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In this paper we prove that the density p,.(y) of the solution of a white-noise-driven parabolic
stochastic partial differential equation (SPDE) satisfying a strong ellipticity condition is % Lipschitz
continuous with respect to (w.r.t.)) ¢ and 1 — e Lipschitz continuous w.rt. x for all €€ ]0, 1[. In
addition, we show that it belongs to the Besov space Bj ..~ W.r.t. x. The proof is based on the
Malliavin calculus of variations and on some refined estimates for the Green kernel associated with

the SPDE.
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1. Introduction

Consider the following parabolic stochastic partial differential equation:

oX ’*X .
E(ta x) = W(Ia x) + w(X(ta x)) + (/7(X(t’ x))W(ta x)’

for (¢, x) € 10, T[ X ]0, 1[, where W is a space—time white noise on [0, T] X [0, 1], ¢ and 3
some smooth functions with bounded derivatives, satisfying the Neumann boundary
conditions:

(E)

X X
X(0, x) = Xo(x), 8—(1, 0) = a—(t, 1)=0.
Ox Ox
The solution of such an equation is given by the following evolution equation (Walsh 1986):
tl r ¢l
X010 = Gl Xo) + | | Gt 9o ;W@ o)+ | | Gt s s dyas,

0J0 0J0
(1.1)

where G; denotes the Green kernel related to the heat equation on [0, 7] X [0, 1] with the
Neumann boundary conditions and where we set G,(x, ¢) = fol Gi(x, y)p(y)dy for any
continuous function ¢ on [0, 1].
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Bally and Pardoux (1994) have established that, for each fixed (¢, x) € 10, T X [0, 1],
X (¢, x) is an infinitely differentiable functional in the sense of the Malliavin calculus related
to W and that, on the set {¢ # 0}, X(¢, x) possesses a C* density y — p;.(y) with respect
to (w.r.t.) the Lebesgue measure.

The aim of this paper is to study the regularity of the function (7, x) — p;,(») under the
strong ellipticity condition ¢ = ¢>0. A natural direction to investigate is that of the
Holder regularity. Here we prove that the density function is % Lipschitz wrt. t and 1 —¢
Lipschitz w.r.t. x.

The first thing to note is that the regularity that we claim is stronger than the pathwise
regularity of X (¢, x), since X(¢, x) is %— € Lipschitz w.r.t. ¢ and %— € Lipschitz w.r.t. x (see,
for example, Walsh (1986)). However, this apparent “increase” in regularity is not
surprising. Indeed, consider the standard Brownian motion B; on R. It is well known that B,
is %— ¢ Lipschitz w.r.t. #, whereas its density is differentiable. A heuristic way to understand
what yields this “new” regularity is to note that the density p,(y) can be seen as the limit
of E[f(B;)] when f — 0,. Then, using the Itd formula, one observes that the stochastic
integrals involved, which account for most of the loss of regularity, are “killed” by the
expectation.

This particular example gives two important ideas. First, a convenient way to obtain the
required Holder regularity for the density function p,, wr.t. its parameters is to show
estimates of the following kind:

[ELF(X(t + h, x)] — E[f(X(t, 01| < C|Fy|lc "/ (1.2)
and
[ELF(X (L, x + h)] — E[f(X(t, D]| < C'[[Fyllch'~, (1.3)

where Fy denotes an antiderivative of £, and where f is a function with sufficient regularity.

Then it only remains to take a sequence f), , of functions converging towards the Dirac
measure 0, so that ||F, |« is uniformly bounded w.rt. n and y (e.g. Gaussian kernels).

The second idea given by the example above is to take advantage of the effect of the
expectation on stochastic integrals (an effect which is lost when using such inequalities as
the Burkholder inequality). However, it is impossible to use the It6 formula in our context,
for the representation of X(z, x) given by the evolution equation (1.1) is not a
semimartingale decomposition. A natural idea is then to employ a Taylor expansion of
order 2. One then has to find a way to deal with such quantities as E[f"(X(¢, x))U, 1],
where U is a stochastic integral of the Ito type. In a standard context, one would apply the
It6 formula to f'(X(z, x)). Here we use instead the crucial fact that, for adapted processes,
the Itd integral corresponds to the Skorohod integral, which enables us to employ the
standard duality formula between the derivative operator (in the Malliavin sense) and the
Skorohod integral, thus producing classical integrals that are more manageable.

Yet technical difficulties arise because of the presence of the Green kernel G, which has
a singularity at ¢t = 0. Therefore, new estimates have to be found for G (the inequalities
proved by Walsh and quoted by Bally et al. (1995) will also be quite useful).

Finally we note the discrepancy between time and space regularity and wonder whether
the result concerning the latter may be improved, and in which sense. A natural approach is
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to consider the following functional vector space: let f be a real function defined on [0, 1],
we define, for 7 € [0, 1] and x € [0, 1] such that [x — A, x + #] C [0, 1], the following
(iterated) differences:

ANIx) =[x+ h) = (), A()E) = AADE) =[x+ h) + f(x = h) = 2f(x).

Then one defines the norm ||-[|; 000 by

3l
e = e+ sup 123D
|h|<1 ‘ |

The space of real-valued functions f such that |f]; .0 <00 is denoted by Bj . and is a
Besov space. We remark that the space Bj .~ (Which is sometimes called the Zygmund
class) strictly contains the space of 1-Lipschitz-continuous functions. (We refer for instance
to the book by Bergh and Lofstrom (1986) for a more detailed account on the subject.)

We then prove that, for each 7 € ]0, T, the function x — p,.(») belongs to the space
Bl 0000 uniformly in (7, y) € [t, T] X R, i.e. there exists some real constant C; such that,
for all (¢, y) €[r, T]1 X R,

[20-Dl1co00 < Cr < o0. (1.4)

The method that we use is a simple refinement of that employed for the Holder regularity, via
new estimates of the Green kernel G.

Our work is therefore organized as follows. In Section 2 we expose the context of our
study and state our main theorem. The next short section, Section 3, is then devoted to the
exposition of the Malliavin calculus related to the white noise W.

The proof of the main result (Theorem 2.1) is then given in Section 4. A crucial tool of
this proof is a very general result (Proposition 4.2) which roughly states that, if two random
variables F' and G are close in the sense of some Sobolev norm w.r.t. the Malliavin
calculus, then the random variables obtained via the Malliavin integration-by-parts formula
are close as well. This result, used via its corollary (Corollary 4.2), will be crucial to give
estimates in terms of the norm ||Fy|. for the terms involving f and its derivatives.

Once this result is proved, we first deal with time regularity and then with space
regularity. For the latter, we first concentrate on the Holder regularity and then on the Besov
regularity. Some technical lemmas are finally given in Appendix 1.

2. General framework and statement of the results

Let (Q,.7, P) be a probability space and W a space—time white noise on [0, 7] X [0, l]
with covariance dsdy, where 7T is a fixed deterministic time. Let .7,=
o(W(A), 4 € .50, ] X [0 1)) V.7 where ./"is the class of P-null sets of .7 and let &
denote the o-algebra of .7 ,-progressively-measurable subsets of Q X [0, T7.

Let X = (X(¢, x)) be the solution of (E). This means that X satisfies the evolution
equation (1.1), where
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1 n=+oo _ —x—=2 2 _ ] 2

for which we have (cf. Friedman (1964)):

_u—w?
4¢ '

In the sequel, we assume that X, € C'([0, 1]] and that ¢ and v satisfy the following
hypotheses.

C
() HC>4LVre]o,TLvu;y)e[aIF,G&ny)s;ﬁgmm(

(H1) ¢, ¥ and all their derivatives are bounded.
(H2) 3c¢>0, Vx € R, ¢(x) = c.

We remark that (H2) is a condition of strong ellipticity.

Using the Malliavin stochastic calculus of variations, Bally and Pardoux (1993) have
proved that under (H1) and (H2), for all (7, x) € 10, T[ X [0, 1], the solution X (¢, x) of (E)
has a density p,,(y) which is infinitely differentiable with respect to y € R.

The aim of this paper is to determine the regularity of the function (7, x) — p;,, that is,
we prove the following result.

Theorem 2.1. Let T € 10, T[ be a fixed time.

(1) There exists a constant C; such that, for all t € [t, T], h>0 such that t+h < T,
vy €R and x €0, 1], we have
‘th,x(y) - pt,x(y)l = Crhl/z-
(2) Let ¢ €]0, 1[. There exists a constant C;, such that, for all t €[z, T], x € [0, 1],
h>0 such that x+ h <1, and y € R, we have
|Presn(y) = pra()| = Coch' ™

(3) The function x v p,;(y) belongs to the space B~ uniformly in (t, y) €
[z, T1 X R, i.e. there exists some real constant C, such that, for all (t, y) € [t, T] X R,

[Pl o0 =< Cr <o0. 2.2)

Remark. Theorem 2.1 remains valid in the case of the Dirichlet boundary conditions if we
restrict the space variable to intervals of the type [a, 1 — a] C [0, 1], with a > 0. The only
difference with the Neumann case lies in the use of Lemma Al.2, as seen in the proof of
Lemma 4.1.

3. Malliavin calculus

In this section, we introduce the notation and recall the main results of the Malliavin calculus
related to W (for the proofs and a more comprehensive account on the subject, we refer to
Nualart (1995) and to Nualart and Sanz (1985) for the special case that we consider here).
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3.1. The basics

We denote by ./ the space of smooth functionals, i.e. of real-valued functionals of the form
E = f(W(h), W(hy), ..., W(hn)),

where f € C*(R™) and has polynomial growth, as well as its derivatives, and Ay, hy, ..., hy
is an orthonormal sequence in L?*(Ar; dtdx), with A, := [0, £] X [0, 1], and for & € L*(A7),
W(h) = fOT fol h(s, y)W(dy, ds). For F €./, one defines the first-order Malliavin derivative
to be the L?>(Ar) valued random variable

Dy F =" 0if(W(h), W(hy), ..., W(hn)hi(t, x).
i=1

Similarly, the derivative of order £ of F is the LZ(AI}) valued random variable

m

D'F = | > 0 O W), W(ha), ... W(hw)hi(ar) ... i (c),

where a = (ay, ..., a), a; = (r;, z) € A7, 1 <i< k. Then, for p=1 and k €N, the
space D%? is the closure of . w.rt. the seminorm

k 1/p
1F k. = (([E|F|P> + Z([EHD’FH")) . Ip'FIP= JN_ (D, F)? da,
i=1 T
and we set D® =) ;=1 renD%P . Similarly, one can define, for H = L?>(Ar), the spaces
D*P(H) and D>(H), and the related |||,z norms (the related smooth functionals being of
the form F =Y} _(Fyv, where Fy €./ and v, € H).
A random variable F satisfies (H3) if

(H3) FeD>, |[DF|~' e () 2.
p=0
The derivation operator D on L*(Q) has an adjoint called the Skorohod integral, denoted by
0, and defined by the duality formula E[ou G] = E[{(u DG)], where (-, -) denotes the usual
scalar product in L?*(A 7). We shall use the following properties of D and d: (here U € D>,
X satisfies (H3); f is a continuous function on R with polynomial growth and Fy is a
primitive of f).

(P1) 0 is continuous from D*+L-P(H) to D57,
UDX

P2 E(Uf(X) =E( Fr(X)| ——= ) |-

(P2) (wroo = (£ (15 )

(P1) is obtained via the Meyer inequalities, and (P2) is proved using the integration-by-
parts formula.

As stated in the introduction, we shall use in the sequel the following property of J: if
uc > (Q X Ar) is an .7;-adapted process, then u is in the domain of ¢, and
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O(u) = | A, Uy W (dx, dt). The proof, in our context, is a mere adaptation of the original
proof for the case of the Brownian motion on R.

3.2. Differentiability of X(z, x)

Bally and Pardoux (1993) have proved that, under (H1) and (H2), X(¢, x) belongs to D>, and
its Malliavin first-order derivative satisfies the following equation: for r <t,

t el
Dy X(t, %) = Gry(x, p(X(r, 2)) + J J Gy 0" (X(s, 1)DyuX(s, YIW(dy, ds)

rJo

t el
+j j Gy Y0 (X(s, 1)DyX(s, y)dyds (33)

rJo
(and D,.X(t, x) = 0 when r>1).
The following result will be constantly used in the paper (cf. Bally and Pardoux (1993)).
Proposition 3.1.
(a) For all M, p, there exists a constant Cy,, such that

sup E|DMX(t, x)||P < Cur.p < 0.
(t2)€[0.T]X[0,1]

(b) Let T €10, T[. For all p € 0, +oo[ there exists a constant C,; such that

1
Ef im0 )1 = C,,<o0.
<||Dx<t,x>||p> pr= e

We remark that uniform pathwise estimates such as those stated by Nualart (1995,
Theorem 2.2.1, p. 102) for stochastic differential equations cannot be obtained in our
context, because of the presence of G in (3.3).

4. Proof of Theorem 2.1

4.1. The method

As explained in the introduction, a standard method to obtain estimates for the density of
X (¢, x) is to consider E[f(X(z, x)] for f in a reasonably large functional vector space. More
precisely, we prove in this section the following proposition.

Proposition 4.1. Let v € 10, T[. There exists some real numbers C; and Cr, such that, for all

ter, T, x€[0,1], €10, 1[ and h such that t + h< T and x+ h <1, forall f € C%(R),
and Fy, antiderivative of f, we have

[EG/(X (2 + h, x) = B (X8 0)| < Col| Fylloo i, 4.1
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[ECF(X (2 x + b)) — E(F(X(2, )| < Co || Fylloh' (4.2)
IELF (X1, Do < Coll Fr[loos (4.3)
[ELA3 £(X (2, D] < Cell Fylloo . (4.4)

Supposing that Proposition 4.1 is proved, then let {f}, ,}, be a sequence of Gaussian kernels
of mean y and whose variance decreases towards zero with n. If F, ,, is the antiderivative of
Sy such that F, ,(—oc) = 0, then it is clear that sup, ,||F, ||~ < oo and, on the other hand,
Y(¢, x), lim, o0 E[ /0 (X (2, x))] = pro(y). Hence, taking limits in (4.1)—(4.4), we get the
inequalities of Theorem 2.1.

Now, as the Itd6 formula cannot be used on the evolution equation (1.1), a natural tool to
obtain estimates (4.1)—(4.4) is a Taylor expansion with integral remainder. Terms involving
f, f', f" will then appear, which will have to be replaced by others involving Fy. A natural
way to do so is the integration-by-parts formula (P2). Of course, such a method is relevant
if and only if there is no loss of regularity w.r.t. 4 along the way. This is the object of the
general result and its corollary which we now state and prove.

Proposition 4.2. Let Z,, Z, € D* and &, 5 be random variables satisfying (H3). Setting
0; = |DE|]*>, we define by induction (for i=1,2)

Ho(Zi; €)= 2Z;, H,.(Z; &)= 5(Hn(Z,-; £) DE:’)'

o
Then, for all n=1, g =1 and all p>1,
|Hu(Z15 &) — Hi(Z2; E)lgp < Cpagn(| 2y — Zallgrnarnp + 1161 — Eallgrananp),

where Cp g = Kpqn{ll Zollgranarp + supicpi oy {lEillgr2narp + Elo7 [ }}, with a constant
K, 4.n depending only on p, q, n and an integer i, depending only on n.

Proof. We show the result for n = 1, the general case being obtained by induction. Because
of (P1), there exists a constant C, , depending only on p, g such that

|H\(Z1; &) — Hi(Z2; &)lg.p

= H6<(21 — Zz)i?)

4 Ha<ff D& — &))

0Oy — 0O
+ Hé( 2% D§2)
q,p o

1°02

q9.p q.p

q+1,p,H>

Using the Leibniz formula, the Schwarz inequality and the fact that the &; satisfy (H3), we
obtain

DE§,

O' —
< Cq,p(H(Zl - Zz)o— 2

+
q+l,p.H

4 H f—fD(él _ &)

g
L Z, D&,
01°0)

U llg+1,p.H

= A] +A2+A3
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D&,

A1 < CypllZi — Zo|| 412

= Cq,p”Zl - ZZ||q+1,2pa
q+12p,H

Z,

Ay = C

D& — E)llgr12p1 < CopllEr — E2llgr2.2p-
q+12p

q,.p
As for A3, insofar as

D2 — o) = J DEYD, (& — EV}{DyalEr + E)}1dzdr,

Ar

we easily have, using again the Leibniz formula and the Schwarz inequality,
loz = o1llg+12p < Kll&2 = &illgr24p,
which, proceeding as previously, yields
RERS Cq,p”fz - §1||q+2,4p-
This concludes the proof. O
From Proposition 4.2, we deduce the following.

Corollary 4.1. Let f be in C,’(R) and Fy be an antiderivative of f. For r <3, if Z and & are
random variables such that Z € D> and & satisfies (H3), then, for r < ry,

ELS @ Z1 < CollFrllscl Zll 41,2202,

where C, = K, {||&llr+1)222 + E|lo ~'|*}, with a constant K, depending only on r and an
integer K, depending only on r.

Proof. Using (P2) r + 1 times, we have
[EL/ &) Z]| = [E[FF(&) H 1 (Z, O] < | Ffllooll Hr1(Z; E)llo.t,
where the random variables Hy(Z;, §) are those obtained via the construction of Proposition

4.2. Then it suffices to use Proposition 4.2 with Z, =27, Z, =0,5 =& =&, ¢9=0, p=1
and n=r+ 1. O

4.2. Proof of estimate (4.1)

Assume that # € [t, T], x € [0, 1] and A >0 with #+ 4 < T. One has the following Taylor
expansion:
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ELf(X(2+ h, x)) — f(X(2, 0))] = E[f"(X (2, )X (£ + h, x) — X(2, X))]
1
+E ((X(t + h, x) — X(1, x))zj (1 = 0)f"(Yix(h, v)) dv)
0

=T+ T,

where Y, ,(h, v) = X(t, x) + 0(X(t + h, x) — X(2, x)).

4.2.1. Bound for T
We have

Ty = ELf"(X(t, X){Grsn(x, Xo) — Gi(x, Xo)}]

+E

tpl
J1(X(t, X)) <J J {Grin—s(x, y) = Gis(x, »IP(X(s, y))dyds

0J0

t+h pl
+ J J Grons(x, VWX (s, 1) dy ds)}

t 0

0J0

trl
+E (f (X(@, X))J J {Grin—s(x, y) = Gis(x, »)}o(X(s, y)W(dy, dS))

t+h pl
+ [E<f (X(, X))J J Grrn-s(x, Y)o(X(s, Y)W (dy, dS))

t 0

=T+ Tio+ T3+ Thy.

It is clear that T4 = 0 since f'(X(z, x)) is .%#, measurable and

u pl
M, :J J Grin_s(x, Mo(X(s, y)W(dy, ds), u<t+h,
0J0

is an .7 ,- L?>-bounded martingale.

On the other hand, set H(t?x)(h) = Gn(x, Xo) — Gi(x, Xy). The function t — G,(x, Xp) is
clearly infinitely differentiable on [z, T] and sup(,yefrrixqo.1] [(0/0){ Gi(x, X¢)}| < C..
Therefore we have |H (,?;(h)|P < C,#’ and, applying Corollary 4.1 with Z=
Grin(x, Xo) — Gi(x, Xo) and &= X(1, x), we get |T11| < C¢|Ff|lh. (Indeed, Z being
deterministic, its Malliavin derivatives are zero and, by Proposition 3.1, X (¢, x) satisfies
(H3).)

We now turn to Tj,. We must prove that
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t el
Uy(h) = UO{GM,S(x, V) = Gry(rs IP(X(s, ) dyds

t+h pl
+J L G hss YIW(X (s, ) dy ds

is in D> with, for all p, g, sup,.|U.(h)|,., < C,h"/? in order to apply Corollary 4.1 with
Z = U,,(h) and & = X(¢, x). For p>1, using that v is bounded, we have

0J0

+h el P
+<J JGHh_s(x, y)dyds> ]
t 0

We then use Lemma A.1.1; taking 8 = 3 in (c), we get E|U,.(h)|? < C,h?/?. We now have to
bound the derivatives of U,,(h). We do so for the first order; the general case is similarly
dealt with using the Leibniz formula, the fact that ¢ and vy are uniformly bounded and
Proposition 3.1. We have, for r<t+ h and z € [0, 1],

t ol P
E[|U(WIP] < C,p (J J |Grin—s(x, ) = Gis(x, p)| dyds)

t el
DUy = LL{GHH@ ) = Goy(rs )}9'(X(s, Dy X (s, y)dyds

t+h el
+j LGM__g(x, Y (X(s, YDy X(s, 1) dyds,
t

(this quantity being zero when 7>+ h). Using the Holder inequality wur.t.
|Grins(x, ) = |Gi—s(x, p)|dyds (or Gyps(x, y)dyds), we easily obtain

¢l p-l
||DUt,x(h)||p = Cp (J J |Gr+h—s(x, y) = Gi_s(x, J’)| dde)
0J0

trl
x GLL'G”'%—S@ 1) = Gros(x, )| | DX (s, )P dy ds

t+h pl t+h pl
+ J JGHh_s(x, ) dyds j JGw_s(x, WIDX (s, I? dyds (.
t 0 t 0

which clearly gives, taking expectations and using Proposition 3.1, E|| DU, (h)||? < C,h?/>.

We now turn to 73, which is the most difficult term because of the stochastic integral,
the main source of loss of regularity. Insofar as the integrand is adapted, this term can be
viewed as a Skorohod integral and the duality formula between 6 and D yields
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£l
T3 = [E<f "(X(, X))J J Dy y X(1, ){ G rion-s(x, ¥) = Gies(x, Y} (X (s, y))dy dS>~

0Jo
For (7, X) € [t, T] X [0, 1] such that 7 = ¢, set
Br,z(ia )_C) = (Gf+h—r()_c5 y) - Gi—r(f7 y))(p(X(l’, Z))7 (I", Z) S Af'
Because of (3.3), one has (remember that (-, -) denotes the usual scalar product on L*(Ar)):

<DX(t7 x)’ B(ia )_C)> = <Gt—'(xﬂ )(p(X(’ ))’ B(Z: )_C)>

t el
+ LL Gy, Y)9'(X(s, Y){(DX(s, ), B, 5) W(dy, ds)

t el
+ LJO G (6, YW (X(s, )(DX(s, y), BG D)dyds. (4.5

Then, using the Burkholder inequality and the Gronwall lemma, we easily get
[E|<DX(t: x)’ B(ia )_C)>|p = CP,T[EKGt—‘(xa )(P(X(a ')’ B(ia )_C)>|pa
where the constant C,,; does not depend on (£, x). Therefore, setting T3 =

E[£"(X(t, x))S;.x(h)], we have

tpl p
1S ()? < C J J Gyt MAGrns(s 1) — Gyl M} P(X(s, ) dyds]| .

0Jo

Therefore the regularity w.r.t. & of S, (%) is determined by that of

trl
J J Gi—s(xX, Y| Grin—s(x, ¥) = Gi—y(x, )| dyds,
0J0

and, using Lemma A1.3, we finally get
E|S,(h)|? < C . h?"2.

As for the derivatives of S;.(h), they are similarly handled by differentiating (4.5) and using
the methods exposed above. Therefore we can apply Corollary 4.1 and thus obtain
| Tis| < CollFylloc 2.

4.2.2. Bound for T,

We have T, = E[{X(t+ h, x) — X(t, x)}? fol(l —0)f"(Yix(h, v))dv]. In order to apply
Corollary 4.1 with & =Y, (h, v), Z={X(t+ h, x) — X(¢, x)}*, we only have to prove the
following lemma.

Lemma 4.1. Y, (h, v) satisfy (H3) uniformly in (h, v), i.e.
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Ve 10, T[, Vp>1, sup [E{| DY x(h, )7 + | DY x(h, 0] 7731

(t,x,h,v)/t<t<t+h<T,(x,0)€[0,1]

< Cpp<oo.

Indeed, if this result holds, the required bound for 7, is obtained by applying three times
the integration-by-parts formula (P2), since [[(X(7+ &, x) — X(¢, x))*|,., clearly is of order
n2,

So as to prove Lemma 4.1, we first show the following auxiliary result, which studies the
regularity of the function ¢+ [| fot fol (D,.X(s, y))*dzdr|?, ie. to some extent the
behaviour of DX(tz, x) in the neighbourhood of f#, not pathwise but from a Hilbertian
point of view.

Lemma 4.2. Let § be a real number such that t — n > 0. For all p>1 there exists a constant
C, such that, for all t>0, s =1, y € [0, 1],

P

t 1
£ | 0xeppaa] <,

t—nJ0

Proof of Lemma 4.2. We define

p, H(s) =sup H(s, y), K(s)= sup H(v).
y

tsvss

t 1
H(s, y):= [EJ J {D,.X(s, y)}*dzdr

t—nJ0

Because of Proposition 3.1, we know that K,(s) is uniformly bounded with respect to #, s and
t € [0, T]. On the other hand, since ¢ is uniformly bounded, we have

t 1 p
H(s, y) < Cp{ (J J G2 (1, 2) dzdr)

t—nJ0

p

+E Jl Jl (JSJIGH(y, wo' (X(v, u)D,.X(v, yW(dv, du)>2 dzdr

t—nJ0 rJo
p}

It is easy to see that 4; < Cpn”/ 2. As for A,, we use the following version of the Burkholder
inequality for Hilbert-space valued martingales: if (Qs ;)i )ea, 1S a L*(A,)-valued

predictable process, then
t 4l
J J (J Q,Z,’u(r, z) dzdr> dvdu
0o \Ja,

(oo

We then have

+E

t—nJ0 rJo

Jr Jl (JTGM(% uyy'(X(v, u))D,. X (v, u)dv du>2 dzdr

= A + Ay + 4.

p
< G,k

P

E (4.6)
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J :VIJ ; <J jn J (1 Goy (0, WDy X (v, w))* dz dr) dvdu

“; (J:”J; G* (3, W{D,.X(v, u)}* dzdr) dv du p}

= Cp(A + 422)

p
Ay = Cp{[E

+E

and, using the Holder inequality w.r.t. the suitable measure, we obtain

p
dvdu

-
Ay = J J G2, (v, w)sup (E
u,

t—nJ0

X (Jt J;G?_V(y, u)dudv)
]

< Cpn”/z.

T rl
J J (D,.X(v, u))* dzdr

0J0

p—1

As for Ay, using the same method, we get 4» < C, j; K;(v)dv. Finally we bound A;
because of the Holder inequality and the methods employed in the treatment of A4,. Then the
Gronwall lemma yields the result. L]

Proof of Lemma 4.1. By means of Lemma 2.33.1 of Nualart (1995), we only have to prove
the following estimate: for all T € 10, T, there exist A >0 and ¢y(7) such that for all ¢ and all
0 <e = ¢y(r) we have
(ND) sup P(| DY, (h, 0)|* < €) < Cyrc*.
v
To prove (ND), we shall write
Yt,x(hs U) = Zt,x(ha U) + U{X(t + ha x) - Gh(xa X(ta ))}9

where Z,.(h, v) = X(t, x) + v{Gn(x, X(t, -)) — X(¢, x)}. Then, for 5 € ]0, 7],

t 1
1DY,u(h, ) = j J (DyoY1ah, 0)) drdz
t—nJ0

t 1
= %J JO(Dr,zZt,x(ha ,0))2 drdz — 2)2
i=n

t 1
X J J [D,.{X(t+ h, x) — Gy(x, X(t, )}]*drdz

and we have
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t

1
J {Dr,zZt,x(h, U)}2 drdz = 45)
—nJo

t

P(| DY x(h, v)|? <) < P(J

t—nJ0

t gl
+P <z)2j J [D,AX(1+ h, x) = Galx, X(1, N} drdz = e>.
We first deal with Z,,(h, v):

tpl
DyeZusthy ) = G DX ) + [ | Gy s DX ) s

trl
+ j j Gy, 70" (X (s, Y)DraX(s, Y)W (dy, ds)

rJo

+ U({GtJrhfr(x’ Z) - thr(-x> Z)}QD(X("» Z))

t el
+j J (Grons( ) — Grs(x, W1/ (X(s, Y)DyX(s, y)dyds

rJo

t el
+ j j (Grons(xs ) — Gros(x W} (X(s, 1)DyaX(s, YW(dy, ds)

rJo

5
= G (%, DX (r, )+ Y I
k=1

Then using the strong ellipticity hypothesis (H2) we get

2
t 1 2 ¢t 1 t 1 5
J J (Dy-Zy1(h, 0)) dzdr = C—J J G (x, z)dzdr — J J > 1| dzdr,
t—nJ0 2 t—nJ0 t—=nJ0 \ =1

and the first term is bounded from below by C#'/? owing to Lemma A1.2 of Appendix 1.
Hence

t 1
P(J J {Dr:Z1x(h, 0)}? drdz < e) <P J J <Z u) dzdr=Cn'? —¢
t—nJ0 -y

We choose 7 = 179, If 6 >1, then there exists ¢)(r) such that, for all ¢ < ¢y(t), we have
Cn'? — ¢ = ¢/2. Using the Chebyshev inequality for ¢ >1,

[P’(Jt J;(D,,sz,x(h, )’ dzdr < g> < —E J J (Z 1k> dzdr !
]

Cp q
—qz

t
J ledzdr.
]
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Then, using the Burkholder—Davis—Gundy inequalities for Hilbert-valued martingales (4.6)
and Lemma 4.2, taking into account that v < 1, it is easy to see that

t 1
J J 2 dzdr
t—nJ0

Indeed, for instance, using (4.6) and the boundedness of ¢:
t gl

J J IZdzdr
t—nJ0

2
t 1 t el
J J <H{G,+hs(x, )= G, Yo' (X (s, ¥)DyaX (s, )Wy, ds>> drdz

q

Vk<5,E < C '

q

E

q

0

t 1 q-1
< C<J j (G, ¥) = G, MY dyds)

t—nJ0

t 1 s 1 q
| [ 16t = Gt PE| || (ks P azar ayas
t—nJ0 t—nJ0
T
< Ctn [ | {Gait ) = Gt ) s
t—nJ0
< Cy.
Hence, insofar as 7 = 2179, we get a bound of order (17/€)?, and 5/e = S1-9-1 = 239,

Therefore, provided that we choose 0 € ]%, %[, there exists >0 such that, for all ¢ >1,
topl
P J J (D,.Z(h, 0)?drdz < e | < Cpél.
t—nJ0
We now deal with the other term. On [0, 7], we have

t+h 1
Dr,z{X(t + h’ x) - Gh(x’ X(t’ ))} = J JO GtJrhfs(x’ J/)(/)'(X(Sa y))Dr,zX(ss y) W(dy9 dS)

t+h pl
+J JOGHh,s(x, DY (X (s, YDy X(s, y)dyds.
t

Using again the Chebyshev and the Burkholder—Davis—Gundy inequalities, as well as
Lemma 4.2, we easily obtain

t 1
|]:D (UZJ J [Dr,z{X(t + ]’l, )C) — Gh(x’ X(t’ ))}]2 dl"dZ = 6)

t—nJ0
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24 t+h gl g
< Cor—n"? J J0G§+h*-“(x’ ydyds | . (4.7

Therefore, we see that several situations may occur.

(1) If v < ¢, with o >0 to be determined afterwards,

t—nJ0

o[ [Dtxtrnn-a Ihdra=c) = o E17)
oz , wlx, X(t, N} drdz=c | < Cyr . )

and 2n'/? /e = 2t1/2739/2 which imposes O < (1 + 4a)/3; this restriction is consistent
with 0 € 13, 3[ provided that (1 4 4a)/3 <3, i.e. a € 10, If.

(2) Hence we now fix such an a and study the case v = ¢*. We then have to distinguish
two subcases, whether 4 is “small” or not, because of the integral in (4.7). Then let ' >0,
7 =19, with 8" a priori different from 9.

(a) If h<w', we have, as before, with ' instead of 7

t 1 77/ q
P J J {D,.Z,(h,v)}*dzdr < ¢ | < C, (—) ,
t—n'J0 €

which, as seen before, imposes that ¢’ € ]%, %[. On the other hand, bounding v by 1 in (4.7)
and using Lemma Al.1 (c¢) of Appendix 1, we get

, 1 ni/2\ 7
P (ﬁj J [D,{X(t+ h, x) — Gp(x, X(t, )} drdz = 6) = Cor (%) e

t—n'J0
q
77')
< Cyr| —
qr( ¢ >
since £ <#', which therefore gives the same bound as before.
(b) Hence there remains to deal with the case 4 =#'. Now, the expression involving
Z,x(h, v) is no longer relevant, and we proceed as follows: insofar as t+ h — 7' = t, we
“localize” our study near ¢t + h. More precisely,

t+h 1
| DY, <(h, v)|* = J J {D,.Y,(h, v)}*dzdr.
t+h—n'J0
As Y, (h, v) = X(¢t, x) + v{X(t + h, x) — X(¢, x)}, we have, for r € [t, t + h],
Dr,zYt,x(h: U) = UDV,ZX(t + h, )C),

which implies, using on the one hand the evolution equation for D, X(f+ A, x), and on the
other hand the fact that v = ¢* as well as (H2), that

2! +h o ol 2 2
|DY ik, )P = EJ JGah,,,(x, z)dzdr—J J > Ji| dzdrp,
t+h—n'Jo t+h=n"J0 \ =1

where
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t+h pl
Ji = J JO Goins(e, 10 (X(s. Y)DyuX (s, (A, ds),

and J, is the corresponding term with 1’. We then have

t+h 1/ 2 2
P(DY. (h, 0 <) <P €2aJ J ZJk dzdr = C*(n)'/? — ¢
t+h—n'J0 k=1

In order that there exists ¢(7)<€y(r) such that, for all e¢=<¢(r) we have
C*(n')!/? — e = ¢/2, it is necessary and sufficient that 2a +1 — 36’ <0, which imposes
that 0’ >(1 + 4a)/3. Choosing such a &', we then get, using the Chebyshev inequality,

t+h 1 2 2
EZC‘J J ZJk dzdr
t+h—n'J0 \ =1

and, proceeding as for the evaluation of the moments of Is,

t+h 1
EZ“J J Jidzdr
t+h—n'J0

¢ q
P(”DYt,x(h, ZJ)H2 <6 < C_:[E

>

q

20,1 ’
E < Cprc™™n'? < Cuem'?.

Therefore we have again a bound of order (1'/¢)?, which imposes the 0’ € (1 +4a)/3, [,
restriction which is consistent with a € ]0, %[; this completes the proof. ]

4.3. Proof of estimate (4.2)

As in Section 4.2, we write E[/(X(z, x + h)) — f(X(¢, x))] = T + T, with
Ty = BLf" (X (8, DX, x + h) — X(1, 0)}],

1
T = E({X(t, x+h)— X(1, x)}zj (I =)/ "(Rix,1(0)) dv>,
0

where R, n(v) = X(t, x) + v{X(¢, x + h) — X(¢, x)}. We proceed exactly as for the time
regularity. As before, 7, is easily dealt with, owing to Proposition 4.2, via the following
lemma. (Its proof, very similar to that of Lemma 4.1, is omitted.)

Lemma 4.3. R, (h, v) satisfy (H3) uniformly in (h, v), ie.

Vre]o, T[,Vp>1, sup [E{|[DR.«(h, 0)||” + [ DR x(h, v)[|"7}]
(t,x,h,v)/T<t<t+h<T,(x,0)€[0,1]

= Cp,p <oo.

Hence we now have to prove that |7y < C||Fy|h'“. We then write T} =Ty, +
Ty + T13, with
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Ty = E[f"(X(t, )){Gi(x + h, Xo) — Gi(x, Xo)}],

0J0o

trl
T = [E{f’(X(r, ) (J j (Grsi+ by ) — Gou(x, )} O(X (s, ) W(d, ds)> }

t ol
T3 = [E{f’(X(t, x)) <J J {Gis(x + h, ¥) = Gis(x, ) }P(X(s, ») dde> }
0Jo

Because of Lemma Al.1 (a) and Corollary 4.2, T} is of order & since x — Gi(x, Xo) is
Lipschitz continuous if X, is of class C!. On the other hand, defining U, (h)=
Js fol{Gt_S(x + h, y) — G,_s(x, M }P(X(s, y))dyds, we clearly have

£l r
ElUL(]? = G, (j [ 16 10 = G dyds> ,
oJo

and, applying Lemma Al.1 (b), for all y € ]%; 3[, we get E|U,(h)|P < Cm,h@”’)P/V; for y
close to %, this gives a bound of order 4!~¢. (Note that the method employed in Section 4.2 is
no longer valid since, in Lemma Al.1 (b), % is not in the interval; this accounts for the
difference between time regularity and space regularity.)

Using the same computations as those of Section 4.2, we get E|DM U, (h)|? <
Cypyh®7P/7 Therefore, Corollary 4.1 can be applied, which yields the required bound for
Ns.

We now deal with Ti,; owing to the duality formula between 6 and D, we have as before

£l
Ty, = E(J J S(X(t, X)) D5y X (8, X){Gr—s(x + h, y) — Gi—(x, Y)}p(X(s, ¥))dy dS>~
0Jo

Set V,.(h) = jot jol Dy, X (1, X){G—s(x + h, y) — G,_s(x, »)}@(X(s, ))dyds. Using the same
method as in Section 4.2, we easily get

p
E|Vie(h)|? < Cp,E

>

t ol
JOJO Gi—s(x, V{Gi—s(x+ h, y) — Gi—4(x, y)}dyds

and similar estimates for the derivatives of V, (/). Hence one has to consider the regularity
w.rt. h of

t el
JOJO (GrsCr+ by 3) — Groy(t, W)Grs(x, )| dyds. @.38)

Unfortunately, as can be seen in the proof of the Lemma A1.3 of Appendix 1, one cannot find
a suitable bound for (4.8). Therefore, using the Holder inequality, we first bound integral
(4.8) by a constant times

trl 1/y
(j J Gy 4 By 1) — Goos(xs )Gl y)|deds> ,

0J0

where y is a real value greater than 1 but close to 1. Then, by means of inequality (A1.2) in
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Lemma A1.3 of Appendix 1, we obtain that this term is of order 42/, The end of the
proof is then similar to that of estimate (4.1), and we finally obtain that, for all ¢ € ]0, 1],
there exists C,, such that

EL/(X (1, x + b)) — f(X (2, )| < Cel|Fylloc b

4.4. Proof of estimates (4.3) and (4.4)

We first deal with (4.3). Using the integration-by-parts formula (P2) and the property (P1) of
continuity of 8, we have

B DX(t, x) _ DX(t, x)
EL/(X (4, 0)]| = ‘[E{Ff(X(t, )8 (HDX(tx)IIZ> }’ < ”Ff”oo” DX (1. )

1,2,H

Then Proposition 3.1 yields the result.
We now concentrate on (4.4). The quantity that we consider is the following:

E[ALS(X (1, N = ELA(X (1, x + h) + f(X (8, x = ) = 2/ (X (£, 0))]. 4.9)
As previously, we use a Taylor expansion and write, for ¢ € {—1, 1},

f(X(t, x+ ch)) — f(X (¢, x) = {X(, x + ch) — X(2, ©) } ['(X(2, x))

1
+ {X(t, x + ¢h) — X(1, x)}zj (1 —0)f"(Y¥(h, v))do,
0

(4.10)
where Y(,;)C(h, v) = X(¢, x) + o{X(¢, x + ¢h) — X(t, x)}. Therefore,
E[AS£(X (1, D] = ELf(X (2, x)DATX (2, ()]
1
+E <{X(z, x+ h)— X(1, x)}2j (1 —0)f"(Y'2h, v) dv)
0
1
+E <(X{t, x—h)— X(1, x)}ZJ (1 — o) "Y' V(h, v) dv)
0
=T+ 73+ 15", (41D

T (21) and T é_l) are easily handled, using Lemma 4.3 and Corollary 4.1.
We now turn to 7;. Using the evolution equation (1.1), we write T} = 711 + T2 + 713,
with
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[ 1
Ty =E|f'(X(t, x)) OAiGz(-, y)(x)Xo(y)dy],

trl
Ty, = Ef'(X(2, x)) OJOAf,GH(u YICPX (s, ) dydsy

t el
T = E|f'(X(2, x)) OJOAiGt—s(', YIX)@(X (s, Y)W (dy, dS)]-

Now, we have
A2 < |Anp| + |A_ 4ol 4.12)

Then, since X is of class C', Lemma Al.1 (a) of Appendix 1 and Corollary 4.1 clearly yield
|T11| < Chl|Fy|-. .

To deal with Ty, we study U, .oin = [, Jo Ai Gi_s(-, V)(X)W(X(s, y))dyds. Using the fact
that 1 is bounded, we have, for all y >1,

‘ol P ‘ol rly
ElUiwnl? < Cp <J J |ALG (-, y)(x)ldde> < Cpy (J J A5G-, y)(x)ydyds> :

0J0 0J0

At this stage of the proof, we see that we need a finer estimate than that provided by
inequality (4.12) and Lemma Al.1 (b). Indeed, in order to obtain the required estimate of
order A, we would like to choose y = %, and that is not possible in Lemma Al.1 (b). We
then need a new esitmate which would be more adapted to the specific quantity A%, G,
estimate which is provided by Lemma Al.4 (a) of Appendix 1 with y = %, and that yields
E|Uixn? =< Cyh?. As for the derivatives, they are treated the usual way via Proposition
3.1

We now deal with T3; as before, the duality between 0 and the derivative operator yields

rl
T =E (f"(X(r, )| | K36t 90D X1 00X 5. 30y ds) .
0o
Set K, (h) = fot f(; A5G (-, )X D5, X (1, x)p(X (s, y))dyds. Using once more the method
of Section 4.2, one easily gets

P
EIK «(W)|? =< C,.E

>

t el
UO Goos(rs MALGy(, () dyds

and similar estimates for the derivatives of K, (/). Hence Lemma Al.4 of Appendix 1 and
Corollary 4.1 finally yield

‘T12| = CthFIHOOa

which completes the proof.
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Appendix 1

We start this appendix with some fundamental estimates for the Green kernels with the
Neumann and the Dirichlet boundary conditions, kernels which are indifferently denoted by
G. These estimates correspond to Lemmas A.2 and B.1 of Bally et al. (1995).

Lemma A.1.

(a) Let h be a 2B-Lipschitz function, with $>0. Then, for all x, x', t, t',

1 1
Jocf(x', h(y)dy — JO G.(x, y)h(y) dy‘ < || Allipap(|t’ — 1 + |x" — x|?),

where ”h”LipZﬁ = Supxaéy( h(y) - h(x)|/|y - x|2ﬂ)~
(b) For € ]%, 3|, there exists C>0 such that, for all x, y, t, we have

tl
|| [[160t 2= G 2P dzar = ey
0Jo
(¢) For all p € 11, 3[ there exists C>0 such that, for all (s, t) with s < t and for all x,
t el s 1
[ [ 16 P ayar = cte=si® P2 ] [ 16159 = G P dyr
sJo oJo

< Clt— s|G-PR2,

The following result is a mere consequence of Lemma 3.3 of Bally er al. (1994).

Lemma A1.2. Let 7 € 10, 1[. There exists a constant C such that, for all x and all t>n,

ropl

J J Gi_(x, y)dyds = Cn'l%,
t—nJ0

where G denotes here the Green kernel corresponding to the Neumann boundary conditions.

Remark. A similar result holds for the Green kernel corresponding to the Dirichlet boundary
conditions: it suffices to take x in an interval [a, 1 — a], with o> 0.

We now state and prove technical lemmas which are crucial for our estimations.

Lemma A1.3. There exist constants C and C, such that, for all t>0, x € [0, 1], h >0 with
t+h<Tand x+ h <1,

t el
J j Gyt 9)|Granos(rs ) — Grs(x, )| dyds < Ch'/2 (AL1)
0J0

and
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t el
JOL{GFS(X: y)|Gt7S(x +h,y)— Gil(x, y)|}y dyds = Cyh372y: (Al1.2)

where v € 11, %[.
Proof. Since  G(x, y) = {1/(2nt)'?} exp{—(x — y)*/4t} + G/(x, y), where (t,x,y) —

Gy(x, ) is in C>®([0, T] X R?), the behaviour of the integral in (Al.1) is determined by
that of

t p+oo
J(t,x,m:” g(t—s;x— g+ h—sx—p) — gt — s x— p|dyds,  (AL3)

0J—oc0

where g(t; x) = (1/t'/?)exp(—x?/4t). Then, setting z = (x — y)/h'/?, v =(t—s)/h, in
(A1.3), one easily sees that (Al.1) holds provided that

+00 4
s=| | ewialer 10 - g 2 dr <.
0 —00
Similarly, if z = (x — y)/h, v = (t — s5)/ h*, (A1.2) holds provided that
+00 p+00
Jy ;:J J {eg; 2)|g(v; z+ 1) — g(v; 2)|}" dzdv < c0.
0 —0o0

The following standard identities will be used repeatedly:

2
J |y|’exp<‘y_> dy = C" 2, (A1.4)
R 4t

where C, is a constant that does not depend on ¢.
Now, for an arbitrary f € C'(R), the following simple identity holds:

1
f(x—l—l)—f(x):Lf'(u—i—x)du. (A1.5)

Then, applying (A1.5) to f(v) = g(v; z), using the fact that there exist some constants ¢, C
such that, for all ¢, x, [(Qg/d1)(¢t; x)| < (C/t)g(ct; x), the Holder inequality on [0, 1] yields

C
J g; 2)|gv +1; 2) — g(v; z)|dz < 7
R v

and hence there is integrability near infinity. As for the behaviour near zero, one has

g; 2)|gv + 15 2) — gv; 2)| < & (v; 2) + g(v; 2)g(v + 1; 2), (A1.6)

and hence the integral w.r.t. z of the right-hand side is bounded by a term of order v~'/? plus
another which is defined for v = 0. Thus J is convergent.
As for J,, using (Al.5) and the Holder inequality on [0, 1], one gets

1 y 2 2
J gv; 2)|gv; z+ 1) — g(v; 2)|" dz < CyJ J |LH;Z| exp <—VZ+(Z+M)> dudz.
R RrJo vy 4y

(A1.7)
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However, {(z + u)* + z2}/4t = (1/26){(z + u/2)* + u?/4}; hence, by a change of variables,
bounding u by 1 and using (Al.4), we get

1
J gw; 2 |gvs z+ 1) — g(v; 2)|" dz < CvayW“)/z ==,
R

Therefore, since v > 1, we have (1 — 3y)/2 < —1, and the integral is convergent near infinity.
(Note that, for y = 1, it is not.) As for the convergence near zero, we simply use the same
method as in (A1.6). O

We finally prove estimates for the iterated differences of the Green kernel G.

Lemma Al.4.

(a) For all y € 11, 3], there exists a constant C such that, for all x, t, h,

trl
J j 26, D dyds < C .
0J0

(b) There exists a constant C such that, for all x, t, h,

trl
j J A2G, (- ()| Gy y(x, y)dyds < Ch.
0J0

Proof. Using the same method as in Lemma A1.3, one easily sees that we only have to prove
that

—+00 +00
Kyzzj j|Aig(r; ) dedr, Kzzj JIA%gu; Ylet; ) dy,
0 R 0 R

are convergent. Now, instead of (A1.5), we use the following identity: if /' € C?(R), then

1l
A f(x) :J J 20f"(x + Qu — 1)v) dudo. (A1.8)
0Jo
Set K,(1) = jR\A% g(t; )(x)|” dx. Applying (A1.8) to g(; -) and using the Ho6lder inequality
on [0, 1], one has

11 2
K, (1) < %JRLL % {x + Qu— 1)} — 21 exp<— rix+ (24”t Do} ) dudodx.
Then, by a change of variables and (A1.4), we get K, (¢) < (C,/#*7/2)t®+V/2 = C, /1Cr=D/2;

since y > 1, we have 3y — 1)/2 > 1, which gives the convergence near +oo.

As for the convergence near zero, we simply use (4.12), which leads us to consider the
same integral as in Lemma Al.1 (b), and hence to impose the condition y <3.

As for (b), setting K(¢) = fmA%g(t; J(»)|g(t; y)dy, using (Al.8) and the Holder
inequality on [0, 1]?, we have

[{x + Qu— 1)o}? + x%]
B 41

11
K < %J J J ol{x + Qu — 1)v}* — 21| exp( ) du dodx.
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Then, using the same method as in (A1.7), we get K(¢) < (C/#*)t3/?> = C/t3/, and hence
the convergence is near infinity. As for the convergence near zero, we simply proceed as in

(a). O
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