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We establish some strong limit theorems for the longest excursion lengths of a Bessel process of

dimension d 2 (0, 2). In the special case d � 1, we recover and improve some well-known results for

Wiener processes, and solve an open problem raised. The proof relies on exact distributions evaluated

by Pitman and Yor and on a careful analysis of the Bessel sample paths.
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1. Introduction

Let fR(t); t > 0g be a Bessel process of dimension 0 , d , 2, starting from 0 (in the

particular case d � 1, R becomes a re¯ecting Wiener process). For notational convenience,

we write throughout the paper í � í(d) � (d ÿ 2)=2, which in Bessel language stands for the

`index' of R (cf. Revuz and Yor 1994, Chapter XI). For any t . 0, de®ne Ëÿ(t) �
sup fs < t: R(s) � 0g and Ë�(t) � inf fs > t: R(s) � 0g, which represent respectively the

left and right extremities of the excursion interval straddling t. We are interested in

V1(t) > V2(t) > � � � > Vn(t) > � � �, (1:1)

the ordered excursion lengths of R over (0, t), the last zero-free interval (Ëÿ(t), t) being

considered as an (incomplete) excursion interval. Discussions on excursion intervals

excluding (Ëÿ(t), t) are postponed to Section 5.

A remarkable development (Pitman and Yor 1992; 1997) in the study of ordered

excursion lengths is that for any ®xed positive numbers r, s and t and any integer k > 1,

V1(t)

t
,

V2(t)

t
, � � �

� �
�(d) V1(ô(s))

ô(s)
,

V2(ô(s))

ô(s)
, � � �

� �
, (1:2)

V1(t)

t
,

V2(t)

t
, � � �

� �
�(d) V1(H k(r))

H k(r)
,

V2(H k(r))

H k(r)
, � � �

� �
, (1:3)

where `�(d)
' stands for identity in distribution, ô is the right-continuous inverse process of the

local time (in the sense of diffusion) of R at 0, and H k(r) � inf ft . 0: Vk(t) � rg is the ®rst
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hitting time of r by Vk. These identities in law, which bear similarities to Paul LeÂvy's

celebrated arcsine laws, con®rm random scaling properties for `nice' clocks ± a feature we

shall exploit later. On the other hand, since ô is a stable subordinator of index jíj (i.e. a non-

decreasing jíj-stable process with independent increments; cf. Molchanov and Ostrovski

1969), the study in distribution of the Vk is closely related to that of ranked jumps of stable

subordinators. The latter has been the subject of considerable interest in the literature, with

various motivations; see the references in Perman et al. (1992). Let us also mention recent

applications of ordered Brownian excursion lengths in ®nancial mathematics (Chesney et al.

1997).

Following CsaÂki et al. (1985), this paper is concerned with sample path properties of the

longest lengths of the excursions.

Let us ®rst consider t 7! Pk
j�1V j(t), the sum of the k longest excursion lengths.

Theorems 1.1 and 1.2 below characterize respectively the upper and lower functions of this

process. Throughout the paper, `i.o.' stands for `in®nitely often' as the appropriate index

tends to 1.

Theorem 1.1. Let k > 1 and let ö. 0 be a non-decreasing function. Then

P
Xk

j�1

V j(t) . t 1ÿ 1

ö(t)

� �
; i:o:

24 35 � 0

1

�
,
�1 dt

t(ö(t))jíj
,1
�1

�
:

Theorem 1.2. For any ®xed k > 1 and non-decreasing function ø. 0,

P
Xk

j�1

V j(t) ,
t

ø(t)
; i:o:

24 35 � 0

1

�
,
�1 dt

t
ø(t) exp (ÿkãø(t))

,1
� 1

�
,

where ã � ã(d) is the unique positive number such thatX1
n�1

ãn

n!(nÿ jíj) �
1

jíj :

Remarks. (i) Taking d � k � 1 in Theorems 1.1 and 1.2, we recover respectively the Chung±

ErdoÈs (1952) and CsaÂki±ErdoÈs±ReÂveÂsz (1985) tests for the longest excursion of a Wiener

process. For d � 1 and arbitrary k, Theorem 1.2 improves the following iterated logarithm

law established in CsaÂki et al. (1985):

lim inf
t!1

log log t

t

Xk

j�1

V j(t) � kã a:s:

The somewhat intricate constant ã appears naturally in Section 3.

(ii) Clearly Theorems 1.1 and 1.2 (as well as the forthcoming Theorems 1.3, 1.4 and 5.1)

hold for all processes having the same zeros of a d-dimensional Bessel process.
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In order to obtain a more complete description of the excursion lengths, CsaÂki et al. (1985)

raise the problem of characterizing the set of those non-decreasing functions ö for which

P V2(t) >
t

2
1ÿ 1

ö(t)

� �
; i:o:

� �
� 1:

We solve this problem for all the Vk .

Theorem 1.3. If k > 2 and if ö. 0 is non-decreasing, we have

P Vk(t) >
t

k
1ÿ 1

ö(t)

� �
; i:o:

� �
� 0

1

�
,
�1 dt

t(ö(t))(1�jíj)kÿ2

,1
� 1

�
:

Finally, we complete the image of the limiting behaviours of the Vk with an integral test

which characterizes the lower functions.

Theorem 1.4. Assume k > 2 and ø. 0 non-decreasing. Then

P Vk(t) ,
t

ø(t)
; i:o:

� �
� 0

1

�
,
�1 dt

t(ø(t))jíj
,1
� 1

�
:

Remark. Despite the resemblance, Theorem 1.3 is of a different nature than the other

theorems presented above, and its proof needs more care.

The rest of the paper is organized as follows. Theorem 1.3 is proved in Section 2.

Section 3 is devoted to the study of the upper and lower tails of
Pk

j�1V j(t) and Vk(t). The

proofs of Theorems 1.1, 1.2 and 1.4 are provided in Section 4. The situation of completed

excursion lengths is discussed in Section 5.

2. Proof of Theorem 1.3

Unless stated otherwise, k > 2 denotes a ®xed integer in this section. The key ingredient in

the proof of Theorem 1.3 is the following `minimal inequality'. Recall that H k is the inverse

process of Vk .

Lemma 2.1. There exists a constant C > 1 depending only on k and d such that for any

0 , x , 1=k,

Cÿ1x(jíj�1)kÿ2 < P inf
H k (1)< t< H k (2)

1

k
ÿ Vk(t)

t

� �
, x

" #
< Cx(jíj�1)kÿ2: (2:1)

Before we continue, some comments on notation are necessary. First, in the rest of the

paper, C > 1 denotes a ®nite constant. Its value, which may change from line to line,

depends only on k and on the underlying dimension d. Second, a(x) � b(x) (x! x0) means
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limx!x0
a(x)=b(x) � 1. Third, a(x) � b(x) (x! x0) means 0 , lim inf x!x0

a(x)=b(x) <
lim supx!x0

a(x)=b(x) ,1.

The proof of Lemma 2.1 relies on some exact distributions evaluated by Pitman and Yor

(1997, Propositions 7 and 10), stated as follows.

Fact 2.2 (Pitman and Yor 1997). Let fVn(1)gn>1 be as in (1.1). Then

Vn�1(1)

Vn(1)

� �
n>1

is a sequence of independent variables it such that Vn�1(1)=Vn(1) has the Beta(njíj, 1)

distribution: (2:2)

Furthermore, de®ning for n > 1 (
P0

1 � 0)

În �
X1

j�n�1

V j(1)

Vn(1)
and Õn �

Xnÿ1

j�1

V j(1)

Vn(1)
ÿ 1

� �
,

we have

E exp (ÿèÎn) � 1� jíj
�1

0

zÿjíjÿ1(1ÿ eÿèz)dz

 !ÿn

, (2:3a)

E exp (ÿèÕn) � jíj
�1

0

(1� z)ÿjíjÿ1eÿèzdz

� �nÿ1

, è > 0: (2:4a)

Remarks. (i) Elementary computations using (2.3a) and (2.4a) yield, for each ®xed n > 1,

E exp (ÿèÎn) � (Ã(1ÿ jíj))ÿnèÿnjíj, (2:3b)

E exp (ÿèÕn) � jíjnÿ1èÿ(nÿ1), è!1: (2:4b)

(ii) By de®nition and (2.2), it immediately follows that

1

Vn(1)
� n�Õn � În, n > 1, (2:5)

1

Vn(1)
ÿ 1 �

Xnÿ1

j�1

V j(1)

Vn(1)
� În, n > 1, (2:6)

1

Vn(1)
ÿ 1 � Vnÿ1(1)

Vn(1)
(nÿ 1�Õnÿ1)� În, n > 2: (2:7)

Proof of Lemma 2.1. Of course we only have to treat the case when x is in the (positive)

neighbourhood of 0. For notational simplicity (i.e. by an abuse of notation!), we write

H k � H k(1) and Vk � Vk(1) within the proof. Thus, with probability one,

H k ÿËÿ(H k) � 1: (2:8)
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De®ne

X k � inf
H k (1)< t< H k (2)

1

k
ÿ Vk(t)

t

� �
,

E � f1 , Vkÿ1(H k) , 2g,
F � fË�(H k)ÿËÿ(H k) < Vkÿ1(H k)g:

Accordingly, the probability term in (2.1) can be written as

P(X k , x) � P(X k , x; E)� P(X k , x; Ec)

� I� II,

with obvious notation. We now evaluate I and II. Observe that if ù 2 E, then H k(2) is

strictly larger than Ë�(H k), and several lines of elementary calculation show that

supË�( H k )< t< H k (2)Vk(t)=t is either realized at t � Ë�(H k) or smaller than 1=(k � 1
2
). Thus

in this situation,

fX k , xg � inf
H k < t<Ë�( H k )

1

k
ÿ Vk(t)

t

� �
, x

( )
:

We distinguish two subcases. First, let ù 2 E \ F. We have Vk(t) � t ÿËÿ(H k) for

t 2 [H k , Ë�(H k)], which means that the supremum of Vk(t)=t over [H k , Ë�(H k)] is

reached at t � Ë�(H k), or equivalently that X k � Ëÿ(H k)=Ë�(H k)ÿ (k ÿ 1)=k. Accord-

ingly,

(fX k , xg \ E \ F) � E \ F \ Ëÿ(H k) <
k ÿ 1� kx

1ÿ kx
Vkÿ1(H k)

� �� �
: (2:9)

In the second subcase, ù 2 E \ F c, it is easily seen that the supremum of Vk(t)=t over

[H k , Ë�(H k)] is realized at t � Ëÿ(H k)� Vkÿ1(H k). Thus X k � 1=k ÿ Vkÿ1(H k)=
(Ëÿ(H k)� Vkÿ1(H k)), which yields

(fX k , xg \ E \ F c) � E \ F c \ Ëÿ(H k) <
k ÿ 1� kx

1ÿ kx
Vkÿ1(H k)

� �� �
: (2:10)

By (2.9) and (2.10), we obtain

I � P(X k , x; E; F)� P(X k , x; E; F c)

< P E; Ëÿ(H k) <
k ÿ 1� kx

1ÿ kx
Vkÿ1(H k)

� �
< P(1 , Vkÿ1(H k) , 2; H k ÿ 1 < (k ÿ 1� 2k2x)Vkÿ1(H k)), (2:11)
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the last inequality being due to (2.8) and the trivial estimate (k ÿ 1� kx)=(1ÿ kx) < k ÿ 1 �
2k2x (for small x). Since Vk(H k) � 1, by means of (1.3) and (2.7), we have, for any z . 0,

P(1 , Vkÿ1(H k) , 2; H k ÿ 1 < (k ÿ 1� z)Vkÿ1(H k))

� P 1 ,
Vkÿ1

Vk

, 2;
1

Vk

ÿ 1 , (k ÿ 1� z)
Vkÿ1

Vk

� �

� P 1 ,
Vkÿ1

Vk

, 2; Õkÿ1 � Vk

Vkÿ1

Îk , z

� �
(2:12)

< P Õkÿ1 � 1

2
Îk , z

� �
: (2:13)

Since Õkÿ1 and Îk are independent (cf. (2.2)), using (2.3b) and (2.4b), we have, for some

unimportant (but computable) constant C . 0,

E exp ÿèÕkÿ1 ÿ è

2
Îk

� �
� Cèÿ(1�jíj)k�2, è!1:

It follows from a Tauberian theorem (cf. Feller 1971, p. 445) that

P Õkÿ1 � 1

2
Îk , y

� �
� y(1�jíj)kÿ2, y! 0: (2:14)

Going back to (2.11) and (2.13), we obtain

I < Cx(1�jíj)kÿ2: (2:15)

To estimate II, consider the event Ec � fVkÿ1(H k) > 2g. A key observation is that in order

to realize fX k , xg (x being suf®ciently small), we must have H k(2) < Ë�(H k). Moreover,

the supremum of t 7! Vk(t)=t over [H k(1), H k(2)] is realized at H k(2) � H k(1)� 1, and it

is easily seen that V1(H k) < 2� 2k2x=(1ÿ kx) (which is smaller than 2� 3k2x). Con-

sequently,

II � P(X k , x; Ec)

< P
1

k
ÿ 2

H k � 1
, x; 2 < V j(H k) < 2� 3k2x, j � 1, . . . , k ÿ 1

� �

� P
1

k
ÿ 2

1� 1=Vk

, x; 2 <
V j

Vk

< 2� 3k2x, j � 1, . . . , k ÿ 1

� �
,

the last identity being due to (1.3). Using (2.6) and writing V j=Vk �
Qkÿ1

i� j (Vi=Vi�1), we

obtain

II < P Îk ,
2

1=k ÿ x
ÿ 2k; 2 <

Vkÿ1

Vk

< 2� 3k2x; 1 <
V j

V j�1

< 1� 2k2x, j � 1, . . . , k ÿ 2

� �
:
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Since Îk and (V j�1=V j)1< j<kÿ1 are independent such that V j�1=V j has Beta ( jjíj, 1), law (cf.

(2.2)), this implies

II < Cx kÿ1P(Îk , 3k2x):

The lower tail of Îk is easily computed. Indeed, by (2.3b) and the Tauberian theorem

mentioned above,

P(Îk , y) � y kjíj, y! 0: (2:16)

Consequently,

II < Cx(1�jíj)kÿ1: (2:17)

Since P(X k , x) � I� II, combining (2.15) and (2.17) yields the second part of Lemma 2.1.

It remains to verify its ®rst part. Observe from (2.10) and (2.8) that

(fX k , xg \ E \ B) � (E \ A \ B), (2:18)

with

A � Ëÿ(H k) <
k ÿ 1� kx

1ÿ kx
Vkÿ1(H k)

� �
,

B � 1 ,
Ë�(H k)ÿ H k � 1

Vkÿ1(H k)
, 13

� �
:

Let us now estimate P(E \ A \ B). First, the random variable (Ë�(H k)ÿ H k)=(R(H k))2 is

independent of F H k
(F being the completed natural ®ltration of R), and has the same law as

the ®rst hitting time at 0 of a d-dimensional Bessel process starting from 1. Thus

P(E \ A \ B) > P E; A; B; 2 ,
Ë�(H k)ÿ H k

(R(H k))2
, 3

� �

> Cÿ1P E \ A;
1

4
,

Vkÿ1(H k)

(R(H k))2
, 2

� �
,

with Cÿ1 � P(2 , (Ë�(H k)ÿ H k)=(R(H k))2 , 3). Since R(H k) is independent of
F Ëÿ(H k) ± this is pointed out in Lecture 6 of Yor (1995) for the Brownian case; the

independence holds, however, for general Markov processes (cf. Jeulin 1980, Theorem 6.3) ±

we have

P(E \ A \ B) > Cÿ1P(1 , R(Hk) , 2)P(E \ A) � Ĉÿ1P(E \ A):

By means of (2.12) and the independence of Õkÿ1, Îk and Vkÿ1=Vk (cf. (2.2)), we obtain

P(E \ A) > P(Õkÿ1 � Îk , kx)P 1 ,
Vkÿ1

Vk

, 2

� �

> Cÿ1P Õkÿ1 � 1

2
Îk ,

1

2
kx

� �
,
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which, according to (2.18) and (2.14), implies

P(X k , x; E; B) > Cÿ1x(1�jíj)kÿ2: (2:19)

This is the desired ®rst part of Lemma 2.1. u

From now on, we shall properly write Vk(1) for the variable, Vk denoting exclusively the

process t 7! Vk(t).

Proof of Theorem 1.3. Let ö. 0 be non-decreasing such that
� 1(dt=t)(ö(t))ÿ(1�jíj)k�2 ,1.

De®ne t n � 2n. By scaling and Lemma 2.1,

P inf
H k ( t n)< t< H k ( t n�1)

1

k
ÿ Vk(t)

t

� �
,

1

ö(tn)

" #
� P inf

H k (1)< t< H k (2)

1

k
ÿ Vk(t)

t

� �
,

1

ö(tn)

" #

< C(ö(t n))ÿ(1�jíj)k�2,

which is summable for n. According to the Borel±Cantelli lemma, when n is suf®ciently

large and t 2 [H k(t n), H k(tn�1)], we have

1

k
ÿ Vk(t)

t
>

1

ö(tn)
>

1

ö(Vk(t))
>

1

ö(t)
,

which yields the convergent half of Theorem 1.3. For its divergent half, we assume that� 1(dt=t)(ö(t))ÿ(1�jíj)k�2 � 1 and let t n � 2n. De®ne ö̂(t) � ö(t2) and consider

Dn � inf
H k ( t n)< t< H k ( t n�1)

1

k
ÿ Vk(t)

t

� �
,

1

ö̂(tn)

( )
,

En � 1 ,
Vkÿ1(H k(tn))

t n

, 2

� �
,

Bn � 1 ,
Ë�(H k(tn))ÿËÿ(H k(tn))

Vkÿ1(H k(tn))
, 13

� �
,

Gn � Dn \ En \ Bn,

for n > n0. Recall that t n�1 � 2tn and H k(tn) � Ëÿ(H k(tn))� t n; by scaling and (2.19), we

obtain

P(Gn) > Cÿ1(ö̂(t n))ÿ(1�jíj)k�2, (2:20)

which implies
P

nP(Gn) � 1. Of course, we intend to apply the Borel±Cantelli lemma. To

this end, observe that on Dn \ En (with suf®ciently large n), the in®mum expression in Dn

must be realized at some (random) time t 2 [H k(tn), Ë�(H k(tn))]; furthermore, in this case

the length of any excursion before H k(tn) must be less than 3tn. Accordingly, if
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ù 2 Dn \ En \ Bn, then any excursion before Ë�(H k(tn)) has length no longer than 26tn,

i.e.

Gn � En \ Bn \ inf
H k ( t n)< t<Ë�( H k ( t n))

1

k
ÿ Vk(t)

t

� �
,

1

ö̂(t n)

( )

\ fV1(Ë�(H k(tn))) , 26t ng: (2:21)

Consider now jÿ 6 > i > n0 (with a suf®ciently large initial value n0). Let fR̂(t) �
R(t �Ë�(H k(ti))); t > 0g, which is a d-dimensional Bessel process starting from 0,

independent of F Ë�( H k ( ti)) (F being the ®ltration of R). De®ne the corresponding (V̂ k(t))

and ( Ĥ k(t)) in an obvious way. Since t j . 26ti�1, we deduce from (2.21) that on the event

Gi, H k(s) � Ĥ k(s)�Ë�(H k(ti)) for t j < s < t j�1 and Vk(t) � V̂ k(t ÿË�(H k(ti))) for

H k(t j) < t < H k(t j�1). The strong Markov property yields

P(Gi \ G j) < P Gi; inf
Ĥ k ( t j)<u< Ĥ k ( t j�1)

1

k
ÿ V̂k(u)

u�Ë�(H k(ti))

 !
,

1

ö̂(ti)

 !

< P Gi; inf
Ĥ k ( t j)<u< Ĥ k ( t j�1)

1

k
ÿ V̂ k(u)

u

� �
,

1

ö̂(ti)

 !

� P(Gi)P(Dj)

< CP(Gi)P(G j),

where in the last inequality we have used the scaling property, Lemma 2.1, as well as (2.20).

Consequently,

lim inf
n!1

Xn

i�n0

Xn

j�n0

P(Gi \ G j)

� Xn

i�n0

P(Gi)

 !2

< C:

According to Kochen and Stone's (1964) Borel±Cantelli lemma, We have P(Gn; i:o:) > 1=C.

Now observe that with probability one, we have Vk(t) > 2t1=2 for suf®ciently large t (this can

easily be veri®ed by means of the convergent part of the Borel±Cantelli lemma; actually

more is true for this kind of estimate, cf. Theorem 1.4). Hence

P Vk(t) >
t

k
1ÿ 1

ö(t)

� �
; i:o:

� �
. 0:

This yields the divergent half once we prove the following lemma. u

Lemma 2.3. Let k > 1, and let f . 0 be a measurable function such that f (t)!1 (as

t!1). The event

fVk(t) > f (t); i:o:g
has probability zero or one.
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Proof. Fix s . 0. Consider the new Bessel process fR(s)(t) � R(t �Ë�(s)); t > 0g. Denote

by V
(s)
1 > V

(s)
2 > � � � the associated ranked excursion lengths processes. Clearly,

fVk(t) > f (t); i:o:g � fV (s)
k (t) > f (t �Ë�(s)); i:o:g: (2:22)

Since Ë�(s) and the process R(s) (hence V
(s)
k ) are measurable with respect to G s �

ófR(u); u > sg, so is the event on the right-hand-side of (2.22). Consequently, fVk(t) >
f (t): i:o:g is \r>sG r-measurable, for all s . 0, which means that it is a trivial event (this is

easily seen, for example, by virtue of Bessel time inversion and Blumenthal's 0±1 law). u

3. Tails

The following results give useful estimates of the tails of Vk(1) and of
Pk

j�1V j(1).

Theorem 3.1. As x! 0,

P
Xk

j�1

V j(1) , x

0@ 1A � exp ÿ kã

x

� �
, k > 1, (3:1)

P
Xk

j�1

V j(1) . 1ÿ x

0@ 1A � xjíj, k > 1, (3:2)

P(Vk(1) , x) � xjíj, k > 2, (3:3)

where ã is de®ned in Theorem 1.2.

Before proving Theorem 3.1, we state a Tauberian theorem which may be of independent

interest.

Theorem 3.2. Let a, b and c be positive constants, and A a non-increasing function with

lims!1 A(s) such that

F(z) � ÿ
�1

0

ezs dA(s)

converges for Re (z) , a. De®ne G(s) � F(aÿ s)=(aÿ s)ÿ c=sb for 0 , Re (s) , a. If for

any ®xed T . 0,

ç(x, T ) � xbÿ1

�T

ÿT

jG(2x� iy)ÿ G(x� iy)jdy � o(1), x! 0�,

then

A(t) � c

Ã(b)
� O(r(t))

� �
eÿat t bÿ1, t!1,
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with r(t) � inf T>1(Tÿ1 � ç(tÿ1, T )� (tT )ÿb). The implicit constants in O(r(t)) above

depend only on a, b and c.

Remark. In most probabilistic applications, A(t) is the tail distribution of some random

variable, say X, and F(z) the corresponding exponential moment which explodes at

Re (z) � a. If we know the rate of explosion of F(z) at Re (z) � a (and under the regularity

condition on ç(x, T ), of course), Theorem 3.2 provides useful information about the upper

tail behaviour of X. Note that no additional information is required about G(s) when

Re (s)! a (which corresponds to Re (z)! 0 for the exponential moment F(z)). The `critical

line' for G(s) is Re (s) � 0 (the value of b contains the main information about the explosion

rate), not Re (s) � a.

Proof of Theorem 3.2. Suppose without loss of generality that A(0�) � 1. De®ne A(t) � 1

for t < 0 and gó (t) � (1ÿ eÿó t) e(aÿó ) t A(t), 0 < ó , a=2. The proof is along the lines

presented in Tenenbaum (1995, p. 234, Theorem 11) who treats the case when A is non-

decreasing. The details are omitted. We only mention the key estimate: there exists a constant

K . 0 depending only on a, b and c, such that for all T > 1, 0 < y < 1=T , 0 < ó , a=2,

sup
ÿ1,x,1

(gó (x� y)ÿ gó (x)) < Kjjgó jj1 y,

(`jj:jj1' denoting the L1-norm). This is veri®ed via several lines of careful though elementary

calculation. u

Proof of Theorem 3.1. By (2.3a) and analytic continuation, we have, for è, ã,

E exp (èÎk) � 1ÿ jíj
�1

0

zÿjíjÿ1(eèz ÿ 1) dz

 !ÿk

� 1ÿ jíj
X1
n�1

èn

n!(nÿ jíj)

 !ÿk

:

Applying Theorem 3.2 to A(t) � P(Îk . t), a � ã, b � k and c � ãÿ1(jíj � 1

0
xÿjíjeÿãx dx)ÿk,

this yields

P(Îk . y) � c

Ã(k)
y kÿ1 exp (ÿãy), y!1: (3:4)

On the other hand, using (2.4b) gives

E[(k �Õk)kÿ1 exp (ÿëÕk)] � ëÿ(kÿ1), ë!1: (3:5)

By (2.5) and (2.6),

1Pk
j�1V j(1)

� 1� Îk

k �Õk

: (3:6)
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Since Îk and Õk are independent, (3.4)±(3.6) together imply

P
1Pk

1 V j(1)
. z� 1

 !
� c

Ã(k)
z kÿ1E[(k �Õk)kÿ1 exp (ÿãz(k �Õk))]

� exp (ÿkãz), z!1,

which yields (3.1). Similarly, combining (2.4b) with (2.16) and (3.6) implies (3.2), and (3.3)

is a straightforward consequence of (2.5), (2.3b) and (2.4b). u

4. Proofs of Theorems 1.1, 1.2 and 1.4

The convergent part of these theorems follows from the tail estimations in Theorem 3.1, the

scaling property, and a standard argument combining the easy half of the Borel±Cantelli

lemma and monotonicity.

Proof of the convergent part of Theorems 1.1, 1.2 and 1.4. Let k > 1 and let ö be non-

decreasing such that
� 1(dt=t)ö(t)ÿjíj,1. De®ne tn � 2n for n > n0. Since

P1
j�1V j(tn)

� 1 and t n�1 � 2tn, by scaling and (3.2), we have

P
X1

j�k�1

V j(tn) ,
tn�1

ö(tn)

 !
� P

Xk

j�1

V j(1) . 1ÿ 2

ö(t n)

0@ 1A < C(ö(tn))jíj,

and the sum over n of the latter quantity is ®nite. Thus by the Borel±Cantelli lemma, almost

surely for suf®ciently large n, we have
P1

j�k�1V j(tn) > tn�1=ö(tn). Let t 2 [tn, tn�1]. ThenXk

j�1

V j(t) � t ÿ
X1

j�k�1

V j(t) < t ÿ
X1

j�k�1

V j(tn) < t ÿ t n�1

ö(t n)
< t 1ÿ 1

ö(t)

� �
,

which implies the convergent half of Theorem 1.1. That of Theorems 1.2 and 1.4 can be

proved along the same lines. u

Proof of the divergent half of Theorem 1.2. In view of the obvious relation
Pk

j�1V j(t) <
kV1(t), it suf®ces to treat the case k � 1. Let

� 1(dt=t)ø(t) exp (ÿãø(t)) � 1. As usual

for this kind of exponential integral test, we can limit ourselves to the study of a `critical

case':

1

2ã
log log t < ø(t) <

2

ã
log log t (4:1)

(cf. ErdoÈs 1942). De®ne ti � exp (i=log i) and Ai � fV1(ti) , ti=ø(ti)g for i > n0 (n0 being

suf®ciently large). By scaling and taking k � 1 in (3.1),

P(Ai) > Cÿ1 exp (ÿãø(ti)), (4:2)
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which implies
P

iP(Ai) � 1. Let j . i > n0. By the Markov property, we have

P(Ai \ A j) < P Ai; the longest length of excursions over (ti, t j) ,
t j

ø(t j)

� �

� E 1Ai
PR( t i) V1(t j ÿ ti) ,

t j

ø(t j)

� �� �
, (4:3)

where Pa denotes the probability under which the Bessel process starts from a (thus

P � P0). By (3.1), P(V1(u) , y) < C exp (ÿãu=y) (for any u and y). Therefore, if

T (0) � inf ft . 0: R(t) � 0g denotes the ®rst hitting time at 0 by R, then for any positive

numbers a and t . y,

Pa(V1(t) , y) �
� y

0

Pa(T (0) 2 ds)P(V1(t ÿ s) , y)

< Ceãeÿã t= y

� y

0

Pa(T (0) 2 ds)

< Ceãeÿã t= y:

Going back to (4.3), we obtain

P(Ai \ A j) < CP(Ai) exp ÿã 1ÿ ti

t j

� �
ø(t j)

� �
: (4:4)

From here, we use an argument due to ErdoÈs (1942). Let us distinguish two possible

situations. First, assume j , i� (log i)2. In this case, using (4.1) and the de®nition of the

sequence (t n), we easily arrive at the estimate (1ÿ ti=t j)ø(t j) > min ( jÿ i, log i)=C, which

according to (4.4) yieldsXX
n0<i< j<n; j,i�(log i)2

P(Ai \ A j) < C
Xn

i�n0

P(Ai)
X1
j�i

eÿ( jÿi)=C � C
Xn

i�n0

P(Ai)
Xi�(log i)2

j�i

iÿ1=C

< Ĉ
Xn

i�n0

P(Ai), (4:5)

for some constant Ĉ depending only on d. If on the other hand j > i� (log i)2, then by (4.1),

(ti=t j)ø(t j) is bounded (above). Therefore we have, by (4.4) and (4.2), P(Ai \ A j) <
CP(Ai)P(A j), which impliesXX

n0<i< j<n; j>i�(log i)2

P(Ai \ A j) < C
Xn

i�n0

P(Ai)

 !2

: (4:6)

Since
P

P(Ai) � 1, combining (4.5) and (4.6) gives

lim inf
n!1

Xn

i�n0

Xn

j�n0

P(Ai \ A j)

� Xn

i�n0

P(Ai)

 !2

< C,
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which, by means of Kochen and Stone's (1964) Borel±Cantelli lemma, tells us that

P(An; i:o:) > 1=C. The proof of the divergent part of Theorem 1.2 is completed by a 0±1

law similar to Lemma 2.3. u

The divergent half of Theorem 1.1 can be proved using the Borel±Cantelli lemma, by

considering the events An � fV1(ô(tn))=ô(tn) . 1ÿ 1=ö̂(tn)g, where ô is the inverse of the

local time at 0 introduced in Section 1, and ö̂(t) � ö(t3). Moreover, it proves the ®rst result

in Theorem 5.1 (cf. Section 5). However, it is more convenient to apply a known integral

test for the last passage process.

Fact 4.1 (Chung and ErdoÈs 1952; Hobson 1992; 1994; Bertoin 1995). Let Ëÿ(t), be, as

before, the last zero of R before t. For any non-decreasing function f . 0,

P[ f (Ëÿ(t)) , t; i:o:] � 0

1

�
,
�1 dt

t1ÿjíj( f (t))jíj
,1
� 1

�
:

In the case d � 1, the above test was established by Chung and ErdoÈs (1952) and Hobson

(1994). It was extended to Bessel processes by Hobson (1992) and to general Markov

processes by Bertoin (1995).

Proof of the divergent half of Theorem 1.1. Let ö be a non-decreasing function such that� 1(dt=t)ö(t)ÿjíj � 1. Let f (t) � tö(t2), which is non-decreasing. It is easily seen that� 1 tÿ(1ÿjíj)( f (t))ÿjíj dt � 1. Therefore, by the test in Fact 4.1, P( f (Ëÿ(t)) , t; i:o:) � 1.

Since by the same test, Ëÿ(t) > t1=2 for large t, this yields P(Ëÿ(t)ö(t) , t; i:o:) � 1. The

divergent half of Theorem 1.1 follows using the obvious relation
Pk

1 V j(t) > t ÿËÿ(t). u

Proof of the divergent half of Theorem 1.4. If
� 1(dt=t)ø(t)ÿjíj � 1, then by Theorem 1.1,

P(V1(t) . t(1ÿ 1=ø(t)); i:o:) � 1. Since for any k > 2, Vk(t) < t ÿ V1(t), this yields the

desired conclusion. u

Remark. J. Bertoin kindly points out that Theorem 1.1 can also be obtained by means of

subordinator techniques. The present proof is retained because it gives a uni®ed approach for

this kind of problem.

5. Excursion lengths aÁ la Knight

In the previous sections, we have studied the ordered lengths of Bessel excursions before t,

by considering (Ëÿ(t), t) as an excursion interval. It looks natural to investigate also the

completed excursion intervals, i.e. those before time Ëÿ(t). Knight (1986) established some

interesting exact results for the longest completed excursion length of a Wiener process.

Extensions to Bessel processes can be found in Perman (1993). Let

~V1(t) > ~V2(t) > � � � > ~Vn(t) > � � �
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be the ordered lengths of completed excursions of R over (0, t). One may ask whether the ~Vk

have the same asymptotic behaviours as the Vk .

Theorem 5.1. Let k > 1 and let ö. 0 be a non-decreasing function. Then

P
Xk

j�1

~V j(t) . t 1ÿ 1

ö(t)

� �
; i:o:

24 35 � 0

1

(
,
�1 dt

t(ö(t))jíj
,1
� 1

(
,

P
Xk

j�1

~V j(t) ,
t

ö(t)
; i:o:

24 35 � 0

1

(
,
�1 dt

t(ö(t))jíj
,1
� 1

(
,

P ~Vk(t) ,
t

ö(t)
; i:o:

� �
�

0

1

(
,
�1 dt

t(ö(t))jíj
,1
� 1

(
:

We feel free to omit the proof, which is more or less in the same vein as for the Vk .

Comparing Theorem 5.1 with the corresponding results for the Vk , it is immediately seen

that
Pk

j�1
~V j(t) ( ~Vl(t), l > 2) has the same upper (lower) functions as

Pk
j�1V j(t) (Vl(t),

l > 2). On the other hand,
Pk

j�1
~V j(t) has completely different lower functions fromPk

j�1V j(t). This is due to the fact that the last zero-free interval (Ëÿ(t), t) has an

overwhelming contribution in the lim inf behaviour of
Pk

j�1V j(t) (or simply in that of

V1(t)).

The problem of characterizing LeÂvy's upper class for ~Vk(t) (k > 2) remains, to the best

of our knowledge, open.
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