds

� 4E
f1ÿ F(î _ x)gF(î ^ x)

ó (î) f (î)

� �2

� Iÿ1� :
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