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Between Strassen and Chung
normalizations for Lévy’s area process*
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Let {L(#): t =0} be Lévy’s area process, let y: Ry — R, and let {Z,;: =3} be the stochastic
process defined by Z,(s) = L(ts)/(2tloglogt), 0 < s < 1. Conditions on y are given such that the set
of all limit points of {y(¢)Z,;: t =3} as t — oo is a.s. equal to the set of all continuous functions
defined on [0, 1] which vanish at 0.
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1. Introduction

Let B={B(f): t =0} be an m-dimensional Brownian motion, let y: Ry — R, let £
denote the set of all R”-valued continuous functions defined on [0, 1] which vanish at 0,
endowed with the uniform topology, and let

P(1) = {

1, for 0 < <3,
loglog ¢, for ¢t = 3.

Let us consider the following conditions.

(A) y(¢) — o0 as t — oc.
(Bdy) There exist M >0 and 0 <0 <Jy <2 such that y(f) < M¢°(¢) for t sufficiently
large.

Baldi and Roynette (1992a) proved the following result:

Theorem 1.1. Assume (A) and (B1), and set
B(ts)

{2tp(0)}1/2”

Then the set of all limit points of {y(£)X,: t>0} is a.s. equal to 7.

X(s) =

0=s=1, t>0.
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Consider now Lévy’s (1949) area process L = {L(7): t =0} associated with a two-
dimensional Brownian motion B = (B, B,):

L(t) = %(LBl(u)Bg(du) — LBz(u)Bl(du)> , t=0, 1)

as the stochastic analogue of the area contained in a lens-shaped domain. Some applications
of this process in analysis and in statistical inference can be found in the work of Gaveau
(1977) and Liptser and Shiryaev (1977, p. 212), respectively. For L the classical law of the
iterated logarithm (see, for example, Berthuet 1979) as well as its functional form (see, for
example, Baldi 1986 and Helmes ef al. 1986) have been proved. Chung’s version of the law
of the iterated logarithm for the area process and related processes was recently established
by Rémillard (1994). In view of these results and since the area process shares many
properties with the linear Brownian motion (see, for example, Helmes 1986), one would
expect that an analogue of Theorem 1.1 holds for L. The aim of this article is to confirm this
assertion. More precisely, we prove the following main result.

Theorem 1.2. Assume (A) and (B2), and set

L(ts)
2t(1)”

Then the set of all limit points of {y(£)Z;: t>0} is a.s. equal to .

Z(s) = 0=s=1, t>0.

Remark 1.3. (a) The classical law of the iterated logarithm states that [—1/mx, 1/x] is a.s. the
set of all limit points of {Z,(1): >0} as ¢t — oo. Therefore, for every function y such that
y(f) — 00 as t — oo, the set of all limit points of {y(¢#)Z,(1): t>0} is a.s. equal to R. Thus
Theorem 1.2 is the analogue of this result when the classical law is replaced by that of
Strassen.

(b) Theorem 1.2 is optimal since Chung’s form of the law of the iterated logarithm in
Rémillard (1994) says that a.s.

t
lim inf % sup [L(19)] = g ©)
It follows from (2) that, if y(¢) ~ ¢*(¢) as t — oo, then every point within the ball in Zj(l) of
radius 7t/8 and centre 0 is not a limit point of {y(#)Z,: t>0}.

In Section 2 we give three auxiliary lemmas which we need for the proof of our main
result in Section 3.

In what follows we shall use the following notation: |-|, Euclidean norm in R”;
uniform norm in Z7)'; (-, -), the scalar product;

, the

0 0

s 1
H™ = {f ez fs)= J F(u)du with J |f(u)|2du<oo}.



Between Strassen and Chung normalizations 117

Further let u: Z)' — R, be the application defined by
1 .
ﬂ(f):{%fo |f(w|*du, for f € H™,
00, otherwise,

and let F: H? +— % be the functional associated with the area process: for every

=, fr) € H?,
FU(0) = %(Lfl(mfz(u) du jofzw)fl(u) du>, (=0,

Let us also consider the application A: Z"(l) — R, such that

Aoy = Jinf{ulH: F(f)y =g}, for F7'({g}) # 2,
(&) .
00, otherwise.
It is known that, if A(g) < oo, then there exists /' € H? such that F(f) = g and u(f) = A(g)

(see, for example, Azencott 1980, p. 69).
Finally, observe that, if we consider the skew-symmetric matrix

0 —05
1=( 05 %)

L(t) = J;(JB(u), B(du)),  t=0. 3)

then (1) becomes

2. Auxiliary results

We begin with the following lemma.

Lemma 2.1. Let g € Z(l) such that A(g) = u(f)<oo for some fin H*. Then, for any r >0,
we have

AL~ gl = = Pl <3, 181 =50 ).
where c(f) = 3{2u(f)}'/%.

Proof. Let f ¢ H? be such that F(f)= g and u(f) =A(g). Set B = B— f. By virtue of
Girsanov’s theorem, B is a two-dimensional Brownian motion under the probability measure
O defined by the Radon—Nikodym derivative

j—g = exp (—j; (f(5), B(ds)) — u(f)) :
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Set
t
X0 = 2JO<JB<s>, J(9) ds — (JB(1), f(1).

Then |X| < c(f)||B||. Moreover,

t

X(1) = Jt<JB(s), f(s))ds + J (Jf(s), B(ds)), for all =0, 0 as,

0 0
and

L(1) — g(t) = L(t) + X (1), for all #= 0, 0 as.,
where

L(t) = J (JB(s), B(ds)).
0
Hence
IZ = gl = 1L+ X[ < [IL]| + e B
Consequently

~ v~ r
P(L—gl|l=rn=P||L| <=, |B|=
(- gl =n (nn 2 131 240)

1 . ~
_ Mg . ~ — |, (f(),B(ds)) 17
= éJ1{HLllér/Z,\lBng/%(f)}e h do

1 .
= M® — [ (/(9),Bds))
—ef J1{HL||<r/2,HBHsr/zc(f)}e J;) dp,

since B is a two-dimensional Brownian motion with respect to Q.
The last chain of inequalities also holds for —f. Since c¢(—f) = ¢(f) and coshx = 1 for
every real x, it follows that

1.
_ — ["(7s).Ba@
L — gl < =z Mg)J1{HL||<r/z,||BH<r/zc<f>}e hronen ap

1 .
1.—A — | (=f(s),B(ds))
+ e (g)J1{HL||$r/2,IIBHSr/2c(ff)}e ) dp

1
— ef’l(g)‘[1{HLHsr/z,llBllér/Zc(f)} cosh <L (f(s), B(ds)>> dpP

Bl<-_ O
<o)

The next result is inspired by Lemma 2.3 of Rémillard (1994).

= e op (Il <3,
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Lemma 2.2. Suppose that 0 <I<oo and 0<h < co. Then there exist two finite positive
constants 01 and O, such that

P{ sup |L(s)| <1, sup |B(s)|<h} =0 e "

0=s<t¢ 0o=s<t¢

Proof. For any infinitely differentiable function u on R>*!, let
Lu(x, y) = jAu(x, y) + glxl> Fulx, y)+ (Jx, V.d,u(x, ).

 is the generator of the diffusion process {B(?), L(#): t = 0} (see, for example, Rémillard
1994); it is known as the Kohn—Laplace differential operator (see, for example, Gaveau 1977,
p- 998).

Now, for any n =0, let R, be the simple Laguerre polynomial, i.e.,

Rt Z(,) iy

|
=0 J:

Then R, satisfies the differential equation
tRy(1)+ (1 — OR,(?) + nR,(t) = 0, for all # € R,

and let z, be the smallest positive zero of R,. Then z, — 0 as n — oo because

tim &, (1) = > = e

where J, is the Bessel function of the first kind of order 0. In fact, if a is the smallest
positive zero of Jy and if 0 <a; <a <a, are chosen such that Jy(a;) >0 and Jo(az) <O, it
follows that R,(a?/4n) >0 and R,(a3/4n) <0 for n large enough. Hence there is at least one
zero in the interval (a?/4n, a3/4n) proving that z, <a3/4n. Moreover, R,(f)>0 for all
t €10, z,). Set a, = supo</<z, Ru(1).

Further, if 6 = /41, the function

un(x, y) = e "2 R, (0]x]?) cos (0y)

satisfies the equation
Lu, = —02n + u,
for any (x, y) € R**L. Since R, is a polynomial of degree n, there exists a constant D,
such that |R,(r)| < D,|#|", such that |u,(x, y)| < D,0"|x|*" e O""/2. Therefore M,(1) =
eCn+Dy (B,, L) is integrable and is a martingale. Moreover, u,(x, y) = 0 if |y| = [ or if
IX| = hy = (2,/0)"/%.
Let now 0<% < oo and />0 be given and let C = C(/, &) be the cylinder:
C(L by ={(x, y) R x| < b, |y < I}.

Next, let T;; = inf {¢t>0: (B;, L) ¢ C(I, h)}. T, is a stopping time. Our aim is to show
that there exist two finite positive constants 0, and J, such that

P(T; >t = o1 e %,
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Indeed, choose n sufficiently large that 4, = (z,/6)"/?> < h. If h = oo, take n = 0 and in
this case zp = +oo. For simplicity, set 7, = T;j,. Then M,(min{¢, T,}) is a martingale
and

1 = M,(0) = E(M,(min{t, T,})) = E@E""*"Vu,(B,, L)1{1,>),
since M,(T,) =0 if T, =< t. Therefore

1 <ePD sup  uu(x, Y)P(T, > 1) < a, eV p(T, > 1),
(x,0)€C(Lhy)

yielding
P(T,> 1) = a,' e~ 0D
and the proof is completed. O
Next, for every integer k& = 2, define # = k* and let LF be the area process associated

with the two-dimensional Brownian motion B = {B(s) = B(s + t;_1) — B(t;_1): s = 0}.
Lemmas 2.1 and 2.2 are used to prove the following.

Lemma 2.3. For every r >0, every integer k = 2, and every g € & 0 such that A(g) < oo, let

C), denote the event
LF(tys) ’
t — g8 =<r5.
Y, s~ &)

sup
O=s<(tp—ti-1)/tx

Then

lim inf

1 )=
min ¢( 0 og P(C}) = 0.

In particular )" P(C}) = 00

Proof. We have

. LKt
Feo= P(H)/(tk)ztk((;gt; B gH - r)'

Since Lk(tk-)/ tr has the same law as L (see, for example, Proposition 2.1 of Helmes 1986),
we deduce that

_ N\ 200 || _ 2¢(t)
e = (Hy(t")qu(tk) gH N r) - P(HL ) gH () r>'

For 51mp11c1ty, set 0r = 2¢(t)/v(t). Let f € H? be such that F(f)= g and A(g) =
u(f). Then F(0,%f) = O,g, MOxg) = 0iA(g) and c(0}/%f) = 0} c(f). Since the law of
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{(B(st), L(st)): s =0} is the same as that of {(¢!/2B(s), tL(f)): s =0} for any ¢>0 and
using also Lemma 2.1, and Lemma 2.2 with 1 = 1/60;, I = r/2 and h = r/2c(f), we obtain

0 91/2
P(Cr) = e@/l(&')P(”L” kf" B” < _k r

2 2¢(f)

1) r
=e Pl sup |L(s)| <5, sup |B()|<——+
{0£ss1/9k 2 0ss<1/6; 2c (f)

= ¢ O R, g=02/0k,

Therefore, in view of Conditions (A) and (B2), we obtain

oo (—2M(g) | logoy 52V(fk))
hmmf log P(C%) = lim inf < + - =
oo ¢( o BT TR hm T e 2902
Thus
11m1nf log P(C7) = 0.
min ¢( o log (Cp)
Hence, if k is large enough,
1
P(CT)=e 03000 — 1
(€ =e (klog k)172
proving that >, P(C}) = 0. O

3. Proof of the main result

We now prove Theorem 1.2. At a certain moment we shall use Lemma 2.3.

Since H' is dense in %’%, it suffices to prove that the set of all limit points of
{y(#)Z;: t> 0} contains a.s. H'. To this purpose we only have to show that, for every »>0
and every g € H',

P(liminf (02, — gl < =1. @)
First we prove that
Plliminf [y(1)Z, — g < 1) =1. )

Let us note that

ly(t)Ze, — gll < sup V() Zi () — g+ sup  |[Y(1)Z,,(s) — g(s)]

0ss<ty_1/ 1k teo1/ tes<s<l1

= I +1Ij.
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We have
. Litas) [ u | _ L(tg-1°) R
h S J/(tk)%k(,b(fk) g(tkls>‘ N V(tk)Hszfp(tk) i Hg(tkl )H
Therefore
1 <y B2 G M) ) (fkl)”z jlxu)zdu N
te O(tr) ||12tk—19(tr—1) Tk 0 &

In view of Condition (A) and since f;_1/#; < 1/k, there exists 0 < C; < oo such that, for k

large enough,
1/2
L (.
ton <J0|g(u)|du> : (6)

By virtue of Strassen’s law of the iterated logarithm for the area process, the sequence

L(tx—1") -
{H2lk 19(t5-1) k/z}

is bounded. Combining this fact with (6), we obtain that

Ci(log k)°
k

L(tk-1")
2t19(ti-1)

k<
If <

Jim If =0. (7

By virtue of (7), the proof of (5) reduces to that of P((liminf; . I <r)=1.
We have

L(t45) L(s + ty_1) S+t
Iy= sup |y(t) - g(s)' = sup ’V(fk) —
: tho1/tp=<s<l 2t (1) Oss<tr—tr 2t (1) Ik
L(s + tx—1) — L(1x-1) S+t ‘ L(ty-1)
= sy t — + y(t
0 SP ‘y( O gt A\ U2
k
=J{+J;.

By similar arguments as the proof of (7), one may prove that limy_,., J é‘ = 0. Therefore, it
remains to prove that P(liminf_, Jf < r) = 1.
Now, by virtue of Proposition 2.1 of Helmes (1986), we have

L(s + t;_1) — L(tx_1) = L¥(s) + (JB(t;_1), B (s)), s=0.

It follows that
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k
Ji<  sup ’V(tk)L(S) g<s>

O<s<tp—tr 2t:.9(tx) Ik

+ sup gl—)—g
O=s<t;—ty tk tk

= K{ + K5 + K&,

(JB(t5-1), BX(s))
2tp(tr)

+  sup ‘V(tk)

0ss<tp—t;

By virtue of the Cauchy—Schwarz inequality, we have

N 1/2
K5 < (t—) j g du ) .
k 0
So, limj_ K% = 0.

Now, let 0 <r; <r and consider the events

_ (B(t1), BXS)) | _
A"_{ossifi%/”“‘ 20(t5) ‘\”_”}’

Bk:{ sup {10}’

Oss<tp—ty-

(JB(t_1), BX(s)) ‘ =
26xp(1x) M |’

LK(s) s ‘
Cr = suj t —gl=)Isny
g {Ossst,}it“ ‘V( k)21k¢(tk) g<fk> !

Dy ={Kf + K5 <r}.

In view of Condition (B2), for k large enough, By C A. It follows that P(A45 i.0.) < P(BS
i.0.). By virtue of Lemma 3.2 of Rémillard (1994), we have P(BS i.0.) = 0. Therefore P(A
1.0.) = 0. Now, A4; N C; being a subset of Dy, we have P(4; N C; i.0.) < P(D; i.0.).
Moreover P(A45 i.0.) = 0. It follows that

P(Dy i.0.) = P(Cy i.0.). (®)

Next, let .7, =0(Bs: 0 <s=<1). It is easy to see that the event C; belongs to .77,
and is independent of .7, ,. By virtue of Lemma 2.3 and Lévy’s extension of the
Borel-Cantelli lemma (Lévy 1954, Corollary 68, p. 249), we deduce that P(Cj
i.0.) = 1. Therefore, by using (8), we obtain P(D; i.0.)=1 which implies that
P(liminf;_ J§ < r) = 1. Thus we proved (5). Since

Piminf |[y(4) 2, — @)l < r) < Piminf [y()Z — gl| < 7),

we are led to (4). By letting » — 0 in (4), we obtain
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P(iimint (17, — g] = 0) = 1.

So, we proved that a.s. every point of H'! is a limit point of {y(¢)Z,: t>0} which completes
the proof of Theorem 1.2.

Remark 3.1. (a) Theorem 1.2 generalizes easily to processes L = {L(?): t = 0} of the form
(3), where J # 0 is an arbitrary skew-symmetric m X m matrix and B an m-dimensional
Brownian motion.

(b) The analogue of Theorem 1.1 when ‘(f(l) is endowed with a Holder norm has been
proved by Baldi and Roynette (1992b). It might be interesting to investigate such a setting
for the assertion of Theorem 1.2.
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