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In this paper we prove that the density pt,x(y) of the solution of a white-noise-driven parabolic

stochastic partial differential equation (SPDE) satisfying a strong ellipticity condition is 1
2

Lipschitz

continuous with respect to (w.r.t.) t and 1ÿ E Lipschitz continuous w.r.t. x for all E 2 ]0, 1[. In

addition, we show that it belongs to the Besov space B1,1,1 w.r.t. x. The proof is based on the

Malliavin calculus of variations and on some re®ned estimates for the Green kernel associated with

the SPDE.
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1. Introduction

Consider the following parabolic stochastic partial differential equation:

(E)
@X

@ t
(t, x) � @

2 X

@x2
(t, x)� ø(X (t, x))� j(X (t, x)) _W (t, x),

for (t, x) 2 ]0, T [ 3 ]0, 1[, where W is a space±time white noise on [0, T ] 3 [0, 1], j and ø
some smooth functions with bounded derivatives, satisfying the Neumann boundary

conditions:

X (0, x) � X0(x),
@X

@x
(t, 0) � @X

@x
(t, 1) � 0:

The solution of such an equation is given by the following evolution equation (Walsh 1986):

X (t, x) � Gt(x, X 0)�
� t

0

�1

0

Gtÿs(x, y)j(X (s, y))W (dy, ds)�
� t

0

�1

0

Gtÿs(x, y)ø(X (s, y)) dy ds,

(1:1)

where Gt denotes the Green kernel related to the heat equation on [0, T ] 3 [0, 1] with the

Neumann boundary conditions and where we set Gt(x, ö) � � 1

0
Gt(x, y)ö(y) dy for any

continuous function ö on [0, 1].
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Bally and Pardoux (1994) have established that, for each ®xed (t, x) 2 ]0, T [ 3 [0, 1],

X (t, x) is an in®nitely differentiable functional in the sense of the Malliavin calculus related

to W and that, on the set fj 6� 0g, X (t, x) possesses a C1 density y 7! pt,x(y) with respect

to (w.r.t.) the Lebesgue measure.

The aim of this paper is to study the regularity of the function (t, x) 7! pt,x(y) under the

strong ellipticity condition j > c . 0. A natural direction to investigate is that of the

HoÈlder regularity. Here we prove that the density function is 1
2

Lipschitz w.r.t. t and 1ÿ E
Lipschitz w.r.t. x.

The ®rst thing to note is that the regularity that we claim is stronger than the pathwise

regularity of X (t, x), since X (t, x) is 1
4
ÿ E Lipschitz w.r.t. t and 1

2
ÿ E Lipschitz w.r.t. x (see,

for example, Walsh (1986)). However, this apparent `̀ increase'' in regularity is not

surprising. Indeed, consider the standard Brownian motion Bt on R. It is well known that Bt

is 1
2
ÿ E Lipschitz w.r.t. t, whereas its density is differentiable. A heuristic way to understand

what yields this `̀ new'' regularity is to note that the density pt(y) can be seen as the limit

of E[ f (Bt)] when f ! ä y. Then, using the ItoÃ formula, one observes that the stochastic

integrals involved, which account for most of the loss of regularity, are `̀ killed'' by the

expectation.

This particular example gives two important ideas. First, a convenient way to obtain the

required HoÈlder regularity for the density function pt,x w.r.t. its parameters is to show

estimates of the following kind:

jE[ f (X (t � h, x)]ÿ E[ f (X (t, x)]j < Ci Ff i1h1=2 (1:2)

and

jE[ f (X (t, x� h)]ÿ E[ f (X (t, x)]j < C9iFf i1h1ÿE, (1:3)

where Ff denotes an antiderivative of f, and where f is a function with suf®cient regularity.

Then it only remains to take a sequence f n, y of functions converging towards the Dirac

measure ä y, so that i F n, y i1 is uniformly bounded w.r.t. n and y (e.g. Gaussian kernels).

The second idea given by the example above is to take advantage of the effect of the

expectation on stochastic integrals (an effect which is lost when using such inequalities as

the Burkholder inequality). However, it is impossible to use the ItoÃ formula in our context,

for the representation of X (t, x) given by the evolution equation (1.1) is not a

semimartingale decomposition. A natural idea is then to employ a Taylor expansion of

order 2. One then has to ®nd a way to deal with such quantities as E[ f 9(X (t, x))Ut,x,h],

where U is a stochastic integral of the ItoÃ type. In a standard context, one would apply the

ItoÃ formula to f 9(X (t, x)). Here we use instead the crucial fact that, for adapted processes,

the ItoÃ integral corresponds to the Skorohod integral, which enables us to employ the

standard duality formula between the derivative operator (in the Malliavin sense) and the

Skorohod integral, thus producing classical integrals that are more manageable.

Yet technical dif®culties arise because of the presence of the Green kernel G, which has

a singularity at t � 0. Therefore, new estimates have to be found for G (the inequalities

proved by Walsh and quoted by Bally et al. (1995) will also be quite useful).

Finally we note the discrepancy between time and space regularity and wonder whether

the result concerning the latter may be improved, and in which sense. A natural approach is
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to consider the following functional vector space: let f be a real function de®ned on [0, 1],

we de®ne, for h 2 [0, 1] and x 2 [0, 1] such that [xÿ h, x� h] � [0, 1], the following

(iterated) differences:

Äh( f )(x) � f (x� h)ÿ f (x), Ä2
h( f )(x) � Äh(Äh)( f )(x) � f (x� h)� f (xÿ h)ÿ 2 f (x):

Then one de®nes the norm i:i1,1,1 by

i f i1,1,1 :� i f i1 � sup
jhj<1

iÄ2
h( f )i1
jhj :

The space of real-valued functions f such that i f i1,1,1,1 is denoted by B1,1,1 and is a

Besov space. We remark that the space B1,1,1 (which is sometimes called the Zygmund

class) strictly contains the space of 1-Lipschitz-continuous functions. (We refer for instance

to the book by Bergh and LoÈfstroÈm (1986) for a more detailed account on the subject.)

We then prove that, for each ô 2 ]0, T [, the function x 7! pt,x(y) belongs to the space

B1,1,1 uniformly in (t, y) 2 [ô, T ] 3 R, i.e. there exists some real constant Cô such that,

for all (t, y) 2 [ô, T ] 3 R,

i pt,:(y)i1,1,1 < Cô ,1: (1:4)

The method that we use is a simple re®nement of that employed for the HoÈlder regularity, via

new estimates of the Green kernel G.

Our work is therefore organized as follows. In Section 2 we expose the context of our

study and state our main theorem. The next short section, Section 3, is then devoted to the

exposition of the Malliavin calculus related to the white noise W.

The proof of the main result (Theorem 2.1) is then given in Section 4. A crucial tool of

this proof is a very general result (Proposition 4.2) which roughly states that, if two random

variables F and G are close in the sense of some Sobolev norm w.r.t. the Malliavin

calculus, then the random variables obtained via the Malliavin integration-by-parts formula

are close as well. This result, used via its corollary (Corollary 4.2), will be crucial to give

estimates in terms of the norm i Ff i1 for the terms involving f and its derivatives.

Once this result is proved, we ®rst deal with time regularity and then with space

regularity. For the latter, we ®rst concentrate on the HoÈlder regularity and then on the Besov

regularity. Some technical lemmas are ®nally given in Appendix 1.

2. General framework and statement of the results

Let (Ù, F , P) be a probability space and W a space±time white noise on [0, T ] 3 [0, 1]

with covariance ds dy, where T is a ®xed deterministic time. Let F t �
ó (W (A), A 2 B ([0, t] 3 [0, 1])) _N where N is the class of P-null sets of F and let P
denote the ó-algebra of F t-progressively-measurable subsets of Ù 3 [0, T ].

Let X � (X (t, x)) be the solution of (E). This means that X satis®es the evolution

equation (1.1), where
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Gt(x, y) � 1

(4ðt)1=2

Xn��1
n�ÿ1

exp
ÿ(yÿ xÿ 2n)2

4t

� �
� exp

ÿ(y� xÿ 2n)2

4t

� �� �
, (2:1)

for which we have (cf. Friedman (1964)):

(�) 9C . 0, 8t 2 ]0, T ], 8(x, y) 2 [0, 1]2, Gt(x, y) <
C

t1=2
exp ÿ (xÿ y)2

4t

� �
:

In the sequel, we assume that X0 2 C1([0, 1]] and that j and ø satisfy the following

hypotheses.

(H1) j, ø and all their derivatives are bounded.

(H2) 9c . 0, 8x 2 R, j(x) > c.

We remark that (H2) is a condition of strong ellipticity.

Using the Malliavin stochastic calculus of variations, Bally and Pardoux (1993) have

proved that under (H1) and (H2), for all (t, x) 2 ]0, T [ 3 [0, 1], the solution X (t, x) of (E)

has a density pt,x(y) which is in®nitely differentiable with respect to y 2 R.

The aim of this paper is to determine the regularity of the function (t, x)! pt,x, that is,

we prove the following result.

Theorem 2.1. Let ô 2 ]0, T [ be a ®xed time.

(1) There exists a constant Cô such that, for all t 2 [ô, T ], h . 0 such that t � h < T,

y 2 R and x 2 [0, 1], we have

j pt�h,x(y)ÿ pt,x(y)j < Côh1=2:

(2) Let E 2 ]0, 1[. There exists a constant Cô,E such that, for all t 2 [ô, T ], x 2 [0, 1],

h . 0 such that x� h < 1, and y 2 R, we have

jpt,x�h(y)ÿ pt,x(y)j < Cô,Eh
1ÿE:

(3) The function x 7! pt,x(y) belongs to the space B1,1,1 uniformly in (t, y) 2
[ô, T ] 3 R, i.e. there exists some real constant Cô such that, for all (t, y) 2 [ô, T ] 3 R,

i pt,:(y)i1,1,1 < Cô ,1: (2:2)

Remark. Theorem 2.1 remains valid in the case of the Dirichlet boundary conditions if we

restrict the space variable to intervals of the type [á, 1ÿ á] � [0, 1], with á. 0. The only

difference with the Neumann case lies in the use of Lemma A1.2, as seen in the proof of

Lemma 4.1.

3. Malliavin calculus

In this section, we introduce the notation and recall the main results of the Malliavin calculus

related to W (for the proofs and a more comprehensive account on the subject, we refer to

Nualart (1995) and to Nualart and Sanz (1985) for the special case that we consider here).
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3.1. The basics

We denote by S the space of smooth functionals, i.e. of real-valued functionals of the form

F � f (W (h1), W (h2), . . . , W (hm)),

where f 2 C1(Rm) and has polynomial growth, as well as its derivatives, and h1, h2, . . . , hm

is an orthonormal sequence in L2(ËT ; dt dx), with Ët :� [0, t] 3 [0, 1], and for h 2 L2(ËT ),

W (h) :� � T

0

� 1

0
h(s, y)W (dy, ds). For F 2 S , one de®nes the ®rst-order Malliavin derivative

to be the L2(ËT ) valued random variable

Dt,x F �
Xm

i�1

@ i f (W (h1), W (h2), . . . , W (hm))hi(t, x):

Similarly, the derivative of order k of F is the L2(Ëk
T ) valued random variable

Dk
áF �

Xm

i1,:::,i k�1

@ i1 . . . @ i k
f (W (h1), W (h2), . . . , W (hm))hi1 (á1) . . . hi k

(ák),

where á � (á1, . . . , ák), ái � (ri, zi) 2 ËT , 1 < i < k. Then, for p > 1 and k 2 N, the

space Dk, p is the closure of S w.r.t. the seminorm

iF i k, p � (EjFj p)�
Xk

i�1

(EiDi F i p)

 !1= p

, i Di F i2 �
�
Ëi

T

(Di
áF)2 dá,

and we set D1 � T p>1

T
k2NDk, p. Similarly, one can de®ne, for H � L2(ËT ), the spaces

Dk, p(H) and D1(H), and the related i:i k, p, H norms (the related smooth functionals being of

the form F �Pn
k�0 Fkvk where Fk 2 S and vk 2 H).

A random variable F satis®es (H3) if

(H3) F 2 D1, i DF iÿ1 2
\
p>0

Lp:

The derivation operator D on L2(Ù) has an adjoint called the Skorohod integral, denoted by

ä, and de®ned by the duality formula E[äu G] � E[hu DGi], where h:, :i denotes the usual

scalar product in L2(ËT ). We shall use the following properties of D and ä: (here U 2 D1,

X satis®es (H3); f is a continuous function on R with polynomial growth and Ff is a

primitive of f ).

(P1) ä is continuous from Dk�1, p(H) to Dk, p:

(P2) E(Uf (X )) � E Ff (X )ä
U DX

i DX i2

� �� �
:

(P1) is obtained via the Meyer inequalities, and (P2) is proved using the integration-by-

parts formula.

As stated in the introduction, we shall use in the sequel the following property of ä: if

u 2 L2(Ù 3 ËT ) is an F t-adapted process, then u is in the domain of ä, and
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ä(u) � � ËT
Ux, tW (dx, dt). The proof, in our context, is a mere adaptation of the original

proof for the case of the Brownian motion on R.

3.2. Differentiability of X(t, x)

Bally and Pardoux (1993) have proved that, under (H1) and (H2), X (t, x) belongs to D1, and

its Malliavin ®rst-order derivative satis®es the following equation: for r , t,

Dr,z X (t, x) � Gtÿr(x, z)j(X (r, z))�
� t

r

�1

0

Gtÿs(x, y)j9(X (s, y))Dr,z X (s, y)W (dy, ds)

�
� t

r

�1

0

Gtÿs(x, y)ø9(X (s, y))Dr,z X (s, y) dy ds (3:3)

(and Dr,z X (t, x) � 0 when r . t).

The following result will be constantly used in the paper (cf. Bally and Pardoux (1993)).

Proposition 3.1.

(a) For all M, p, there exists a constant CM , p such that

sup
( t,x)2[0,T ]3[0,1]

Ei DM X (t, x)i p < CM , p ,1:

(b) Let ô 2 ]0, T [. For all p 2 ]0, �1[ there exists a constant C p,ô such that

E
1

i DX (t, x)i p

� �
< C p,ô ,1:

We remark that uniform pathwise estimates such as those stated by Nualart (1995,

Theorem 2.2.1, p. 102) for stochastic differential equations cannot be obtained in our

context, because of the presence of G in (3.3).

4. Proof of Theorem 2.1

4.1. The method

As explained in the introduction, a standard method to obtain estimates for the density of

X (t, x) is to consider E[ f (X (t, x)] for f in a reasonably large functional vector space. More

precisely, we prove in this section the following proposition.

Proposition 4.1. Let ô 2 ]0, T [. There exists some real numbers Cô and Cô,E such that, for all

t 2 [ô, T ], x 2 [0, 1], E 2 ]0, 1[ and h such that t � h < T and x� h < 1, for all f 2 C3
b(R),

and Ff , antiderivative of f , we have

jE( f (X (t � h, x))ÿ E( f (X (t, x))j < Cô iFf i1h1=2, (4:1)
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jE( f (X (t, x� h))ÿ E( f (X (t, x))j < Cô,E iFf i1h1ÿE, (4:2)

iE[ f (X (t, :))]i1 < Cô iFf i1, (4:3)

jE[Ä2
h f (X (t, :))(x)]j < Cô iFf i1h: (4:4)

Supposing that Proposition 4.1 is proved, then let f f n, ygn be a sequence of Gaussian kernels

of mean y and whose variance decreases towards zero with n. If Fn, y is the antiderivative of

f n, y such that Fn, y(ÿ1) � 0, then it is clear that supn, y i Fn, y i1,1 and, on the other hand,

8(t, x), limn!1 E[ f n, y(X (t, x))] � pt,x(y). Hence, taking limits in (4.1)±(4.4), we get the

inequalities of Theorem 2.1.

Now, as the ItoÃ formula cannot be used on the evolution equation (1.1), a natural tool to

obtain estimates (4.1)±(4.4) is a Taylor expansion with integral remainder. Terms involving

f , f 9, f 0 will then appear, which will have to be replaced by others involving Ff . A natural

way to do so is the integration-by-parts formula (P2). Of course, such a method is relevant

if and only if there is no loss of regularity w.r.t. h along the way. This is the object of the

general result and its corollary which we now state and prove.

Proposition 4.2. Let Z1, Z2 2 D1 and î1, î2 be random variables satisfying (H3). Setting

ó i � i Dîi i2, we de®ne by induction (for i � 1, 2)

H0(Zi; îi) � Zi, H n�1(Zi; îi) � ä Hn(Zi; îi)
Dîi

ó i

� �
:

Then, for all n > 1, q > 1 and all p . 1,

i Hn(Z1; î1)ÿ Hn(Z2; î2)iq, p < C p,q,n(i Z1 ÿ Z2 iq�n,4n p � iî1 ÿ î2 iq�2n,4 n p),

where C p,q,n � K p,q,nfi Z2 iq�2n,4np � supi2f1,2gfiîi iq�2n,4n p � Ejóÿ1
i jkngg, with a constant

K p,q,n depending only on p, q, n and an integer kn depending only on n.

Proof. We show the result for n � 1, the general case being obtained by induction. Because

of (P1), there exists a constant Cq, p depending only on p, q such that

i H1(Z1; î1)ÿ H1(Z2; î2)iq, p

<

��������ä (Z1 ÿ Z2)
Dî1

ó1

� ���������
q, p

�
��������ä Z2

ó1

D(î1 ÿ î2)

� ���������
q, p

�
��������ä ó2 ÿ ó1

ó1
. ó2

Z2 Dî2

� ���������
q, p

< Cq, p

��������(Z1 ÿ Z2)
Dî1

ó1

��������
q�1, p, H

�
�������� Z2

ó1

D(î1 ÿ î2)

��������
q�1, p, H

�
�������� ó2 ÿ ó1

ó1
. ó2

Z2 Dî2

��������
q�1, p, H

 !

:� A1 � A2 � A3:

Using the Leibniz formula, the Schwarz inequality and the fact that the îi satisfy (H3), we

obtain
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A1 < Cq, p i Z1 ÿ Z2 iq�1,2 p

�������� Dî1

ó1

��������
q�1,2 p, H

< Cq, p i Z1 ÿ Z2 iq�1,2 p,

A2 < Cq, p

�������� Z2

ó1

��������
q�1,2 p

i D(î1 ÿ î2)iq�1,2 p, H < Cq, p iî1 ÿ î2 iq�2,2 p:

As for A3, insofar as

Dk
á(ó2 ÿ ó1) �

�
ËT

Dk
á[fDr,z(î2 ÿ î1)gfDr,z(î2 � î1)g] dz dr,

we easily have, using again the Leibniz formula and the Schwarz inequality,

ió2 ÿ ó1 iq�1,2 p < K iî2 ÿ î1 iq�2,4 p,

which, proceeding as previously, yields

A3 < Cq, p iî2 ÿ î1 iq�2,4 p:

This concludes the proof. u

From Proposition 4.2, we deduce the following.

Corollary 4.1. Let f be in C r0

b (R) and Ff be an antiderivative of f. For r < 3, if Z and î are

random variables such that Z 2 D1 and î satis®es (H3), then, for r < r0 ,

jE[ f (r)(î)Z]j < Cr i Ff i1 i Z i r�1,22 r�2 ,

where Cr � Krfiîi2(r�1),22 r�2 � Ejó ÿ1jkrg, with a constant Kr depending only on r and an

integer kr depending only on r.

Proof. Using (P2) r � 1 times, we have

jE[ f (r)(î)Z]j � jE[Ff (î)H r�1(Z, î)]j < i Ff i1 i H r�1(Z; î)i0,1,

where the random variables Hk(Zi, î) are those obtained via the construction of Proposition

4.2. Then it suf®ces to use Proposition 4.2 with Z1 � Z, Z2 � 0, î1 � î2 � î, q � 0, p � 1

and n � r � 1. u

4.2. Proof of estimate (4.1)

Assume that t 2 [ô, T ], x 2 [0, 1] and h . 0 with t � h < T . One has the following Taylor

expansion:
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E[ f (X (t � h, x))ÿ f (X (t, x))] � E[ f 9(X (t, x))(X (t � h, x)ÿ X (t, x))]

� E (X (t � h, x)ÿ X (t, x))2

�1

0

(1ÿ v) f 0(Yt,x(h, v)) dv

 !

:� T1 � T2,

where Yt,x(h, v) � X (t, x)� v(X (t � h, x)ÿ X (t, x)).

4.2.1. Bound for T1

We have

T1 � E[ f 9(X (t, x))fGt�h(x, X 0)ÿ Gt(x, X0)g]

� E f 9(X (t, x))

� t

0

�1

0

fGt�hÿs(x, y)ÿ Gtÿs(x, y)gø(X (s, y)) dy ds

 "

�
� t�h

t

�1

0

Gt�hÿs(x, y)ø(X (s, y)) dy ds

��

� E f 9(X (t, x))

� t

0

�1

0

fGt�hÿs(x, y)ÿ Gtÿs(x, y)gj(X (s, y))W (dy, ds)

 !

� E f 9(X (t, x))

� t�h

t

�1

0

Gt�hÿs(x, y)j(X (s, y))W (dy, ds)

 !

:� T11 � T12 � T13 � T14:

It is clear that T14 � 0 since f 9(X (t, x)) is F t measurable and

Mu �
�u

0

�1

0

Gt�hÿs(x, y)j(X (s, y))W (dy, ds), u < t � h,

is an F u- L2-bounded martingale.

On the other hand, set H
(0)
t,x(h) � Gt�h(x, X0)ÿ Gt(x, X0). The function t! Gt(x, X0) is

clearly in®nitely differentiable on [ô, T ] and sup( t,x)2[ô,T ]3[0,1] j(@=@ t)fGt(x, X 0)gj < Cô.

Therefore we have jH (0)
t,x(h)j p < Cphp and, applying Corollary 4.1 with Z �

Gt�h(x, X0)ÿ Gt(x, X 0) and î � X (t, x), we get jT11j < Cô iFf i1h. (Indeed, Z being

deterministic, its Malliavin derivatives are zero and, by Proposition 3.1, X (t, x) satis®es

(H3).)

We now turn to T12. We must prove that

HoÈlder and Besov regularity of density for solution of parabolic SPDE 283



Ut,x(h) �
� t

0

�1

0

fGt�hÿs(x, y)ÿ Gtÿs(x, y)gø(X (s, y)) dy ds

�
� t�h

t

�1

0

Gt�hÿs(x, y)ø(X (s, y)) dy ds

is in D1 with, for all p, q, sup t,x iUt,x(h)iq, p < Cp h1=2 in order to apply Corollary 4.1 with

Z � Ut,x(h) and î � X (t, x). For p . 1, using that ø is bounded, we have

E[jUt,x(h)j p] < Cp

� t

0

�1

0

jGt�hÿs(x, y)ÿ Gtÿs(x, y)j dy ds

 ! p
24

�
� t�h

t

�1

0

Gt�hÿs(x, y) dy ds

 ! p#
:

We then use Lemma A.1.1; taking â � 3
2

in (c), we get EjUt,x(h)j p < Cph p=2. We now have to

bound the derivatives of Ut,x(h). We do so for the ®rst order; the general case is similarly

dealt with using the Leibniz formula, the fact that j and ø are uniformly bounded and

Proposition 3.1. We have, for r , t � h and z 2 [0, 1],

Dr,zUt,x(h) �
� t

0

�1

0

fGt�hÿs(x, y)ÿ Gtÿs(x, y)gø9(X (s, y))Dr,z X (s, y) dy ds

�
� t�h

t

�1

0

Gt�hÿs(x, y)ø9(X (s, y))Dr,z X (s, y) dy ds,

(this quantity being zero when r . t � h). Using the HoÈlder inequality w.r.t.

jGt�hÿs(x, y)ÿ jGtÿs(x, y)j dy ds (or Gt�hÿs(x, y) dy ds), we easily obtain

i DU t,x(h)i p < Cp

� t

0

�1

0

jGt�hÿs(x, y)ÿ Gtÿs(x, y)j dy ds

 ! pÿ1
8<:

3 G

� t

0

�1

0

jGt�hÿs(x, y)ÿ Gtÿs(x, y)j iDX (s, y)i p dy ds

�
� t�h

t

�1

0

Gt�hÿs(x, y) dy ds

 ! pÿ1� t�h

t

�1

0

Gt�hÿs(x, y)i DX (s, y)i p dy ds

9=;,

which clearly gives, taking expectations and using Proposition 3.1, Ei DU t,x(h)i p < Cph p=2.

We now turn to T13, which is the most dif®cult term because of the stochastic integral,

the main source of loss of regularity. Insofar as the integrand is adapted, this term can be

viewed as a Skorohod integral and the duality formula between ä and D yields
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T13 � E f 0(X (t, x))

� t

0

�1

0

Ds, y X (t, x)fGt�hÿs(x, y)ÿ Gtÿs(x, y)gj(X (s, y)) dy ds

 !
:

For (t, x) 2 [ô, T ] 3 [0, 1] such that t > t, set

Br,z(t, x) � (Gt�hÿr(x, y)ÿ Gtÿr(x, y))j(X (r, z)), (r, z) 2 Ët:

Because of (3.3), one has (remember that h:, :i denotes the usual scalar product on L2(ËT )):

hDX (t, x), B(t, x)i � hGtÿ:(x, :)j(X (:, :)), B(t, x)i

�
� t

0

�1

0

Gtÿs(x, y)j9(X (s, y))hDX (s, y), B(t, x)iW (dy, ds)

�
� t

0

�1

0

Gtÿs(x, y)ø9(X (s, y))hDX (s, y), B(t, x)idy ds: (4:5)

Then, using the Burkholder inequality and the Gronwall lemma, we easily get

EjhDX (t, x), B(t, x)ij p < C p,ôEjhGtÿ:(x, :)j(X (:, :), B(t, x)ij p,

where the constant C p,ô does not depend on (t, x). Therefore, setting T13 �
E[ f 0(X (t, x))St,x(h)], we have

EjSt,x(h)j p < C p,ôE

����� t

0

�1

0

Gtÿs(x, y)fGt�hÿs(x, y)ÿ Gtÿs(x, y)gj2(X (s, y)) dy ds

���� p

:

Therefore the regularity w.r.t. h of St,x(h) is determined by that of� t

0

�1

0

Gtÿs(x, y)jGt�hÿs(x, y)ÿ Gtÿs(x, y)j dy ds,

and, using Lemma A1.3, we ®nally get

EjSt,x(h)j p < C p,ôh p=2:

As for the derivatives of St,x(h), they are similarly handled by differentiating (4.5) and using

the methods exposed above. Therefore we can apply Corollary 4.1 and thus obtain

jT13j < Cô i Ff i1h1=2.

4.2.2. Bound for T2

We have T2 � E[fX (t � h, x)ÿ X (t, x)g2
� 1

0
(1ÿ v) f 0(Yt,x(h, v)) dv]. In order to apply

Corollary 4.1 with î � Yt,x(h, v), Z � fX (t � h, x)ÿ X (t, x)g2, we only have to prove the

following lemma.

Lemma 4.1. Yt,x(h, v) satisfy (H3) uniformly in (h, v), i.e.
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8ô 2 ]0, T [, 8 p . 1, sup
( t,x,h,v)=ô< t< t�h<T ,(x,v)2[0,1]2

[Efi DYt,x(h, v)i p � iDYt,x(h, v)iÿ pg]

< C p,ô ,1:

Indeed, if this result holds, the required bound for T2 is obtained by applying three times

the integration-by-parts formula (P2), since i(X (t � h, x)ÿ X (t, x))2 iq, p clearly is of order

h1=2.

So as to prove Lemma 4.1, we ®rst show the following auxiliary result, which studies the

regularity of the function t 7! Ej � t

0

� 1

0
(Dr,z X (s, y))2 dz drj p, i.e. to some extent the

behaviour of DX (t, x) in the neighbourhood of t, not pathwise but from a Hilbertian

point of view.

Lemma 4.2. Let ç be a real number such that t ÿ ç. 0. For all p . 1 there exists a constant

Cp such that, for all t . 0, s > t, y 2 [0, 1],

E

����� t

tÿç

�1

0

(Dr,z X (s, y))2 dz dr

���� p

< Cpç
p=2:

Proof of Lemma 4.2. We de®ne

H(s, y) :� E

����� t

tÿç

�1

0

fDr,z X (s, y)g2 dz dr

���� p

, H(s) � sup
y

H(s, y), Kt(s) � sup
t<í<s

H(í):

Because of Proposition 3.1, we know that Kt(s) is uniformly bounded with respect to ç, s and

t 2 [0, T ]. On the other hand, since j is uniformly bounded, we have

H(s, y) < Cp

��� t

tÿç

�1

0

G2
sÿr(y, z) dz dr

� p

� E

����� t

tÿç

�1

0

� s

r

�1

0

Gsÿí(y, u)j9(X (í, u))Dr,z X (í, u)W (dí, du)

 !2

dz dr

���� p

� E

����� t

tÿç

�1

0

� s

r

�1

0

Gsÿí(y, u)ø9(X (í, u))Dr,z X (í, u) dí du

 !2

dz dr

���� p�
:� A1 � A2 � A3:

It is easy to see that A1 < Cpç p=2. As for A2, we use the following version of the Burkholder

inequality for Hilbert-space valued martingales: if (Qs, y)(s, y)2ËT
is a L2(Ët)-valued

predictable process, then

E

�����
Ë t

� t

0

�1

0

Qí,u(r, z)W (dí, du)

 !2

dz dr

���� p

< CpE

����� t

0

�1

0

�
Ë t

Q2
í,u(r, z) dz dr

� �
dí du

���� p

: (4:6)

We then have
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A2 < Cp

�
E

����� t

tÿç

�1

0

�í
tÿç

�1

0

G2
sÿí(y, u)(Dr,z X (í, u))2 dz dr

 !
dí du

���� p

� E

����� s

t

�1

0

� t

tÿç

�1

0

G2
sÿí(y, u)fDr,z X (í, u)g2 dz dr

 !
dí du

���� p�
:� Cp(A21 � A22)

and, using the HoÈlder inequality w.r.t. the suitable measure, we obtain

A21 <

� t

tÿç

�1

0

G2
sÿí(y, u)sup

u,í
E

�����T

0

�1

0

(Dr,z X (í, u))2 dz dr

���� p
 !

dí du

3

� t

tÿç

�1

0

G2
sÿí(y, u) du dí

 ! pÿ1

< Cpç
p=2:

As for A22, using the same method, we get A22 < Cp

� s

t
Kt(í) dí. Finally we bound A3

because of the HoÈlder inequality and the methods employed in the treatment of A2. Then the

Gronwall lemma yields the result. u

Proof of Lemma 4.1. By means of Lemma 2.33.1 of Nualart (1995), we only have to prove

the following estimate: for all ô 2 ]0, T [, there exist ë. 0 and E0(ô) such that for all q and all

0 , E < E0(ô) we have

(ND) sup
v

P(iDYt,x(h, v)i2 < E) < Cq,ôEëq:

To prove (ND), we shall write

Yt,x(h, v) � Z t,x(h, v)� vfX (t � h, x)ÿ Gh(x, X (t, :))g,
where Z t,x(h, v) � X (t, x)� vfGh(x, X (t, :))ÿ X (t, x)g. Then, for ç 2 ]0, ô[,

iDYt,x(h, v)i2 >

� t

tÿç

�1

0

(Dr,zYt,x(h, v))2 dr dz

> 1
2

� t

tÿç

�1

0

(Dr,z Z t,x(h, v))2 dr dzÿ v2

3

� t

tÿç

�1

0

[Dr,zfX (t � h, x)ÿ Gh(x, X (t, :))g]2 dr dz

and we have
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P(iDYt,x(h, v)i2 < E) < P

� t

tÿç

�1

0

fDr,z Z t,x(h, v)g2 dr dz < 4E

 !

� P v2

� t

tÿç

�1

0

[Dr,zfX (t � h, x)ÿ Gh(x, X (t, :))g]2 dr dz > E

 !
:

We ®rst deal with Z t,x(h, v):

Dr,z Z t,x(h, v) � Gtÿr(x, z)j(X (r, z))�
� t

r

�1

0

Gtÿs(x, y)ø9(X (s, y))Dr,z X (s, y) dy ds

�
� t

r

�1

0

Gtÿs(x, y)j9(X (s, y))Dr,z X (s, y)W (dy, ds)

� v(fGt�hÿr(x, z)ÿ Gtÿr(x, z)gj(X (r, z))

�
� t

r

�1

0

fGt�hÿs(x, y)ÿ Gtÿs(x, y)gø9(X (s, y))Dr,z X (s, y) dy ds

�
� t

r

�1

0

fGt�hÿs(x, y)ÿ Gtÿs(x, y)gj9(X (s, y))Dr,z X (s, y)W (dy, ds))

� Gtÿr(x, z)j(X (r, z))�
X5

k�1

Ik :

Then using the strong ellipticity hypothesis (H2) we get� t

tÿç

�1

0

(Dr,z Z t,x(h, v))2 dz dr >
c2

2

� t

tÿç

�1

0

G2
tÿr(x, z) dz dr ÿ

� t

tÿç

�1

0

X5

k�1

Ik

 !2

dz dr,

and the ®rst term is bounded from below by Cç1=2 owing to Lemma A1.2 of Appendix 1.

Hence

P

� t

tÿç

�1

0

fDr,z Z t,x(h, v)g2 dr dz < E

 !
< P

� t

tÿç

�1

0

X5

k�1

Ik

 !2

dz dr > Cç1=2 ÿ E

8<:
9=;:

We choose ç � E3(1ÿä). If ä. 1
3
, then there exists E0(ô) such that, for all E < E0(ô), we have

Cç1=2 ÿ E > E=2. Using the Chebyshev inequality for q . 1,

P

� t

tÿç

�1

0

(Dr,z Z t,x(h, v))2 dz dr < E

 !
<

Cq

Eq
E

����� t

tÿç

�1

0

X5

k�1

Ik

 !2

dz dr

����q

<
Cq

Eq

X5

k�1

E

����� t

tÿç

�1

0

I2
k dz dr

����q:
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Then, using the Burkholder±Davis±Gundy inequalities for Hilbert-valued martingales (4.6)

and Lemma 4.2, taking into account that v < 1, it is easy to see that

8k < 5, E

����� t

tÿç

�1

0

I2
k dz dr

����q < Cq,ôç
q:

Indeed, for instance, using (4.6) and the boundedness of j:

E

����� t

tÿç

�1

0

I2
5 dz dr

����q

� E

����� t

tÿç

�1

0

� t

r

�1

0

fGt�hÿs(x, y)ÿ Gtÿs(x, y)gj9(X (s, y))Dr,z X (s, y)W (dy, ds)

 !2

dr dz

����q

< C

� t

tÿç

�1

0

fGt�hÿs(x, y)ÿ Gtÿs(x, y)g2 dy ds

 !qÿ1

3

� t

tÿç

�1

0

fGt�hÿs(x, y)ÿ Gtÿs(x, y)g2E

����� s

tÿç

�1

0

fDr,z X (s, y)g2 dz dr

����q dy ds

< Cqô(ç
1=2)qÿ1çq=2

� t

tÿç

�1

0

fGt�hÿs(x, y)ÿ Gtÿs(x, y)g2 dy ds

< Cqôç
q:

Hence, insofar as ç � E3(1ÿä), we get a bound of order (ç=E)q, and ç=E � E3(1ÿä)ÿ1 � E2ÿ3ä.

Therefore, provided that we choose ä 2 ]1
3
, 2

3
[, there exists â. 0 such that, for all q . 1,

P

� t

tÿç

�1

0

fDr,z Z t,x(h, v)g2 dr dz < E

 !
< CqôEâq:

We now deal with the other term. On [0, t], we have

Dr,zfX (t � h, x)ÿ Gh(x, X (t, :))g �
� t�h

t

�1

0

Gt�hÿs(x, y)j9(X (s, y))Dr,z X (s, y)W (dy, ds)

�
� t�h

t

�1

0

Gt�hÿs(x, y)ø9(X (s, y))Dr,z X (s, y) dy ds:

Using again the Chebyshev and the Burkholder±Davis±Gundy inequalities, as well as

Lemma 4.2, we easily obtain

P v2

� t

tÿç

�1

0

[Dr,zfX (t � h, x)ÿ Gh(x, X (t, :))g]2 dr dz > E

 !
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< Cqô
v2q

Eq
çq=2

� t�h

t

�1

0

G2
t�hÿs(x, y) dy ds

 !q

: (4:7)

Therefore, we see that several situations may occur.

(1) If v < Eá, with á. 0 to be determined afterwards,

P v2

� t

tÿç

�1

0

[Dr,zfX (t � h, x)ÿ Gh(x, X (t, :))g]2 dr dz > E

 !
< Cqô

E2áç1=2

E

� �q

,

and E2áç1=2=E � E2á�1=2ÿ3ä=2, which imposes ä, (1� 4á)=3; this restriction is consistent

with ä 2 ]1
3
, 2

3
[ provided that (1� 4á)=3 , 2

3
, i.e. á 2 ]0, 1

4
[.

(2) Hence we now ®x such an á and study the case v > Eá. We then have to distinguish

two subcases, whether h is `̀ small'' or not, because of the integral in (4.7). Then let ç9 . 0,

ç9 � E3(1ÿä9), with ä9 a priori different from ä.

(a) If h , ç9, we have, as before, with ç9 instead of ç

P

� t

tÿç9

�1

0

fDr,z Z t,x(h, v)g2 dz dr < E

 !
< Cq

ç9

E

� �q

,

which, as seen before, imposes that ä9 2 ]1
3
, 2

3
[. On the other hand, bounding v by 1 in (4.7)

and using Lemma A1.1 (c) of Appendix 1, we get

P v2

� t

tÿç9

�1

0

[Dr,zfX (t � h, x)ÿ Gh(x, X (t, :))g]2 dr dz > E

 !
< Cqô

(ç9)1=2

E

� �q

hq=2

< Cqô
ç9

E

� �q

,

since h , ç9, which therefore gives the same bound as before.

(b) Hence there remains to deal with the case h > ç9. Now, the expression involving

Z t,x(h, v) is no longer relevant, and we proceed as follows: insofar as t � hÿ ç9 > t, we

`̀ localize'' our study near t � h. More precisely,

i DYt,x(h, v)i2 >

� t�h

t�hÿç9

�1

0

fDr,zYt,x(h, v)g2 dz dr:

As Yt,x(h, v) � X (t, x)� vfX (t � h, x)ÿ X (t, x)g, we have, for r 2 [t, t � h[,

Dr,zYt,x(h, v) � vDr,z X (t � h, x),

which implies, using on the one hand the evolution equation for Dr,x X (t � h, x), and on the

other hand the fact that v > Eá as well as (H2), that

i DYt,x(h, v)i2 > E2á c2

2

� t�h

t�hÿç9

�1

0

G2
t�hÿr(x, z) dz dr ÿ

� t�h

t�hÿç9

�1

0

X2

k�1

J k

 !2

dz dr

8<:
9=;,

where
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J1 �
� t�h

r

�1

0

Gt�hÿs(x, y)j9(X (s, y))Dr,z X (s, y)W (dy, ds),

and J2 is the corresponding term with ø9. We then have

P(i DYt,x(h, v)i2 < E) < P E2á
� t�h

t�hÿç9

�1

0

X2

k�1

Jk

 !2

dz dr > CE2á(ç9)1=2 ÿ E

8<:
9=;:

In order that there exists E1(ô) , E0(ô) such that, for all E < E1(ô) we have

CE2á(ç9)1=2 ÿ E > E=2, it is necessary and suf®cient that 2á� 1
2
ÿ 3

2
ä9 , 0, which imposes

that ä9 .(1� 4á)=3. Choosing such a ä9, we then get, using the Chebyshev inequality,

P(iDYt,x(h, v)i2 < E) <
Cq

Eq
E

����E2á
� t�h

t�hÿç9

�1

0

X2

k�1

Jk

 !2

dz dr

����q,

and, proceeding as for the evaluation of the moments of I5,

E

����E2á

� t�h

t�hÿç9

�1

0

J2
1 dz dr

����q < CqôE2áqç9q < Cqôç9q:

Therefore we have again a bound of order (ç9=E)q, which imposes the ä9 2 ](1� 4á)=3, 2
3
[,

restriction which is consistent with á 2 ]0, 1
4
[; this completes the proof. u

4.3. Proof of estimate (4.2)

As in Section 4.2, we write E[ f (X (t, x� h))ÿ f (X (t, x))] � T1 � T2, with

T1 � E[ f 9(X (t, x))fX (t, x� h)ÿ X (t, x)g],

T2 � E fX (t, x� h)ÿ X (t, x)g2

�1

0

(1ÿ v) f 0(Rt,x,h(v)) dv

 !
,

where Rt,x,h(v) � X (t, x)� vfX (t, x� h)ÿ X (t, x)g. We proceed exactly as for the time

regularity. As before, T2 is easily dealt with, owing to Proposition 4.2, via the following

lemma. (Its proof, very similar to that of Lemma 4.1, is omitted.)

Lemma 4.3. Rt,x(h, v) satisfy (H3) uniformly in (h, v), i.e.

8ô 2 ]0, T [, 8 p . 1, sup
( t,x,h,v)=ô< t< t�h<T ,(x,v)2[0,1]2

[Efi DRt,x(h, v)i p � i DRt,x(h, v)iÿ pg]

< Cô, p ,1:

Hence we now have to prove that jT1j < CE i Ff i1h1ÿE. We then write T1 � T11 �
T12 � T13, with
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T11 � E[ f 9(X (t, x))fGt(x� h, X0)ÿ Gt(x, X 0)g],

T12 � E f 9(X (t, x))

� t

0

�1

0

fGtÿs(x� h, y)ÿ Gtÿs(x, y)gj(X (s, y))W (dy, ds)

 !( )
,

T13 � E f 9(X (t, x))

� t

0

�1

0

fGtÿs(x� h, y)ÿ Gtÿs(x, y)gø(X (s, y)) dy ds

 !( )
:

Because of Lemma A1.1 (a) and Corollary 4.2, T11 is of order h since x 7! Gt(x, X 0) is

Lipschitz continuous if X0 is of class C1. On the other hand, de®ning U t,x(h) �� t

0

� 1

0
fGtÿs(x� h, y)ÿ Gtÿs(x, y)gø(X (s, y)) dy ds, we clearly have

EjUt,x(h)j p < Cp

� t

0

�1

0

jGtÿs(x� h, y)ÿ Gtÿs(x, y)j dy ds

 ! p

,

and, applying Lemma A1.1 (b), for all ã 2 ]3
2
; 3[, we get EjU t,x(h)j p < C p,ãh(3ÿã) p=ã; for ã

close to 3
2
, this gives a bound of order h1ÿE. (Note that the method employed in Section 4.2 is

no longer valid since, in Lemma A1.1 (b), 3
2

is not in the interval; this accounts for the

difference between time regularity and space regularity.)

Using the same computations as those of Section 4.2, we get EiDM Ut,x(h)i p <
CMp h(3ÿã) p=ã. Therefore, Corollary 4.1 can be applied, which yields the required bound for

T13.

We now deal with T12; owing to the duality formula between ä and D, we have as before

T12 � E

� t

0

�1

0

f 0(X (t, x))Ds, y X (t, x)fGtÿs(x� h, y)ÿ Gtÿs(x, y)gj(X (s, y)) dy ds

 !
:

Set Vt,x(h) � � t

0

� 1

0
Ds, y X (t, x)fGtÿs(x� h, y)ÿ Gtÿs(x, y)gj(X (s, y)) dy ds. Using the same

method as in Section 4.2, we easily get

EjVt,x(h)j p < C p,ôE

����� t

0

�1

0

Gtÿs(x, y)fGtÿs(x� h, y)ÿ Gtÿs(x, y)g dy ds

���� p

,

and similar estimates for the derivatives of Vt,x(h). Hence one has to consider the regularity

w.r.t. h of � t

0

�1

0

j(Gtÿs(x� h, y)ÿ Gtÿs(x, y))Gtÿs(x, y)j dy ds: (4:8)

Unfortunately, as can be seen in the proof of the Lemma A1.3 of Appendix 1, one cannot ®nd

a suitable bound for (4.8). Therefore, using the HoÈlder inequality, we ®rst bound integral

(4.8) by a constant times� t

0

�1

0

jfGtÿs(x� h, y)ÿ Gtÿs(x, y)gGtÿs(x, y)jã dy ds

 !1=ã

,

where ã is a real value greater than 1 but close to 1. Then, by means of inequality (A1.2) in
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Lemma A1.3 of Appendix 1, we obtain that this term is of order h(3ÿ2ã)=ã. The end of the

proof is then similar to that of estimate (4.1), and we ®nally obtain that, for all E 2 ]0, 1[,

there exists CE,ô such that

jE[ f (X (t, x� h))ÿ f (X (t, x))]j < Cô i Ff i1h1ÿE:

4.4. Proof of estimates (4.3) and (4.4)

We ®rst deal with (4.3). Using the integration-by-parts formula (P2) and the property (P1) of

continuity of ä, we have

jE[ f (X (t, x)]j �
����E Ff (X (t, x)ä

DX (t, x)

i DX (t, x)i2

� �� ����� < i Ff i1

�������� DX (t, x)

i DX (t, x)i2

��������
1,2, H

:

Then Proposition 3.1 yields the result.

We now concentrate on (4.4). The quantity that we consider is the following:

E[Ä2
h f (X (t, :))(x)] � E[ f (X (t, x� h))� f (X (t, xÿ h))ÿ 2 f (X (t, x))]: (4:9)

As previously, we use a Taylor expansion and write, for E 2 fÿ1, 1g,
f (X (t, x� Eh))ÿ f (X (t, x) � fX (t, x� Eh)ÿ X (t, x)g f 9(X (t, x))

� fX (t, x� Eh)ÿ X (t, x)g2

�1

0

(1ÿ v) f 0(Y (E)
t,x(h, v)) dv,

(4:10)

where Y
(E)
t,x(h, v) � X (t, x)� vfX (t, x� Eh)ÿ X (t, x)g. Therefore,

E[Ä2
h f (X (t, :))(x)] � E[ f 9(X (t, x))Ä2

h X (t, :)(x)]

� E fX (t, x� h)ÿ X (t, x)g2

�1

0

(1ÿ v) f 0(Y (1)
t,x(h, v)) dv

 !

� E (Xft, xÿ h)ÿ X (t, x)g2

�1

0

(1ÿ v) f 0(Y
(ÿ1)
t,x (h, v)) dv

 !

� T1 � T
(1)
2 � T

(ÿ1)
2 : (4:11)

T
(1)
2 and T

(ÿ1)
2 are easily handled, using Lemma 4.3 and Corollary 4.1.

We now turn to T1. Using the evolution equation (1.1), we write T1 � T11 � T12 � T13,

with
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T11 � E f 9(X (t, x))

�1

0

Ä2
hGt(:, y)(x)X 0(y) dy

" #
,

T12 � E f 9(X (t, x))

� t

0

�1

0

Ä2
hGtÿs(:, y)(x)ø(X (s, y)) dy ds

" #
,

T13 � E f 9(X (t, x))

� t

0

�1

0

Ä2
hGtÿs(:, y)(x)j(X (s, y))W (dy, ds)

" #
:

Now, we have

jÄ2
höj < jÄhöj � jÄÿhöj: (4:12)

Then, since X 0 is of class C1, Lemma A1.1 (a) of Appendix 1 and Corollary 4.1 clearly yield

jT11j < ChiFf i1.

To deal with T12, we study Ut,x,h �
� t

0

� 1

0
Ä2

hGtÿs(:, y)(x)ø(X (s, y)) dy ds. Using the fact

that ø is bounded, we have, for all ã. 1,

EjUt,x;hj p < Cp

� t

0

�1

0

jÄ2
hGtÿs(:, y)(x)j dy ds

 ! p

< C p,ã

� t

0

�1

0

jÄ2
hGtÿs(:, y)(x)jã dy ds

 ! p=ã

:

At this stage of the proof, we see that we need a ®ner estimate than that provided by

inequality (4.12) and Lemma A1.1 (b). Indeed, in order to obtain the required estimate of

order h, we would like to choose ã � 3
2
, and that is not possible in Lemma A1.1 (b). We

then need a new esitmate which would be more adapted to the speci®c quantity Ä2
hG,

estimate which is provided by Lemma A1.4 (a) of Appendix 1 with ã � 3
2
, and that yields

EjUt,x,hj p < Cp h p. As for the derivatives, they are treated the usual way via Proposition

3.1.

We now deal with T13; as before, the duality between ä and the derivative operator yields

T13 � E f 0(X (t, x))

� t

0

�1

0

Ä2
hGtÿs(:, y)(x)Ds, y X (t, x)j(X (s, y)) dy ds

 !
:

Set K t,x(h) � � t

0

� 1

0
Ä2

hGtÿs(:, y)(x)Ds, y X (t, x)j(X (s, y)) dy ds. Using once more the method

of Section 4.2, one easily gets

EjK t,x(h)j p < C p,ôE

����� t

0

�1

0

Gtÿs(x, y)Ä2
hGtÿs(:, y)(x) dy ds

���� p

,

and similar estimates for the derivatives of K t,x(h). Hence Lemma A1.4 of Appendix 1 and

Corollary 4.1 ®nally yield

jT12j < Côhi Ff i1,

which completes the proof.
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Appendix 1

We start this appendix with some fundamental estimates for the Green kernels with the

Neumann and the Dirichlet boundary conditions, kernels which are indifferently denoted by

G. These estimates correspond to Lemmas A.2 and B.1 of Bally et al. (1995).

Lemma A.1.

(a) Let h be a 2â-Lipschitz function, with â. 0. Then, for all x, x9, t, t9,�����1

0

Gt9(x9, y)h(y) dyÿ
�1

0

Gt(x, y)h(y) dy

���� < i hiLip2â(jt9ÿ tjâ � jx9ÿ xj2â),

where ihiLip2â � supx 6� y(jh(y)ÿ h(x)j=jyÿ xj2â).

(b) For â 2 ]3
2
, 3[, there exists C . 0 such that, for all x, y, t, we have� t

0

�1

0

jGtÿr(x, z)ÿ Gtÿr(y, z)jâ dz dr < Cjxÿ yj3ÿâ:

(c) For all â 2 ]1, 3[ there exists C . 0 such that, for all (s, t) with s < t and for all x,� t

s

�1

0

jGtÿr(x, y)jâ dy dr < Cjt ÿ sj(3ÿâ)=2,

� s

0

�1

0

jGtÿr(x, y)ÿ Gsÿr(x, y)jâ dy dr

< Cjt ÿ sj(3ÿâ)=2:

The following result is a mere consequence of Lemma 3.3 of Bally et al. (1994).

Lemma A1.2. Let ç 2 ]0, 1[. There exists a constant C such that, for all x and all t . ç,� t

tÿç

�1

0

G2
tÿs(x, y) dy ds > Cç1=2,

where G denotes here the Green kernel corresponding to the Neumann boundary conditions.

Remark. A similar result holds for the Green kernel corresponding to the Dirichlet boundary

conditions: it suf®ces to take x in an interval [á, 1ÿ á], with á. 0.

We now state and prove technical lemmas which are crucial for our estimations.

Lemma A1.3. There exist constants C and Cã such that, for all t . 0, x 2 [0, 1], h . 0 with

t � h < T and x� h < 1,� t

0

�1

0

Gtÿs(x, y)jGt�hÿs(x, y)ÿ Gtÿs(x, y)j dy ds < Ch1=2 (A1:1)

and
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� t

0

�1

0

fGtÿs(x, y)jGtÿs(x� h, y)ÿ Gtÿs(x, y)jgã dy ds < Cãh3ÿ2ã, (A1:2)

where ã 2 ]1, 3
2
[.

Proof. Since Gt(x, y) � f1=(2ðt)1=2g expfÿ(xÿ y)2=4tg � Gt(x, y), where (t, x, y) 7!
Gt(x, y) is in C1([0, T ] 3 R2), the behaviour of the integral in (A1.1) is determined by

that of

J (t, x, h) �
� t

0

��1
ÿ1

g(t ÿ s; xÿ y)jg(t � hÿ s; xÿ y)ÿ g(t ÿ s; xÿ y)j dy ds, (A1:3)

where g(t; x) � (1=t1=2) exp(ÿx2=4t). Then, setting z � (xÿ y)=h1=2, í � (t ÿ s)=h, in

(A1.3), one easily sees that (A1.1) holds provided that

J :�
��1

0

��1
ÿ1

g(í; z)jg(í� 1; z)ÿ g(í; z)j dz dí,1:

Similarly, if z � (xÿ y)=h, í � (t ÿ s)=h2, (A1.2) holds provided that

Jã :�
��1

0

��1
ÿ1
fg(í; z)jg(í; z� 1)ÿ g(í; z)jgã dz dí,1:

The following standard identities will be used repeatedly:�
R

jyjr exp ÿ y2

4t

� �
dy � Crt

(r�1)=2, (A1:4)

where Cr is a constant that does not depend on t.

Now, for an arbitrary f 2 C1(R), the following simple identity holds:

f (x� 1)ÿ f (x) �
�1

0

f 9(u� x) du: (A1:5)

Then, applying (A1.5) to f (í) � g(í; z), using the fact that there exist some constants c, C

such that, for all t, x, j(@ g=@ t)(t; x)j < (C=t)g(ct; x), the HoÈlder inequality on [0, 1] yields�
R

g(í; z)jg(í� 1; z)ÿ g(í; z)j dz <
C

í3=2
,

and hence there is integrability near in®nity. As for the behaviour near zero, one has

g(í; z)jg(í� 1; z)ÿ g(í; z)j < g2(í; z)� g(í; z)g(í� 1; z), (A1:6)

and hence the integral w.r.t. z of the right-hand side is bounded by a term of order íÿ1=2 plus

another which is de®ned for í � 0. Thus J is convergent.

As for Jã, using (A1.5) and the HoÈlder inequality on [0, 1], one gets�
R

g(í; z)ãjg(í; z� 1)ÿ g(í; z)jã dz < Cã

�
R

�1

0

ju� zjã
í2ã

exp ÿã z2 � (z� u)2

4í

� �
du dz:

(A1:7)
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However, f(z� u)2 � z2g=4t � (1=2t)f(z� u=2)2 � u2=4g; hence, by a change of variables,

bounding u by 1 and using (A1.4), we get�
R

g(í; z)ãjg(í; z� 1)ÿ g(í; z)jã dz < Cã
1

í2ã
í(ã�1)=2 � í(1ÿ3ã)=2:

Therefore, since ã. 1, we have (1ÿ 3ã)=2 ,ÿ1, and the integral is convergent near in®nity.

(Note that, for ã � 1, it is not.) As for the convergence near zero, we simply use the same

method as in (A1.6). u

We ®nally prove estimates for the iterated differences of the Green kernel G.

Lemma A1.4.

(a) For all ã 2 ]1, 3[, there exists a constant C such that, for all x, t, h,� t

0

�1

0

jÄ2
hGtÿs(:, y)(x)jã dy ds < Cãh3ÿã:

(b) There exists a constant C such that, for all x, t, h,� t

0

�1

0

jÄ2
hGtÿs(:, y)(x)j . Gtÿs(x, y) dy ds < Ch:

Proof. Using the same method as in Lemma A1.3, one easily sees that we only have to prove

that

Kã :�
��1

0

�
R

jÄ2
1 g(t; :)(x)jã dx dt, K :�

��1
0

�
R

jÄ2
1 g(t; :)(y)jg(t; y) dy,

are convergent. Now, instead of (A1.5), we use the following identity: if f 2 C2(R), then

Ä2
1 f (x) �

�1

0

�1

0

2v f 0(x� (2uÿ 1)v) du dv: (A1:8)

Set Kã(t) � � RjÄ2
1 g(t; :)(x)jã dx. Applying (A1.8) to g(t; :) and using the HoÈlder inequality

on [0, 1]2, one has

Kã(t) <
Cã

tã=2

�
R

�1

0

�1

0

1

t2ã
jfx� (2uÿ 1)vg2 ÿ 2tjã exp ÿ ãfx� (2uÿ 1)vg2

4t

� �
du dv dx:

Then, by a change of variables and (A1.4), we get Kã(t) < (Cã=t5ã=2)t(2ã�1)=2 � Cã=t(3ãÿ1)=2;

since ã. 1, we have (3ãÿ 1)=2 . 1, which gives the convergence near �1.

As for the convergence near zero, we simply use (4.12), which leads us to consider the

same integral as in Lemma A1.1 (b), and hence to impose the condition ã, 3.

As for (b), setting K(t) � � RjÄ2
1 g(t; :)(y)jg(t; y) dy, using (A1.8) and the HoÈlder

inequality on [0, 1]2, we have

K(t) <
C

t3

�
R

�1

0

�1

0

vjfx� (2uÿ 1)vg2 ÿ 2tj exp ÿ [fx� (2uÿ 1)vg2 � x2]

4t

� �
du dv dx:
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Then, using the same method as in (A1.7), we get K(t) < (C=t3)t3=2 � C=t3=2, and hence

the convergence is near in®nity. As for the convergence near zero, we simply proceed as in

(a). u
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