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1. Introduction

In this paper we propose an anticipating integral for general martingales possessing two
key properties: that (M, M), = t; and that M possesses the chaos representation property
(CRP). Martingales having the first property have been called ‘normal’ by Dellacherie et al.
(1992, p.199) and are discussed in Section 2. Our integral is based on chaos expansion
and as such it is analogous to the Skorohod integral as developed by Nualart and Pardoux
(1988). When the integrand is predictable it reduces to the usual martingale integral as
presented, for example, in Protter (1990); when M is a Brownian motion it is exactly the
Skorohod integral.

There are many similarities between our martingale anticipating integral and the
Skorohod integral, but there are also some important (and non-trivial) differences. Many of
these differences stem from one key fact: in the Brownian case [B, B]; = (B, B); = t,
while in our case only (M, M), =t and [M, M], is random; see Protter (1990) for all
unexplained notation. For example, there are two ways to describe a variational derivative
(also known as the ‘Malliavin derivative’ in the Brownian case), and they are equivalent in
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the Brownian case but not in ours. This leads to some subtle differences, and null sets exist
for measures arising from kernels on the product space Q X R,.

Our paper is organized as follows. In Sections 3 and 4 we recall what chaos is, and in
Section 4 we give the basic definitions of a variational derivative and an anticipating
integral, and we establish some elementary properties which are analogues of the Brownian
(Skorohod) case. Here there already arises a difference: in the Brownian case one can use
the equivalence of the two definitions of the variational derivative to give elegant proofs
(using the ‘integration by parts’ formula) right from the beginning — see the elegant
presentation of Nualart (1995), for example — whereas such tools are not available for our
integral.

In Section 5 we continue our study of properties of the Skorohod integral and we include
a formula inspired by preliminary work of Russo and Vallois (1994, Theorem 5.3). Here the
subtlety of the differences with the Brownian case begins to become readily apparent, and
correct definitions with respect to reference measures need to be made.

In Section 6 we give some preliminary results on stochastic differential equations (SDEs).
Our results are a far cry from the beautiful results already established for the Skorohod
integral — see, for example, Buckdahn (1994) — but on the other hand they are very general
in that they hold for any normal martingale M. Our method relies exclusively on the CRP
of a normal martingale, therefore neither path regularity nor L” estimations of the
anticipating integrals are required.

The reader will note that we do not include results establishing path regularity of the
integral, and hence we are as yet unable to establish a change of variables formula. We
hope to address these issues in future work.

2. Normal martingales
The following definition is from Dellacherie et al. (1992, pp. 199ff).
Definition 2.1. A martingale M is called normal if (M, M), = t.

In this paper we will be interested in normal martingales that have an extra property: the
chaos representation property (see Section 3). Note that [M, M], — (M, M), =[M, M], —t
is a martingale, and because the CRP implies the predictable representation property, we have
that

t

(M, M], = t+J prdM, @.1)
0

for some predictable ¢. In other words, equation (2.1) is necessary if a martingale M is
normal and has the CRP. Emery (1989) first presented and studied equation (2.1) and has
called it the structure equation. If one begins with the structure equation (2.1), then one can
show that it has unique solutions under quite general conditions on ¢ (see Meyer 1989; or
Kurtz and Protter 1991, pp. 1044—1045). The simplest structure equations are those of
Brownian motion and the compensated Poisson process, which are respectively:
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[M, M][:t, and [M, M]t:t“rCMt, c>0.
An important special class was studied by Emery, which we write in differential form:
dM, M, =dt+ (e + M, )dM,; My = x. 2.2)

Particularly if &« =0 and —2 < § < 0, Emery proved the important result that a solution M
of (2.2) is normal and has the CRP. This gives a whole family of normal martingales with the
CRP for which our results apply. Note that § = 0 is Brownian motion and f = —1 is Azéma’s
martingale; see, for example, Protter (1990, pp. 180—185) for a treatment of Azéma’s
martingale. When § = —2, M is known as the ‘parabolic martingale’ with |M,| = \/t as.,
first studied by Protter and Sharpe (1979) and Barlow (1981). Vallois (1995) has recently
demonstrated an interesting connection between the Brownian range process and parabolic
martingales, thus showing that if M, = \/239(\/,), where B is standard Brownian motion and
0 is the inverse of its range process, then M is also a normal martingale with the CRP. It is
worth pointing out that any solution M of (2.2) has no continuous martingale part: that is,
[M, M]; =0, for all ¢ (see Emery 1989). Finally, Russo and Vallois (1994) have extended
Emery’s results a little by considering the equation:

d[M, M1, = dt + B(OM,_ dM,. 2.3)

They show that if —2 < () <0, for all ¢, then M is again normal and has the CRP.
The preceding discussion hopefully indicates that there is a significant family of normal
martingales having the CRP already known to exist, with the prospect of more.

3. Multiple integrals and preliminaries

Since the recent book of Dellacherie et al. (1992) gives a lovely treatment of multiple
integrals for normal martingales, we do not give one here, but content ourselves with a
definition. We let =, be an ‘increasing simplex” of R :

2, ={(t, ..., ) eR:0<t, < ... <t,}, 3.1
and we extend a function f defined on X, by making f symmetric on R’ . We can then define
I,,(f):n!J f(t, ..., ty)dM,, ...dM,,. (3.2)

2,

This has the advantage of working with traditional adapted integrands for our martingale
integrals. Note that the domain X, and its symmetrizations do not cover R’ : we are ignoring
the diagonals. As Meyer (1976) pointed out, this ignores terms such as

L Sn, m)aM, dM, = J 7, 0d[M, M.,
=t 0

which need not be trivial in our case. We avoid this problem by adopting the following
convention:
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Convention 3.1. Functions f defined on the simplex X, are automatically extended to R’
such that f is symmetric and zero on the diagonals.

More precisely, let us define a class of functions for n € N and 7 = [0, 1] by
LX(T") = {f € [*(T")|f is symmetric in all variables}.

Note that elements in L*(7") are in fact equivalence classes, and we shall always choose a
representative that vanishes on the ‘diagonal’ set: A, = {(#1, ..., t,)|3t; = t;, i # j}. Such a
choice of representative will not affect our discussion when we are treating the iterated
integral and its norm in L*>(T™), since in the former case the set A, is never involved, and in
the latter A, is a null set under the Lebesgue measure. However, it will become crucial when
some measure involving d[M, M], is considered, as in general d[M, M], will charge the
Lebesgue null set.

The multiple integral with respect to M defined in (3.2) will be considered defined for
every f € Lﬁ(T ™) (or L*(Z,)); and it is known (see, for example, Meyer 1993) that for each
€ LX(T")

2 2 2
||[n(f)||L2(Q) = (”I)ZHfHLZ(Zn) = n!”f“LZ(T")' (3.3)

Definition 3.2. Let & = o{M,; t = 0}, the o-field generated by a (normal) martingale M.
Let .77, be the nth homogeneous chaos, .7 , = I,(f), where f ranges over all f € L*(Z,). If
I*(¥,dP) = % o n (the direct sum), then we say M possesses the chaos representation

property.

Remark 3.3. The hypothesis (M, M), = ¢ has been used to define multiple integrals in a nice
way, which in turn are needed to define the CRP. One could require only d(M, M), < dt to
define the multiple integral, but if (M, M), were random one would lose the property that
different chaoses are orthogonal. Meyer (1976, p. 325) also points out that one could assume
that (M, M), = ¢(¢), where ¢(-) is non-random, but we do not pursue such generality here,
partially because to date there are no known interesting examples of martingales M such that
(M, M); = c(t) # t and which have the CRP.

In what follows we shall always assume that a normal martingale M with the CRP is
given on the probability space (Q,.7, P), and that .7 is generated by M. Thus, for any
random variable F € L*(7,dP) (= L*(RQ)) we have by the CRP that there exists a

sequence of functions f,, € L?(T”), n=1,2,..., such that F =3 " I,(f,). Hence
[o.¢] o0
2 2 2
00 > ||F||L2(Q) = Z ||In(fn)||LZ(Q) = Z n!||fn||L2(T")' (3.4)
n=0 n=0

We shall also use the following notation throughout this paper. If f € L>(T") and
g € LX(T™), we denote f ® g € L*(T"™™) by

FRg(ty, ooy ty; Sty ovey Sm) = f(t1, ..oy t)(S1, -\ Sm);
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and if 1 C T =[0, 1], and k € N, we denote by 17* a function in Z*(T*) such that

k
VGRS AR | RN
i1

4. A derivative operator and an anticipating integral

Consider the following subset &/ C L*(Q):

&= {F: S L) znn!nfnnisoo},
n=0 n=0

where |||, := || 2rn- To be consistent with the usual notation in the literature (see, for
example, Nualart and Pardoux 1988), we shall write & = D, ,. It is easily seen that D, is
dense in L*(Q), since every element in the finite Hilbert sum of chaoses belongs to D;,. The
derivative operator is analogous to what is often called the Malliavin derivative in the
Brownian case, and it is defined as a linear operator D: Dy, C L*(Q) — L*(T X Q), by

D/F = i nlyi(ful 1), €0, 1], 4.1)

n=1

whenever F has the chaos expansion F = > I,(f,). It is easy to see that

1| o0 2
||DtF||2LZ(TxQ) = J > Ly 1 (fals ) dz
0l n=1 LX(Q)
1 o
= |, D= DU Oy (42)
n=1
00 1 ) 00 )
-y nn!L”f(., sy de = 3 nnl £ < oc,
n=1 n=1

for all ' € D;,. Note that since our definition is analogous to the one normally used for the
Brownian chaos expansion, we can derive several properties using exactly the same methods
as those used in the Brownian case. Surprisingly, however, the definition is not compatible
with a Sobolev space structure, as is of course the case for Brownian motion. We shall
explain this via an example at the end of this section. Here we give two properties of the
operator D for ready reference.

Lemma 4.1. (1) Suppose that F € L*(Q). Then D,F =0, for all t € [0, 1] if and only if F is
a constant (non-random).
(2) Suppose that F € L*(Q) and is .7 ;-measurable. Then DF =0 for all s> t.



86 J Ma, P Protter and J San Martin
Proof. This is identical to the Brownian case, so we omit it. ]
We now turn to the definition of an anticipating integral, which is analogous to that of

the Skorohod integral in the Brownian case. Note that since D is a densely defined operator,
we can define its adjoint operator, denoted by O, in the usual way. That is to say, let

1
T* = P(S) = {G € IX(T x Q): 3IC>0, ’EJ G(t, )D,Fdt| < C||F|, VF € IDLZ},
0

and the adjoint operator &: L*(T X Q) + L*(Q) is defined by the equation:

1
E(0(G)F) = EJ G(t, -)D,F dt, VFeD, Ge ™, 4.3)
0

Since every element in L?(T X Q) also has a chaos expansion, we can write G(t, -) =
>0 oln(gu(-, 1)), where the g, are deterministic functions, jointly measurable in all
variables, and symmetric in the first » variables. Following the same arguments as those in
Nualart (1995), one can show that the set & is dense in L*(7 X Q) and that

o* = {G(t, Y= Lz 0 S n+ Dy < oo}, (“.4)
n=0 n=0

where g* denotes the symmetrization of g in all variables. In other words, the set ™ is of
the same form as the usual notion Dom(d) in the literature on the Skorohod integral (cf., for
example, Nualart 1995, Proposition II1.3), and we will therefore not distinguish the two from
here on. Consequently, as the adjoint operator of D, ¢ is a densely defined, closed operator,
which in turn shows that the operator D is closable (in fact, it is not too hard to show that D
is closed by definition). We have the following definition.

Definition 4.2. The adjoint operator of D, denoted by 6: L*(T X Q) + L*(Q), is called the
anticipating integral of the element in 7* = Dom(d). Furthermore, for any u € Dom(d), we
denote

1

o(u) = J uOM,.

0

Also, we can define the set L' as usual by

L2 = {ut = zoc:]n(fn('a 1)
n=0

Noting that Znn!||fn||i+1 < oo is equivalent to > (n+ 1)!||fn||i+1 < oo, and the obvious

inequality

Z””!||fn||iz<rm><oo}. (4.5)
n=0

||JTns||L2(Tn+1) = ”fn”Lz(T”“)a (4.6)
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we have [L'* C Dom(d), as in the Brownian case. The following results for our anticipating
integral can also be proved using exactly the same arguments as those used, for example, in
Nualart (1995). We give only the statements.

Proposition 4.3. (1) Suppose that u € Dom(0), and that u has chaos expansion u, =
oo oln(gn(: 1)), where g(-, 1) € L?(T”), for almost all t € T. Then

o) = > In1(T).
n=0
(2) Suppose that u, v € 2. Then

1 1,1
E(0(u)d(v)) = EJ uvg ds + EJ J Dgu,D,vg ds dt.
0 0Jo

In particular, if u=v € L', then

1 1 ¢l
E(0(u)?) = EJ uds + EJ J Dgu,Dyuy ds dz.
0 0J0

(3) Suppose that u is a process in the space L2 such that for almost all t € [0, 1],
Dyu. € Dom(0), and there is a version of the process {[r(Dus)0OMy; t =0} which is in
IX(T X Q). Then 6(u) € D12, and

1

D(0(w) = jO(Dtus)aMs .

A natural question now is whether the definition of our anticipating integral is a
generalization of the usual It6-type stochastic integral. Note that the proof in the Brownian
case of this result (see, for example, Nualart 1995) uses the fact that any adapted L?
process can be approximated by elementary adapted processes; and that the Skorohod and
Ito integrals coincide on elementary adapted processes. The latter result relies on an
integration by parts formula which in our case is more complicated and not easily
applicable, as we shall see in the next section. Therefore the usual Brownian technique does
not seem to apply. Our technique uses only the CRP (and not integration by parts), so it
also gives an alternative (new) proof in the Brownian case.

Proposition 4.4. Suppose that u € L*(T X Q) is predictable. Then u € Dom(d) and
1

o(u) = J u; dM,,

0

where the right-hand side above is in the semimartingale (or ‘It6’°) sense.
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Proof. Let us first assume that u, = I,,(f,(-, £)), where f, is some L*-function, symmetric in
the first n variables. Since u is predictable, we have

t
u = n!J {J Sty ooy ty, )dM ...dM,nl}dM," = I,(f.(, t)l[0 -
H<..<t,

0

Now by definition,

O(u) = L1 (fu(s )15 ())

1
— (n+ 1)!J {J fn(tl, ey tn, t)lfént)(t], ceey tn)Sthl e th”}th,
<. <t <t

0

where ‘-’ stands for the first n variables, and ‘x’ stands for the last variable; f,(-, *)1 0*)( ) is
the symmetrization of f,(-, *)1%’;)() in all Varlables Note that since f, is symmetric in the
first n variables, a little computation shows that on the set 2, = {#1 < <...<t,<t},
we have

1
St st DI (0, ey 1) = m;mon(l), s O(n), )

(n+ l)fn(tla R tna t)a

where o, runs over all the permutations of {1, ..., n}. Thus

0

1 1
6(1/{):”!J {J fn(t],...,tn, t)thl ...th”}thJuth,.
0 Jn<..<t,<t

Now let us suppose that u, = Y . L,(fx(-, 1)) € L*(T X Q), that is,

1 o0 1 00
ELW dr=>" n!Lan(-, Dl de =" !l <oo. 4.7)

n=0 n=0

Since u, is predictable, it can be easily checked that every [,(f,(:, f)) must have the form
L,(f.(, 1) = L,(fu(, t)l[0 t)) Therefore, using the same argument as before, we have

1
Lo (F) = 0Lu(fol, ) = Lln(fn(-, M) dM,,

and
(n+ DTy = Bl 5P = jucfn . )P rfn'J 1 0P d

2
= n!lfulls i1
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Thus (4.7) gives that

o0 o0

Y DU = D allfall i < oo,

n=0 n=0

hence u € Dom(d), and by Proposition 4.3(1),

00 el o0 1
ow) =Y L (fi) = JO{ZInm(-, r))} dM, = J w dM,,
n=0 n=0

0

proving the proposition. O

4.1. An Ocone—Haussmann—Clark type formula

Let M be a normal martingale with the CRP. For any F € L*(Q2), we can write
00 e8] t
F= Y100 = B+ 30 10 = B + | wdi, 48)
n=0 n=1 0

where u is a predictable process given by

o0

u,:E n!

n=1

J Saltt, ooy tyr, )M, ... dM,, . 4.9)
h<tr<..<tn<t

In the Brownian case, the predictable process u can be further described using the ‘Malliavin
derivative’ operator, known as the Ocone—Haussmann—Clark formula (see, for example,
Ocone 1984). Our definition of the ‘Malliavin derivative’ operator {D,};=¢ also allows us to
derive an analogue of that formula, as we shall see in the following theorem.

Theorem 4.5. Let M be a normal martingale with the CRE and let F € L*(Q). If F € Dy,
then

1
F =E(F)+ J P(D,F)dM,, (4.10)
0

where P H; denotes the predictable projection of a process H.

Proof. Comparing (4.10) with (4.8), we see that we need only show u, = P(D,F). Note that u
is already predictable, so if u. = °(D.F), the optional projection of D.F, then we would have
P(DF) =P(°(DF)) =P(u;) = uy, YVt € [0, 1], and we are done. Therefore it suffices to show
that u is the optional projection of D.F, or equivalently (see Dellacherie 1972),

u; = E{D,F|.7 .}, for any stopping time 7 € [0, 1], (4.11)
where D, F is defined to be D,F|,—,. To this end, we first note that by definition we have

00

00 1
DtF = Z nlnfl(‘fn('a t)) = Z n'J hn(tnfla t) den—l’ (412)
n=1 0

n=1
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where h,(s, 1) = [ <. <t r<sfu(tts ooy tu1, s, )dM,, ... dM,, ,. Clearly, for each fixed
t € [0, 1], h,(-, t) is predictable, so if we define M, (r, t) := for ha(s, t)ydM;, r € [0, 1], then
M, (-, t) is a martingale with parameter ¢ € [0, 1]. Thus for any fixed 7 € [0, 1] and any
stopping time 7 € [0, 1], one has E{M,(1, ) — M,(z, 1)|.7;} = 0. By a standard monotone
class argument, one can show that for any stopping time 7 € [0, 1],

E{M,(1, 7) — M,(z, 0)| 7} =0 a.s. (4.13)
Further, recalling that f,(:, ¢, ) =0, we have by (4.9) that Zf,ozln!M,,(t, 1) = u, Vt, as.
Consequently, we see from (4.12) and (4.13) that, for any stopping time 7 € [0, 1],

o0 o0

E{D.F|7.} =Y nlE{M,(1, D7} => nE{M,(r, 0|7} =u,  as.,
n=1 n=1
where the last equality is due to the predictability of u. This proves (4.11), whence the
theorem. O

We remark that in the Brownian case this result is customarily stated more simply by
writing u, = E{D,F |7 ,}, for fixed ¢ It is implicit that in such an expression one really
means that u, is the optional projection of D,F.

4.2. Indefinite integrals

We now study the possibility of defining indefinite anticipating integrals. Note that even in
the Brownian case, it is not true that for any u € Dom(d), the process {usl (s):
s € [0, 11} € Dom(0) (see Nualart and Pardoux 1988). We have the following definition.

Definition 4.6. Suppose that the process u € Dom(0) is such that for any t € [0, 1], we have
that u.1y 4(-) € Dom(0). Then the indefinite anticipating stochastic integral of u on [0, t] is
defined by

1

t
J usOMy := S(ulp,) = J uglo,q(s) dM;.
0 0

The following lemma gives a description of the class of processes in Dom(d) for which
the indefinite integral exists.

Lemma 4.6. Suppose that u € Dom(0), and us = >, 1,(fu(-, 5)). Then for any t € [0, 1], the
process .1y 4(-) € Dom(9) if and only if

> "+ DS DT gGF [y < oo (4.14)
n=0

Consequently, a sufficient condition for the process u.ly q(-) to belong to Dom(0) is that
uell?,
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Proof. The proof for (4.14) is direct, by using the definition. As for the second assertion, it
suffices to recall the definition of L'? and the fact that

7G0T 0nC ey < 1l O0.aCey < Il
UJ

To end this section we give an example which shows that one cannot define the
derivative operator in the usual way in our case to obtain a Sobolev space structure for the
space D). In fact, the example somehow shows that the two definitions (Sobolev space and
chaos expansion) are compatible if and only if the process [M, M] is deterministic.

Example. Consider a symmetric function f(s, #) = 1(4,4(5)1(a,p(?). The second chaos I,(f)
can be computed as

b pt— b
1(s, HydM, dM, = 2J J dM,dM, = 2J (M, — M,)dM,

a

B =2

0<s<t<l a

(4.15)
= (M, — M,* — {[M, M], — [M, M1,}.

Here, the last equality is due to It6’s formula. Now consider the function F(x;, x;) =
(¥ — x1)?, and define a smooth functional & = F(M,, M}). Let us define the derivative D,&
in a way analogous to one of the equivalent definitions in the Brownian case:

D& = DMy — M,)* = 8 (Ma, Mp)l0,q() + oF (Ma, M)l (1)

(4.16)
=2(Mp — M) (ap)(0).

However, by our definition

D) = 20,(f(- r))—zj Tang () AM, + Taag (1) = 2(My — M) (0.

We can substitute this into (4.16) and compare it with (4.15) to see that the two definitions
coincide if and only if D/{[M, M1, — [M, M],} =0, for all ¢ € T. By Lemma 4.1(1), this
means that [M, M], — [M, M], must be constant. If we look at the structure equation (2.1),
this amounts to saying that ¢ = 0, therefore the two definitions are in contradiction and
cannot hold simultaneously unless M = B, Brownian motion.

5. Integration by parts formulae

In this section we study an integration by parts formula given in Theorem 5.4. This formula
differs from the one in the Brownian case in an important way, since it explicitly involves
[M, M];, whose role is hidden in the Brownian case (in which [M, M], = f). Another
difference is more subtle, in that one has to be careful what versions of the multiple integrals
one takes. A key step in this direction was taken by Russo and Vallois (1994), which is
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presented here in Theorem 5.2; one difference in our treatment of Theorem 5.2 is that we
take care to make precise which versions of the multiple integrals we are using. It is worth
pointing out here that because in our case [D;, does not have a Sobolev space structure, as
we mentioned in the previous section, all the proofs of these properties will depend solely on
the chaos expansion. Therefore they are sometimes more complicated than those of the
Brownian case.

Let us first introduce some notation. Define, for each n € N, a vector space

Sn = Span{®n11i(.)s|li = (Cl,', bl], a < bl sa< b2 =..=q,< bn} (51)
It is clear that S, is dense in both L*(Z,) and L*(T"). Define, for f, g € L*(T"),
(f, gn :J St oo, gty ..., ty)dty ... de,. (5.2)
T)l

We define a measure x4 on the space 7 X Q in terms of the underlying martingale M (known
as the Doléans—Dade measure): for ¢ € [0, 1] and B € .7,

w0, 1) X B) := E{15[M, M],}. (5.3)

Then it is clear that L>(du) = L?(d¢ X dP) if and only if [M, M], = t. In other words, in the
Brownian case L?(du) is superfluous. Let us denote, for any F, G € L*(du),

1
<Fa G>L2(dy) = EJOFthd[M, M],,

and, for n, m ¢ N and f € S,, g € S\,
(f’ g)nm = <]n—1(f(" ))a Im—](g(‘a ‘))>L2(d/¢)- (54)

When n = m, we write (f, @)nn = (f, g)n. We first give a lemma whose proof can be found
in Russo and Vallois (1994).

Lemma 5.1. Suppose that f € S, and g € S). Then

LN = I (f © €)+ ”Jo L (f G Dg(Hd[M, M1,

Next, we prove the following isometry property:

LemmaS5.2. If f €S, and g€ S,, n, m €N, then

|0, n# m,
/s &nm = {(n - DYf, g)n, n=m.

Proof. We split the proof into two separate cases.
Case 1 (n = m). It suffices to consider the case when f = g, as the general case can be
derived by polarization. In other words, we shall prove that

fs Na=—=DUFL,  n=1,2.... (5.5)
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Furthermore, it is clear that we need only consider those functions

k
S, .ot D)= (H 11[(11')) 1 (), I'=(a;, bil,i=1,...,k+1,
i1

where a; <by <a<by<...<a,<b; < ay <bpy1. We proceed by induction. For
n =1, Iy(f(?)) = f(1), so there is nothing to prove. Suppose that (5.5) is true for n = k, and
consider the case » = k + 1. Note that » — 1 = k and

Ii(f(, 1) = k!J S, oo, te—t, s, )dM,, oo dM,,  dM

0<n<..<tp<s<l
t— o'} (5 6)
=kJ'uqvu&n%swwa+jlhwnxn%gwwa '
0 t+

= Vi(t) + Va(0).

Here we have used the fact that f(-, ¢, 1) =0, V¢t € T, and f(-, s, {) = 0, for s > 1. Since, for
(t1, ..., tr_1, 8) € Cr and s <t, we have

k—1

S tien s, 0= T Tanbn () a9 Lay o110,

i=1

the equality
@k—1y _ p @k—1 _
La(f G s, D1E5Y) = L (PG 9155 ) e () = grls)1 001 (0), (5.7)

holds, where f(t1, ..., tx-1, 8) == [ 12} Labd(t) (@b &k(8) = L (FC. 91K ()
and T = (a1, bgp]. Tt is easily seen that gx(-) is predictable, and so is
1744(:) [y g7(s)ds. Noting that E[M, M], = ¢, we have

00 o0 — 2
||V1(~)||2Lz(dm = JO EVi()*dr = kZL E{JO 1001 (0) gi(s) dMs} dt
(5.8)

- szJm{Jtl,m(t)gi(s) ds} d[M, M],.
0 0

In order similarly to determine ||V2||2Lz(dm, let us define a stopping time 7, :=
inf {s = 0: [M, M];>1t} A 1. Then we have
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2
V200 = 2

2
{J( )1]k+1(f)gk(S)dMS} d[M, M],

00 o.¢] 2
:szJ 1,“1(1,)“ gk(s)dMs} dt (5.9)

0 T+

2
:kZJ E{J 1,k+1(r,)gk(s)dMs} dz.
0

T+

Define, for fixed ¢, a process G(t, s, w) = 1 1(Tw))gi(s, w); then G(¢, -, -) is predictable
for s >1;. Thus

2
E{J llw(rt)gk(s)dMs}—EJ 1601 (t))g%(s) ds.

T+ T+

Therefore the right-hand side of (5.9) becomes

kerro 10 (7)) gi(s)dsdt = kZEJOO{F 1x1() g5(5) ds} d[M, M],.
0 0

T+ t+

Combining this with (5.8) and (5.9), and applying Fubini’s theorem to dsd[M, M], (path by
path), we have (recall (5.7) for the definition of g;) that

2 2 o0 o0
|| V] ||L2(d/t) + || V2||L2(d/t) = szJO {JO 1]k+1(t)g%((s) dS} d[M7 M]t
(5.10)

= 25| [ AL s ot ena i, as
Moreover, by (5.8) and (5.9), we also see that

00 t
||V1||2Lz(dm = szL 1,”1(:)“0 2:(s) ds} dt

00

t
< Kk — 1)!L L||f(~, s O Ol dsde
< k! 2 .
< KR! Iy < oo

and, again by Fubini’s theorem, that
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{ 161(8)g5(5) ds} d[M, M1,

[o¢]
2
V2l =
0 t+
o0
0

= k’E { 10 (0 gh(s)d[M, M],}ds (5.11)
[0,s)

= kzroE{ Oolifl(f(', s, Doty (Do (D dM, M]’} ds,
0

by the definition of gj;. Therefore, if we define for each fixed s a function A(:, ¢) =
fG, s, t)l%f‘s)_l(-)l[o,s)(t), then #4(-, ) is symmetric in the first k¥ — 1 variables. Using the
induction hypothesis, we have

{o.¢]

(s, o) :EL B (/s DU O oy (0 dIM, M, = (k= DUIAJE.  (5.12)

Combining (5.12) with (5.11), we obtain that
1P = K20k — “’L IR ds = Bk — DI, < oc. (5.13)

In other words, we have shown that V1, V, € L*(du), whence V1V, € L'(du). We now show
that

EJOC Vi(OVa(t)d[M, M], = 0. (5.14)
0

In fact, using Lebesgue’s change of time lemma (cf., for example, Dellacherie 1972, p. 91),

o0

oo>EJ

. |V1(t) Vz(l‘)‘ d[M, M]t = EJO ‘V](‘L't) Vz(l’t)| dt = J E| V](‘L't)Vz(Tt)| dt,

0

we see that for almost every ¢ € [0, 1], E|V1(7,)Va(z,)| <oo. Hence

E{Vi(t)Va(r))} = E{V1(7,)E{ Vz(Tt)|»7r,}}

- E{ Vl(mE{j L (T g(s) dM,

T+

Since 7%1(z,)gi(s) is predictable on s > 7, for almost all ¢, we have E{V(t,)V2(z,)} = 0 for
almost all ¢, whence

EJ Vi) Va(t)d[M, M]tzj E{V(t)Va(r)) di =0,
0 0

proving (5.14). Now by (5.6), (5.10) and (5.14) we obtain
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I26Cf o D2 = 17O + V2Ol = 1712 + 172122
~ (5.15)
= e[ B[ s oo, i fasi= 2,
0

Using the induction hypothesis again, we see that
> , 2
E{JO By (fCoos, 01K () dM, M]t} = (k= DISC s R85 Ol
Thus

J= L (k= DG 5, GO ds

= (k— 1)!EO{J:C U; E|f(t1, oy o, s, D), ...dtk_l} dt} ds

o.¢)

=(k— 1)'(k — 1)'J {J ‘f(l‘l, ey tp—1, S, f)|2 dty ... dtg_y dS} dt
0 0<t) <..<ty | <s<00

1 [®
=((k— 1)')2 ~FJ0 {Jka(l‘l, vy tp—1, S, l)|2 dy ...dtklds} dt

k—1
_« )’mml

Therefore

k2 ((k

1
1 WPy = BT = ))WMH—HWHD

and (5.5) is proved.

Case 2 (n # m). The proof is very similar, and we give only a sketch. We shall again use
induction, but this time on k= n A m. Assume that k= 1. Let n =1 and m = 2. Then
notice that Iy(f(-, t)) = f(¢); we have

fs &im = EJ Lo(f G M m1(g(, 0)d[M, M]; = EJ:O[m—l(g(‘a 0 f()dM, M],.
Since g € S, and f € S;, we have by Lemma 5.1 that
mJ:OIml(g(-, NFOAM, M, = In(D11(f) = Tmi1(g @ h).
Therefore (f, @)i,m = m ' {E{Iu(g)1(f)} — Blui1(g® )} = 0.

Next assume that the conclusion is true for n A m = k, and consider the case when n = &
and m = k+ 1. Write

Vi) = (n— 1)J071,n+1(r>fn(s) M, Ve = (n I)J L (0] n(s) dM,,

t+
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t e’e}

e (D) dM,, Uz<r)=(m—1)j e (D2m(s) dM,

t+

() = (m — I)J

0

where

n—1 m—1
Su(s) =1n2 (H 11f(fi)11n(S)1f“f),"s)2>a gn(s) =1In-2 (H 1[,.(1].)1[”,@)1‘[30”;')2) :
i=1 j=1
Then it is easily seen as before that

EJ Infl(f('r t))Imfl(g(" t)) d[M’ M]t

0

= EJO (V1) + V() Ui(9) + Ux(0)) d[M, M],

= EJDO[Vl(f)Ul(t) + V(O Ux(8) + Va() Ui (1) + Va() Un(1)] d[ M, M];.
0

Using the same argument as for (5.14), we have

EJO Vi(HUx(H)d[M, M], = EJ Va(HU () d[M, M], = 0.
0

By the predictability of V; and U;, we have

EJOC Vi(HUx(1) d[M, M], = EJOO

Vi) U0 di = L E(A(OUi (1)} di
0 0

o] t—A
0

=(n—1)(m— 1)J 1,"“(1)1,%1@)15“0 7(9)&(s) ds} dt = 0.

Finally, note that

EJ VA Ux(1) d[M, M], = L E{V(e)Us(r)} dv, (5.16)
0
and

V() = L L @)F () ey M, Us(T,) = L 1w (0D &) s,y AM,.

Since both integrands are predictable, we have

o0

JOOE{ Va(t)Uy(ty)} dt = J:CE{J

11/1+l(Tt)f(s)11n1+l(T[)g(s)l{s>-[t} dS} dt
0 0

(5.17)

N EL Jo llnﬂ(t)f(s)l['”“(t)g(s)l{pt} dsd[M, M],.
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Combining the equalities f(-, ¢, ) = g(-, ¢, t) = 0 and
B[] 1 (076100 (0806111 d5dEM. M, = E(A(OUs ()} = 0
with the induction hypothesis, we conclude that
EJ:O11n+1(t)f(s)11m+1(t) &(s)d[M, M], =0,  ae.s. (5.18)

Finally, we see from (5.16), (5.17) and (5.18) that

EL Va()Us(6) d[M, M], = EL JO Lo (@0 J ()L g (2 2(s) ds dTM, M1,
_ L E{L e (D] ()1 mer (1) &(s) A[M, M],} ds = 0.
The proof is thus complete. Il

Lemma 5.2 indicates an interesting fact: that if f, € S,.;, then I,(f,(, ?) €
L*(du) N L*(dA), where di =dt X dP, and the sequence {I,(f.(:, £))} is orthogonal in
both L*(du) and L?(dA), such that

1227 Co W oy = M Co Doy = A

Therefore, since S, is dense in L2(T"*), for any f € L2(T"*!), we can take a sequence
{f*} converging to fin L*(T"*!), such that f* € S,,1, k=1, 2, .... Hence we can define
two limit processes,

F(t) = lim L,(f*¢, 0)  in L*(dw),

G(1) = lim L) in 22(dA),

2

2 2
such that ||F||Lz(d”) = ||G||Lz(d/1) = ”!||f||n+1-

We now define a new measure on [0, 1] X Q by

A([0, 1) X B) + u([0, 1) X B)

([0, £) X B) = :

tef0,1], Be.7, (5.19)
and
LG, 1) = Jim L(f O, 1) in LA(dv). (5.20)

Then [ j(f (-, 1)) is well defined and satisfies

" | F( a.e. du;
LG 0)= { G(r)  ae. di.
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We now turn our attention to the integration by parts formula. Recall that in the
Brownian case we have, for any F, G € D, and h € H := [X(T),

1
E{G(DF, h)r + F(DG, h)r} :E{FGJ h(t)dW,}, (5.21)
0

where W is the standard Wiener process. We will show an analogue of (5.21) in our case.
First we give a theorem inspired by a result in Russo and Vallois (1994). (Note that the result
of Russo and Vallois is slightly incorrect, since 7,_; replaces [/ 1‘71.)

Theorem 5.3. Suppose that n =1, f € LX(T") and h € L*(T); then

L,()[1(h) = 1,1(f @ h)+ nJ:O]jfl(f(y H)h(H)d[M, M],. (5.22)

Proof. We follow the idea of Russo and Vallois. First assume that / € S, and & € L*(T). By
Lemma 5.1 we have

L(NI(h) = T (f @ h) + nL LA (f Gy )y d[M, M];. (5.23)

Now letting f € L2(T") and h € L*(T), we can find a sequence {f*} C S, such that
limy_ f* = f in L2X(T"). By Lemma 5.2 and the discussion following it, we see that

Jim 1,(f%) = 1,(/) in LX(Q),
lim La(ff @) = Lin(f @ by in IA(Q),
Jim Loy, ) = 107G in Z2(dw).

Furthermore, noting that Efol |h(t)[>d[M, M], = fol |h(1)[> dt = ||h
Cauchy—Schwarz inequality that

f, we have by the

1

1
J Lo (P4 D R(Dy LM, M), —j (G eph(tyd[M, M),

0 0

E

1
< ELun,l(f"(-, 0) = I\ (fC. )||R()| dIM, M1,

= ||1n—1(fk('ﬂ )) - Ij:fl(‘f('a '))”Lz(d,u)”h”l — 0.

Therefore, taking limits on both sides of (5.23) (replacing f by f*) in L'(Q), we obtain
(5.22), proving the theorem. O
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Let us now define an operator D*: L?(Q) — L*(dv) by
Dy L(f) = nl | (f( 1)), Vf e LT,
and for F =Y " (1,(fx), such that Zfzonn!ﬂf,,”i < 00, we define

D¥F = an (e 1)), t €0, 1]. (5.24)
We have the following analogue of (5.21).

Theorem 5.4. Suppose that G € L*(Q) has the chaos expansion G =Y o 1,(g,), where
2, € LX(T™) and Y27 (Vnn!| g,ll» < oo. Then for any F € Dy, and h € L*(T),

1 1
E{G(DF, h)r} = E{F(GJ h(t)dM, — J D¥Gh(r)d[M, M],) } (5.25)
0 0

Proof. Let n = 1 be fixed. Since g, € LZ(T ™), we have by Theorem 5.2 that

L (W) = Loy (g0 @ B) + j % (ga( O)H()AIM, M.,

For any &, m € N, we have by the Cauchy—Schwarz inequality that

1| m
gl
01 =1

k
S Tnlk(guls 0) = > nlk_ (g, 0)|[A(D|d[M, M],
= n=1

m

1
= > B[ Iz et ol icolanu, an

n=k+1

m

Z n\/(n_l)'”gn”n”h”l — 0, as k, m — oo,
n=k+1

by assumption (note that n./(n— 1)! =+/nn!). Therefore, Zﬁ:onqu(gn(', Nh(-) —
D*Gh(-), as k — oo, in L'(du). Consequently,

I\

1 00
GLh(t) M, = 3" L(gn (k)
n=0

3

1 oo
=3 Ll b+ | Sl Gl o AL, M),
1

n=0 n=

8

1
=Y ftg e b+ | DiGHo M. M), in L@,
0

n=

(=]
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or equivalently,
00 1 1
> (g h) = GJ h(f)dM, — J D*Gh(1)d[M, M],. (5.26)
n=0 0 0

Note that since the left-hand side of (5.26) is in L?*(R2), so also is the right-hand side. Thus
for any F € Dy, C L*(Q), we have

o0 1 1
F{Z; Lhi(g® h)} = F{GJOh(t) M, — JODTGh(r) d[M, M]t}, (5.27)

and the equality holds in L'(Q). If we write F' =5 I4(f%) for its chaos expansion, then
% Kkk!||fi|s < oo since F € D5, and therefore

E{Fz_;ln-&-l(gn ® h)} = E{Xk: ]k(fk)'zlnﬂ(gn ® h)}
= ZE{[k(fk)[k(gkq ® h)}
k

= > Kk g1 @ h)p

k

1
~S k- 1)!J0<kfk(-, 0, g 1) e h(t)di (5.28)
k
1
= [, DB 0 Lt Do
k

1
- JOE{Z M1 (fiCs 1)+ an(g»}hwdt
k n

1
= EJ D,FGh(t)dt = E{G(D,F, h)r}.
0

Taking expectations on both sides of (5.27), and replacing its left-hand side by (5.28), we
obtain (5.25). The theorem is proved. O

Corollary 5.5. Suppose that F, G € L*(Q) with F =_,1,(f,), G = >_i1i(gk), such that
Yo Vanllfulla<oo, - Vikl|gille <oo. (5.29)
n k

Assume that h € L*(T) and E|FG fol h()dM,| < oo; then
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1
E FGJ h(t)ydM, p = J {FD¥G + GD¥F}h(t)dv. (5.30)
0 [0,1]XQ
In particular, if M is a Brownian motion, then (5.30) becomes (5.21).

Proof. First, note that if F =>_,71,(f,) and (5.29) holds, then F € D;,. Indeed, for n large
enough, one has nnl||f,|> < Van!||f,]|l, < 1. Thus S ,nn!||f,| < oo and F € Dy,. In other
words, under condition (5.29), F, G € D ,.

We can now apply Theorem 5.4 twice with the positions of F and G switched, and add
the resulting equalities together to get

1

E{G(DF, h)r + F(DG, h)r} = E{ZFGJ
0

1
h(t)dM, — J [FD* G + GD¥ F1h(1)d[M, M]t}.
0

(5.31)
Since FG fo] h(t)ydM, € L'(Q) by assumption, we obtain from (5.31) that

1
J [FD¥ G + GD! Flh(t)d[M, M], € L'(Q).
0

Furthermore, noticing that D*F = D.F; D*G = D.G, a.e. dt X dP, we deduce from (5.31)
that

0

1 1
E{FGJ h(t) th} = %E{J [FD*G + GD¥ F1h(t)(d[M, M], + dt)}
0

= J[O ; Q[FD;“G + GD¥ F1h(#)dv,
BIES

proving the first assertion. In the case when M is a Brownian motion, we have
(M, M],= (M, M), =t Hence dv=dtXxXdP, DTF:D,F and DTG:DIG. Conse-
quently,

1
J [FDFG + GD} F1h(#)dv = E{J [FD,G + GD,F]h(t)dt}
[0,11XQ 0

= E{F(DG, h)r + G(DF, h)r}.

The proof is thus complete. Ol

We remark that in Theorem 5.4 and Corollary 5.5 no anticipating integral is involved. To
conclude this section we shall present another formula that does involve the anticipating
integrals. In the Brownian case, this formula is nothing but the definition of an adjoint
relation (see (4.3)). Our formula involves the measure d[M, M],, therefore the anticipating
integral for a special class of processes involving I has to be considered.
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Let us consider a class of processes of the form u, = o (I (fu(:, 1)), where
fm € LA(T™ ) and the convergence of the series is in the sense of L?(dv). We say that a
process of this kind is of class £, if

Z(m + 1)!||fm||iZ(Tm+1) < 00.

m=0

Denote by Dom(d™) the set of all processes of class #™*. We consider the anticipating
integral for processes in Dom(d™). First note that for each n we can find a sequence
{5y C Spy1 such that limy_o f* = f,, in L2(T"*"). Define, for every pair of integers N
and k, a process

N N
ul =N e D) =D In(fa D), VEE[o, 1],
m=0 m=0

Then by definition (5.20), we see that limy_ limy_. #V"¥ = u., in L*(dv). On the other
hand, for fixed N and k, we have «"* € Dom(d) and 6(u™*) = SN _ 1,,.1(f*) by definition
(note that the f ’; are symmetric); thus if u is of class <™, then

N 00
im_lim o™*) = lim lim Y Lua(f}) =D Lea(fn)  in LX(Q).
> m=0 m=0

1
N—00 k—oo

We define the anticipating integral of u € £ ™ to be
O () =" Imir(fn): (5.32)
m=0

Clearly, the value of 6™ () is independent of the choice of the approximating sequence, and it
coincides with d(u) if, in the expansion of u, all f,, € S,,11. Using the notation &* and D*,
we now give a new integration by parts formula.

Theorem 5.6. Suppose that u € Dom(6™) and G € D ,. Then

1 1

u(DFG)d[M, M]t} = E{J

0

E{0*(u)G} = E{J

u(D¥ G)dt}. (5.33)
0

Consequently,

E{6* ()G} = J u()(D¥ GYw)(dt X dw). (5.34)
Q

[0,11%
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Proof. First we note that (5.34) follows from (5.33) by definition (5.19); therefore we need
only show (5.33). To begin with, let us choose for each n and m two sequences
{(fA1, CSpri, and {g/} CS, such that limy . f% =/, in IX(T""') and
lim/ o g, = g» in L*(T"). Now, for given integers N, k and 4 we define

N N
upt = Zozmcff,,(-, n, GV = 2% 1(g)).
m= n=

It is easily seen by definitions (5.32) (for 6*), (5.24) (for D*) and (5.20) (for I j:) that

N—oo k—oo

N
. . Nk _ 1 * D)) — p 2
lim lim ™ = lim mZ:;Im(fm(, Y=u in L*(dv),

Jim_lim o™y =6"w)  in [A(Q),

N
lim lim D.GY = lim Y al} (g.(,) =D'G  in I’(v),

N—o00 /—00 N—oo

n=0

lim lim G =G in LX(Q).

N—o00 /—00
Since du, dA < dv, it follows that

Jim {lim lim E{6(u™")G""}} = E{6™ (u)G},

1 1
lim {lim lim E{J ulk(D,GNyd[M, M][}} = E{J u(DFG)d[M, M],},
0

N—oo | k—oo/—o0 0

1 1
lim { lim lim E{J u?”k(DtGN’/)dt}} = E{J u,(DTG)dt}.
N—oo | k—oo/—o0 0 0

Therefore it suffices to prove (5.33) for u = u™-* and G = G". Note that in this case
0™ (u) = d(u), and D*G = D.G, so by the definition of d(u) (4.3) we have

1

1
E{6" ()G} = E{o(uV*)G"} = E{J uﬁv’k(D,GN’/)dt} = E{J utD;kGdt}.
0

0

On the other hand, since all f ’,; and g/ are symmetric, we have by Lemma 5.2 that
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1 N 1
E{JOuI(DTG)d[M, M]t} E Zjlm(f’;(-, D)l ,-1(g, ¢, 0)dIM, M],

m,n=0+0

N N

Z n(fh, & miin = Z n(n— DA g,

m,n=0 n=1

N

= Y E{lna(fi)I(g,)} = E{6* ()G}

m,n=0

Therefore (5.33) holds, proving the theorem. L]

6. A class of stochastic differential equations

In this section we study a class of SDEs based on the anticipating stochastic integrals
discussed in the previous sections. Notice that since we have not yet derived any path
regularity for the anticipating integral, the traditional ways of dealing with SDEs will not
apply here. The method that we will use relies solely on the structure of the CRP of the L?
processes and the definition of anticipating integrals, hence it will also be valid for the
Brownian case. However, in the Brownian case much better results are available; see, for
example, Buckdahn (1994).
We consider the following linear SDE for 0 < ¢ < I:

X, =H, + Jta(s)XséMS + Jtﬁ(s)XS ds, (6.1)
0 0

where H, is a square-integrable process, and a and f are deterministic functions. Since we
have no knowledge of the path regularity of the anticipating integral, equation (6.1) is
understood to hold in L*(d¢ X dP).

We shall make use of the following assumptions on the process H:

Assumption 6.1. The process H is decomposable as H = G + J, where J is an adapted,
square-integrable process, and G belongs to a subspace of L*([0, 1] X Q) consisting of a
finite number of chaoses. In other words, G = ZnNzlln(gn(-, 1)).

Assumption 6.2. The functions o and 3 are bounded, measurable and non-random.

We shall denote ||a|| := |||, and similarly for j3.
Observe that by linearity of the equation, every solution of (6.1) can be written as the
sum X = X° + X!, where X° and X! are the solutions of the following SDEs, respectively:

t t
X0 =+ J a(s)X)dM, + ) f)X)ds; 6.2)
0 0
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and
t t
X =G+ J a(s)X oM, + J B(s)X ! ds. (6.3)
0 0

Note that by the semimartingale theory (cf.,, for example, Protter 1990), (6.2) always
possesses a unique adapted solution that is square-integrable, so we need pay attention only to
equation (6.3). To simplify the representation, let us first assume that 5 = 0. That is to say,
we first consider a simpler form of (6.3):
t
X, =G, +J a(s) X0 M. (6.4)
0
Assume that X is a solution of (6.4), and write X, =5 " L,(fa(:, 1), G, =
S nolu(gu(, 1), where f,, g, € I2(T"*") and for almost all ¢ € [0, 1, fu(-, 1), gu(, ) €
L?(T”), n=1,2,.... Then it is necessary that

[ee) N o)
S Ll )= (@l D)+ > Lt (Ful )a) I 0.0(0)°), (6.5)
n=0 n=0 n=0

by the definition of the anticipating stochastic integral. Comparing both sides of (6.5) term by
term, we see that

gn(y #, )+ fu1 (o #)a(®) (), 1<n<N,
Sn—1(, 0)al)1o,q(*)°, n>N, (6.6)

Jo(t) = go(1),

where, the symbol ‘-’ represents n — 2 variables, while ‘x’ represents one variable. Therefore,
we have reduced the problem to finding a sequence {f,} such that (6.6) is satisfied and every
term in (6.4) defined by using {f,} makes sense. Note that (6.6) is a recursive procedure, so
the sequence {f,} is uniquely determined. Since any solution to (6.4) must satisfy (6.6), we
conclude that the equation (6.4) possesses at most one solution.

It now remains to show the existence of the solution to (6.4). By the preceding argument,
we assume that the sequence {f,} is defined via (6.6). Since N >0 is a fixed, finite integer,
the values of the terms fo, f1,..., fy Will not affect the convergence of the sums
appearing in (6.5). We shall only analyse the values of {f,},=n+1. Let us first define some
notation. For each p =1, let PN*7 denote all permutations of {1, ..., N + p}, and

fn(': *, t) =

Ay ={0 e PV Plo(iy=i,i¢ {o(N+ k), N+k k=1,..., p}}; (6.7)

that is, .Z,, consists of those permutations o that keep indices i unchanged unless i = N + 1
or it is the image of N + k under o, for some p = k = 1. Define, for each p =1,

By ={0 € Zplo(N+1)<o(N+2)<...<o(N+ p)}. (6.8)

Denote, for any finite set .7, by || the cardinality of .7
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Lemma 6.1. If .2, %, p=1,2,... are defined by (6.7) and (6.8), then

|2,] = H(N+ B, |8, = (N;p). (6.9)

Consequently, |./Zp|/|_%’p| = pl.

Proof. We proceed by induction. For p = 1, note that the typical element in .Z; is of the
form:

1 2 ... j—1 ¥i j+1 ... N+1 _

(1 2 .. -1 N1 j+1 ... ) =L, N+l
Therefore it is easily seen that |.#;| =N+ 1. Also, in this case, we have
| %1 =|%| =N+ 1, so (6.9) is proved.

Next, assume that .7, ..., .7 are constructed so that (6.9) holds, and consider the case
when p = k + 1. Define, for each j=1,..., N+ k+ 1, and 0 € .Z;, a permutation ¢/ by
‘ J» i=N+k+1,
g/()=<{ N+k+1, o(i) = J, (6.10)

o (i), otherwise.

Then we have .7, = Ujvﬁkﬂ 4, where .7} := {0/|0 € .7;}. Note that for every j, we
have |.#}| = |.%;| and .7}, N //;_Q for j # /; thus

N+k+1 N+k N+k+1
eal= D A =N+ kDA =N+ k+ D [[W+h =[] W+,
j=1 j=1 j=1
proving the lemma. U

Our next goal is to take a closer look at the sequence {f,} obtained by solving (6.6), so
that an estimation can be made to prove the L2-convergence of the series appearing in (6.5).

Lemma 6.2. Let {f,} be the sequence defined by (6.6). Then, for any p =1,

SN p(tts ooy Engps 1) = (tocys -+ o5 ta(N41))

06/

p—1
X { 1T a(to(NJri))l[O,t(,(N-,-H)](tU(N+i))}a(to(Ner))l[O,t](to(N+p))-
i=1

(6.11)
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Proof. We again proceed by induction. For p = 1, using Lemma 6.1 we have

Snsi(te, ooy tvgn, O = [t o tvp) oty e) o, (Eve)
N1
N+ I ZfN(ll, ey sty ENG L, tig s o5 BN, B)O(E) 1 [0,4(8)

1A %1| Z Inltoqys -5 tov+n)atov+) 1o,a(Fo(v+1))-

oEN

Thus (6.11) is true. Now suppose that (6.11) is true for N + p. We have by definition of the
symmetrization and (6.6) that

Inepr1(tt ooy tNgpr1s D)

1 N+ p+1
L EY TS ; INep(t, ooy Bty ENtpits Ejils o5 Engps E)A(E)10,7(2))- (6.12)

Let us define

_ t, i#j, N+ p+1,
}l] = tN+p+ls l:], (613)
t, i=N+p+l.

This, together with the induction hypothesis, enables us to write the summands on the right-
hand side of (6.12) as

Z Iy s By

Syap@s o Ty ) :|
P oA,

(6.14)
X H a( (N+k))1[0 to (ks (H’(NJFP))

We show that, for any o € .7,
}(ir(k) = loi(k) k=1,...,N+p, (6.15)

where o/ is defined by (6.10). In fact, by (6.10) and (6.13) we have, for any j, t; =
tgi(N+ p+1); and for those & such that a(k) = j we have t’(k =7 = N+ p1 = Lo (k- Fmally
for those k such that o(k) # j we have to( x = lo(k)- Hence (6. 15) is proved.

Now noting that | Z,.1| =(N+ p+ 1)|.Z,|, we have from (6.11), (6.12) (6.14) and
(6.15) that

Ingpei(tt, ooy tNgpr1s> D)

1 N+p+l

1 . » Lo »
_ J J .
T N+p+l Z, 7, Z/ Sillaqy s r‘/’(NH))Ha(t"“”"))l[0”<’:<~+k+n1(’fr<fv+p))
J= o oeA, =

X a(t)1jo,n(t)
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N+ p+1 P
1
Tl Z > Sltoiy, - fof<N+1>)I[la(for<N+k))1[0,t(,j<N‘M)J(’of(zvm)
j=1 U/E/// =

Xt N+ p+)110,0(Es (N4 p+1))

1 )4
= > oy s tovin) [ [ @lorvim) oo sanCove )

|7 pl 0EA pi1 k=1

X atev+ pr)lo,.n(tov pr1y)s

since Ay = UJNZ’:PH ./Z]];. Therefore (6.11) holds for N+ p+ 1 and the proof is now

complete. O

In order to prove the L?-convergence of the series X, = >_,1,(f.(:, 1)), we first evaluate
the L?-norms of the f, on the set =,. Again, we consider only the terms f,, n>N.
Suppose that (t1, ..., ty1p) € Zy4p. Since 1) <t <...<tyy,, we have by definition of
the set .7, and some simple computations that

P
Inep(ts ooy g p) = 7 / N > fultoys - fo(N+1)){Ha(fo(N+i))}1[o,t](fo(N+p))-

Ploer, i=1

Define, for each p =1 and 0 € .7,
P
SN = Inleys o5 tont1) a(to(n+1) ¢ 10,a(tov+p)-
P
i=1
Then under Assumption 6.2 we have
2 2
||fgf,p||L2(2N+p) = J Lf % pl dtr .. dinyp
2N+p

< Il digony - dtovin (616

to N1y < oo <t (N4 p) <t

2
_ llelP?llfvlly -

= )

Therefore, by (6.15) we have
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1w pCo Dl = NV + U pCo D agss

1 ” 2
< (N+p>!{ Ly ||fN,,,||L2@W>}

|" /p‘ oep,

2
|72 ] 2
=(N+ P)! ip ”f(l)\l,p”Lz(ZMm)
|2

_(N+p)!
|)3

(6.17)

a2l - 2.

Now let us define, for each n € N, M, := > 7_ [ 1c(f (-, ~))||2LZ(TXQ), and C := ||fN||2Lz(TN).
Noting that

S (Hﬁ) (ui) I+ N)N!'< (1 +N)"N,
p! p r—1

we deduce that

1 1 o0 1 N
EJ0|X,|2 dt = JO Z ||IN+p(fN+p('s t))HZLZ(Q) dr + J() Z ”[k(fk(', l‘))”sz(Q) dr
k=0

p=I1

1 o
= J Z(N + p)!||fN+P(" t)||§\[+p dt+ MN

0 p=1

N 1
Z“ LDV jofer [ v+ vy

1+ N
= o S G+

< C(N)? "M llel® 4 apy < oo

Therefore, X € L?>(dt X dP). It remains to check that for each 7€ [0, 1] the process
X.a(-)1,q(-) € Dom(d). By Lemma 4.6, it suffices to show that

S (s Dat)2q) < oo (6.18)

Since for each p =1 we have by (6.17) that
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1
15+ pe1 (s pCs *)a(*))||2LZ(Q) <sWN+p+ 1)!J0||fN+p('a S)||§V+pa2(s) ds

(p)?

=y D
P (p !

Now an estimation similar to before shows that

N (!
<C(N+p+ 1)!||a||2<p+1>{ﬂ J o ds}
0

15+ pi1 (Fve i s *)a(*))HZB(Q) + My

00 2 )
Z ”[n-H(fn('a >k)a(*))”Lz(Q) =
n=0 p=1

< COV 4 DR O gy <o,

Thus (6.18) holds, and we have proved the following theorem:

Theorem 6.3. Suppose that Assumptions 6.1 and 6.2 hold. Then the SDE (6.4) has a unique
solution X, =Y 0" (L(fu(:, 1)), where {f,},_, satisfies the recursive equations (6.6).

We now consider the general case when 8 # 0. Since the argument is virtually the same,
we give only an outline. Suppose Assumptions 6.1 and 6.2 hold. It is easy to check that in
this case the recursive equation (6.6) should be replaced by

e 4, 0+ T GGG + | St 9B6)ds n= N,
fn('s *, ZL) =

Fo G a0 + Lfnc, v, )B(s) ds n>N,

Jo(?) = go(1) + Jofo(s)ﬂ(s) ds. (6.19)
The integral equation x(t) = n(¢) + fot x(s)B(s) ds has the unique solution
x() = (1) - J e Py s) ds.
0

Therefore, if we denote y(s, {) = o )P dug(s), and
&n(, %, O+ fua1(, H)at) () n
hn(" *9 t) =
Sn=1(, H)at)1,7()° n>N,

N
=
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then from (6.19) we have

t

Folt) = o) — J Y(5. go(s)ds,

0

t

Sy %, 6) = hy(, %, 1) — J y(s, Oh,(-, *, s)ds.

0

Again we need only consider the terms when #n>N. Denoting m(s, f):=
a(s)(1 — [; y(u, 1)ydu), we show by induction that the sequence {f,} defined by (6.19)
satisfies, for any p = 1,

1
Inep(ts, oo tvgp, ) = ~ Z Inv(teqys s tonve))
2ol s,

p—1
X {H m(to(N+iys fa(N+i+1))1[o,tg(N+,-H)](fa(N+i))}m(fa(N+p), Do, n(te(N+p))- (6.20)
i=1

Indeed, for p = 1, using Lemma 6.1 and the similar computation in Lemma 6.2, we have

1 N+1 t; t }
, 1) =—— ) o,q(t)4 1 — , Dlo,(t) d
Syt IN41, 1) N+1lZl:fN< )a(t) [0, ](f){ LV(S N1o,(t:) ds

IN+1

1

= A Z Inv(teys - -5 tovi)m(to(v11), Dljo,a(tevin))s
ez,

where

l‘.
fN( ' ) ::fN(tla e ti-1, tN+13 ti+1’ ces N, tl)

IN+1

Therefore (6.20) holds for p = 1. Now suppose that (6.20) is true for N + p. We have

Inepr1(tt, ooy Engpy1s B)

N+p+1
1
= fy ooy b1y t s ity - ees It ps G)M(E D1j04(2
N+p+1 ; Inp(ty J=1> IN4p+15 Tl N+ p» 1)m(t, Dlpo.n(2)

J=1

1 N+p+1 1 ) )
= [P
N+p+1 Z {|%p| U;pr( a(l) o(N+1))

](}(];(N+k)) ° m(?{y(]\/+p+1)7 t)l[O,t](fJN.._p.;.])}

(N+k+1)

P

~J < )

X H MLy (v iy Tovrian) o
=i
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1
= Zoal Z In(tays -5 ta(N+1))
TPt ez,
p+l1
X H M(lo(N+k)ys Lo(N+k+1) 10,10 s pen] (E@ (V4 p11))s
k=1

where #5(n4p12) = t, proving (6.20).

Note that the boundedness of a and § implies that m is also bounded, so by replacing
lall by ||m|ls in the estimations in the case 8 =0, we obtain the main result of this
section:

Theorem 6.4. Suppose that Assumptions 6.1 and 6.2 hold. Then the SDE (6.3) has a
unique solution X, =Y " L,(fx(-, 1)), where {f,},_, satisfies the recursive equations
(6.19).

We can combine Theorem 6.4 with the semimartingale theory to obtain:

Theorem 6.5. Suppose that Assumptions 6.1 and 6.2 hold. Then equation (6.1) has a solution
and it is unique in L*(dt X dP).

Proof. We only show the uniqueness. Let X° be the unique semimartingale solution of (6.2);
and let Y be another solution of (6.1). Let

HN(Z) = J;a(s)ZséMs + J;ﬁ(s)ZS ds, VZ e [*(dt X dP).

Thus we have ¥ = H + Z(Y) and
Y- X'=H+720Y)—(J+ZX)V=H-J+ 2 -X"=G+ (Y - X,

and by Theorem 6.4 we have ¥ — X° = X!, the unique solution of (6.3). So ¥ = X% + X! in
L*(dt X dP) and we have uniqueness. O
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