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We study the almost sure asymptotic properties of the local time of the uniform empirical process. In
particular, we obtain two versions of the law of the iterated logarithm for the integral of the square of
the local time. It is interesting to note that the corresponding problems for the Wiener process remain
open. Properties of L”-norms of the local time are studied. We also characterize the joint asymptotics
of the local time at a fixed level and the maximum local time.
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1. Introduction

Let Uj, U,, ... denote a sequence of independent random variables, all uniformly distributed
on (0, 1). Define the uniform empirical process

def

an()E n'P(Fu(1) — 1), 0<r=<I,

where F,(-) is the empirical distribution function based on the first n observations, i.e.,

n

1
F (% > u=g 0<t=<1.
i=1

n
We are interested in the (normalized) level crossings of the empirical process, defined by

def _
lec(an) = n 172 Zﬂ{an(;):x}, x € R.

t=<l1

From a statistical point of view, the study of such functionals of the empirical process is
motivated by some nonparametric problems related to goodness-of-fit tests; see for example,
Gaenssler and Gutjahr (1985).

It is easily checked (see Shorack and Wellner 1986, pp. 398—399) that Li(a,) is also the
local time of a, at x. Throughout the paper, for any stochastic process Z indexed by [0, 1]
or Ry, we write Lj(Z) for the local time — whenever it is well defined — of Z at (level) x
up to time ¢. More precisely, for any bounded Borel function f,
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t
| rzonas = | sz (1)

One of the first results in the literature concerning the local time of a, is the following
weak convergence, obtained by Dwass (1961):

2
lim P(L0(ct,) > x) = exp ( x—), x>0, (1.2)
n—00 2

Since exp (—x?/2) is also the tail distribution of the local time at 0 of a standard Brownian
bridge, (1.2) confirms that the local time at 0 of a, converges weakly to that of the Brownian
bridge. Observe that this cannot be deduced, for example, from the strong approximation
theorem of Komlos et al. (1975) for a,, since L?(a,,) is not a continuous functional of a,.
(However, there does exist a strong approximation of L(l)(a,,) by the Brownian bridge local
time; see (7.2) below.)

In this paper we are interested in strong limit theorems for the local time of a,. We first
recall two important results. For notational convenience, we write

$(n) = (2loglog n)'/2, (1.3)
throughout the paper.
Theorem A (Révész 1983). Almost surely,

70
lim sup 1(@n) _

n—00 ‘p(")

(1.4)

Theorem B (Bass and Khoshnevisan 1995). Let

L¥ () sup Li(ay).

xeR

Then

o L@
im sup

n—oo  P(n)
liminf (loglog n)'/>L¥(a,) = V2n as. (1.6)

=1 as. (1.5)

Our first result concerns the joint asymptotics of L?(a,,) and LT(a,,).

K@) Li@)), .
o) " g(m )’

is relatively compact, with limit set equal to

Theorem 1.1. Almost surely,
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2 (x, ) 0=sx=y=<1}.

Remark 1.1. (i) Expressions (1.4) and (1.5) say that LI(a,) and L} (a,) satisfy the same law
of the iterated logarithm (LIL), whereas Theorem 1.1 confirms that

* 0
lim sup 210 = Li(@n) ) o (1.7)
n—00 @(n)
This is satisfactory, since it is intuitively clear that L}(a,) may be far greater than LI(a,).
(i1) In light of (1.7), one may wonder if it is possible to obtain some information about
the asymptotics of L}(a,) — L)(a,). The corresponding problem is solved by Csorgd and
Révész (1985) for the random walk, and by Csaki and Foldes (1987) for the Wiener
process; see Révész (1990, pp. 122—129) for an overview.

Our second result is about the integral of the square of the local time.

Theorem 1.2. We have

llnlsup 5 )J (Li(ap))* dx =

a.s.,

1
V3

o0 2|a | 3/2
lim inf (log log n)l/zj (L¥(ay))* dx = 31 > a.s.,

where a; <0 is the largest real zero of the Airy function Ai(-).

Remark 1.2. 1t is interesting to note that the corresponding problems for the integral of the
square of the Wiener local time are still open. In fact, let W denote a real-valued Wiener
process; then

> X 2 _ =
hrtlligp —(2t3 loglog 1)1/2 Jioo(L,(W)) dx =7 € (0, c0) a.s.

loglog #)!/2
lim in f(og#J (LX(W))2dx = ¢ € (0, 0) as.
t—00 /2
However, the values of ¢ and ¢ are unknown. More discussions on this can be found in
Khoshnevisan and Lewis (1998).

We also study the local time of a, under the L”-norm. The case p =3 takes a
particularly simple form.
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Theorem 1.3. We have

. L[>~ . 4
it ) (K de = s
o R 3 9
lim inf (log log n) (Li(ay)) dx = 5 as

Theorem 1.4. For p =3

. 1 o -1
hnlsup WJ— (Li(ay))? dx = b<pT> a.s.,

where, for g =1,

REICEA VS Jl e\
1 q? 0o V1 — x4

= (49)"(q+ 1) 'B G %) (1.8)

with B(-, -) standing for the usual beta function.

The rest of the paper is organized as follows. Section 2 is devoted to the study of some
exact distributions related to the local time of the Brownian bridge. The main tool is
Jeulin’s theorem for the local time of the normalized Brownian excursion process, together
with some well-known sample path decomposition theorems. The local time of the
Brownian bridge is further investigated in Sections 3—6. In particular, we obtain in Section
3 the upper and lower tails of the integral of the square of the local time in question. The
third and higher moments of the local time are studied in Sections 4 and 5, respectively.
Section 6 concerns the joint tail of the local time at 0 and the maximum local time of the
Brownian bridge. Theorems 1.1-1.4 are proved in Section 7. Finally, in Section 8, we
briefly describe some asymptotic properties of the local time of the reflecting Brownian
bridge and empirical process.

Following the referee’s advice, we emphasize that the present knowledge of the laws of
local times for the Brownian and Bessel bridges, recently discussed in a unified way in
Pitman (1999), plays an important part throughout our paper.

In the rest of the paper, we adopt the usual notation a(u)~ b(u), u — uy, to denote
limy,—,,, a(u)/b(u) = 1.

2. Local time of the Brownian bridge

We start by introducing the normalized excursion process. Let W be, as before, a Wiener
process. Let
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G sup{r<1: W(r) =0}, @2.1)

D inf{r=1: W(t) =0}, (2.2)

which represent respectively the left and right extremities of the excursion interval straddling
time 1. The process

{lW(G+(D— Gl o~y < 1}
(D— G)l/?
is called the normalized Brownian excursion process, cf. Chung (1976).

It was first observed by Chung (1976) and Kennedy (1976) that the supremum of the
normalized excursion has the same distribution as the range of the Brownian bridge, which
suggests that there would exist a close relationship between the two processes. It turns out
that this is the case, as is revealed by the following theorem. For detailed surveys of
Brownian path decompositions, see Bertoin and Pitman (1994), Biane (1993) and Yor
(1995, Lecture 4).

Theorem C (Vervaat 1979). Let {y(¢); 0 < t < 1} be a standard Brownian bridge process,

and U the almost surely unique location of the minimum of vy, that is, such that y(U) =
info<,<) y(¢). Then U is uniformly distributed on (0, 1). Furthermore,

def{y(tJr U)—yU), fo<tr<1-U, 23)

D= y(t+ U —1)—y(U), fl-uU<t<l,

is distributed as a normalized Brownian excursion process, and is independent of the variable
U

Another deep result which we shall need is Jeulin’s theorem for the local time of the
excursion process.

Theorem D (Jeulin 1985 p. 264). Let {p(1); 0 <t <1} denote a normalized excursion
process. Define J(s) fo Li(p)dx for all s = 0. Then

(L] 'Oy 0= <1} E{p(n: 0=t =1}, 2.4)
where “2" stands for identity in law, and J~" is the continuous inverse of J.

From now on, y and p denote respectively Brownian bridge and (normalized) excursion
processes. Here is the main result of the section, which has several interesting consequences.

Theorem 2.1. Let f = 0 and g = 0 be two Borel functions. Let U be uniformly distributed in
(0, 1), independent of the excursion process p. Then
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P(U) 1rx X OO 1rx X 17p(U)
L FALIP)LI(p) d, j L GOV 1) 2.5)
14
has the same distribution as
U 1
(L Flp(n)dr, jUg(p(r))dt, p(U>>. 2.6)

Remark 2.1. As a less complete — but perhaps ea51er to memorize — statement, we underline
that the occupation measures of the processes {/(x) = &f 1LY(p); x = 0} and {p(1); 0 < 1 <1}
have the same distribution, that is, for every Borel function f = 0,

J SO A 2 J F(p(0)dr,

where, for any process Z, (Z) is the increasing process associated with Z. (Note that
(p)r=1t, whereas (/(-))x=2[;/(»)dy). For other pairs of processes with identical
occupation measure laws, see Pitman and Yor (1998a).

Proof of Theorem 2.1. Let, as before, J(s) = fos Li(p)dx. Let {E(#); t = 0} be an arbitrary
stochastic process, such that for each ¢ = 0, Z(¢) is an R?-valued variable, measurable with
respect to {p(s); 0 < s < 1}. For any Borel functions # = 0 and K = 0,

1
E[HE(p(UN))K(L; P (p))] = E “0 H(E(p(u)K (LY (p)) du]

" UO L) HEK(Li(p) dx} ,

by means of (1.1). According to the definition of J, the expression on the right-hand side is
[E[f(;>O H(Z(x))K(Li(p))dJ(x)]. Since J is strictly increasing over [0, supo<,<1 p(?)], by a
change of variable x = J~'(#), we obtain:

1
E[HE(p(U))K (L) (p))] = E UO H(E(Jl(r»)K(L{‘“)(p))dr]

= E[HEJ (OWKE] D (p))].

This means that (Z(p(U)), L“(p)) has the same distribution as (E(J~'(U)), L ©)(p)). In
particular, taking
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=) (J FOLIP)LI(p) dx, J gALIP)LI(0) dx)

0
0 17J7 (s 1 17J7 (s
([ rartonas | etnl Oenas ).
0 J(1)
it follows that, the R3-valued variable in (2.5) has the same distribution as
v Ly J7N(s) : Ly J7N(s) 1y J71(U)
Of(gll (p))ds, Ug(le (p)ds, 3Ly "(p) |,

which, according to Theorem D, is distributed as

U 1
(j F(p(s) ds, J g(p(s)) ds, p(U)>.
0 U

This completes the proof of the theorem. O

We present a few applications (which certainly are not exhaustive) of Theorem 2.1. The
first confirms that the study of the distribution of additive functionals of L(y) can be
reduced to that of the corresponding problems for the excursion process.

Corollary 2.2. Let y be a Brownian bridge. For any Borel function h: Ry — R, such that
h(0) = 0,

> aw L[ hQ2p(1))
h(L(y)) dx 2 —J 2 2.7
| haiomar= 3| 2o )
In particular, for any p >0,
00 1
J (L’f()/))”dxmzwzp_ljo(ﬂ(f))”_1 dz. 28
Remark 2.2. Let
S sup y(r), 1Y inf y(o). 2.9)
0=r=<1 O=r=<I

An equivalent formulation of (2.7) is:

S L[R2
jlh(Ll(y))dx— J o

2 Jo
which now holds for any Borel function 4: R, — R..

de, (2.10)

Proof of Corollary 2.2. 1t is an immediate consequence of Theorem C that the processes

(L7794 x =0} and {Li(p); x =0}
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have the same distribution, where, as before, U is the location of the minimum of y. In
particular, if A(0) =0,

| maiomar= | “naionas @1

On the other hand, by Theorem 2.1, for any non-negative Borel function f,

00 1
x X law
|, resontio e | remar
0
This, jointly considered with (2.11), yields (2.7). O]
The next result plays a key role in our proof of Theorem 1.1.

Corollary 2.3. Let y be a Brownian bridge,
law
(LT (). LY = (S — 1), =21, (2.12)

where S and I are as in (2.9). In particular, for any x>0,

= k2 x?
PLE()<x)=1-2) (K*x*—1)ex (—) 2.13
(L{ () <x) ;( yexp| —— (2.13)
V12810 K, 2k*m?
= ;k exp| —=—— ). (2.14)
Consequently,

% 2
logP(Ly(y)<y)~ 5 y—0, (2.15)

* y2
logP(Ly(y)>y) ~ -7 y — 00. (2.16)

Proof. Fix p>0. Take f(x) = g(x) = x? in Theorem 2.1 to see that

o 1
(2—PL (L)f(p))pﬂ dx, %wa)(p)> law (Jopp(t) ds, P(U)> :

Raising the first variables on both sides to the power of 1/p, and then letting p go to infinity,
we obtain:

X law
(%sung(p), %Li‘”)(p)) = (st o0, V).
x= SIS
Multiplying both sides by 2 and applying Theorem C yields (2.12).
The exact distribution of the range of the Brownian bridge is well known, (see Csorgo
and Révész 1981, p. 164; Kuiper 1960; Chung 1976): for x>0,
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PS—IT<x)=1-2 Z(4k2x2 — 1) exp(—2k*x?), (2.17)
k=1

which, in view of (2.12), implies (2.13). The expression in (2.14) immediately follows from
Poisson’s summation formula (see Feller 1966, p. 630). O

Remark 2.3. The distribution function of the range of a Brownian bridge (cf. (2.17)), and
hence also that of LT(;/) (cf. (2.13)), is related to the Jacobi theta function. For probabilistic
interpretations of this famous function (and of the Riemann zeta function) in terms of
Brownian motion, we refer to Biane er al (1999), Biane and Yor (1987), Chung (1976),
Csaki (1979), Csaki and Mohanty (1981; 1986), Csorgd and Horvath (1997, p. 102),
Deheuvels (1985), Smith and Diaconis (1988), Williams (1990), and Yor (1997, Chapter
11).

Remark 2.4. (i) We can choose various functions f and g in Theorem 2.1 to obtain many
identities in law, which hold jointly. For example, together with Theorem C, we immediately
see that the random variable

1
J Tpnn>0y dt
0
is uniformly distributed on (0, 1), independent of any variable of the form [r/(L{(y))dx. In
particular, it is independent of (S — 7, supycr L{(y)). This kind of independence is explained
and extended by Chaumont (1998).

(i1)) From (2.10) we deduce:

S lJl dt
2)op(0)
Therefore, (2.13) and (2.14) also express the distribution function of Jg dt/p(t). For further

discussions on this, see Biane and Yor (1987), Chung (1976) and Pitman and Yor (1996). We
also mention Chung’s identity in law: if ¥ denotes an independent copy of y,

~ law
sup ¥2(1) + sup Y1) = sup p*(0);
ost<1 o=r<1 osr<1
see Chung (1976), Yor (1997, p. 16).
(iii) The identities (2.13) and (2.14) were previously proved by Bass and Khoshnevisan
(1995) using the Ray—Knight theorem. Not surprisingly, their consequences (2.15)—(2.16)

played an essential part in the proof of Theorem B above (for more details, see Bass and
Khoshnevisan 1995; see also Khoshnevisan 1992, 1993).

3. Tail probabilities for the square integral

Recall that y is a Brownian bridge. This section is devoted to the study of the upper and
lower tails of the variable h|“_°ZO(L’1‘(j/))2 dx.
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Theorem 3.1. We have

00 3
Mgpq’<mmw%n<y>~—3“1, A @3.0)
oo 27y?
o 3
log P <J (Li(y))* dx > y> ~— §y2, y — o0, (3.2)

where a) <0 is, as before, the largest real zero of the Airy function Ai(-).

We need the following result which relates the tail behaviour of a non-negative random
variable with its moment generating function.

Lemma 3.2. Let X be an almost surely non-negative random variable. Assume

ny1l/n
fim EXOT" (3.3)

n—oo n

for some constant a € (0, 00). Then

log P(X > x) ~ —ie, X — 0.
a

Proof. That limsup, .., x ! log P(X > x) < —1/(ae) immediately follows from Chebyshev’s
inequality and Stirling’s formula. The lower bound, which needs more care, can be proved
using Laplace’s method. We only outline the proof, and refer to the proof of Lemma 2.7 in
Marcus and Rosen (1994) for full details.

Let 0 >0. For all sufficiently small £>0, we have

(1+90)log 14>max<—(l —&)+ (1 +0)log _ (1+9)log ! :8>. (3.4)

e
(1+0)e (14 0)*’
For large x>0, define y = (1 + 0)?x and n = [(1 + 0)x/(ae)]. Then
PX>x) = E(x )7LJ u"dP(X < u) fij u"dP(X < u)
e y*Jo e

X

©F S — Ay — 4.

By (3.3),

4= = _

(1- s)an)
y y '

exp (n log

On the other hand, by integration by parts and the upper bound limsup. ...z~ !log P(X >
7) < —1/(ae),



Local time of the empirical process 1045

4, slj u"'P(X > u) du
y"Jo

X 1 _
=< lJ u"lcexp<—( s)u) d
Y™ Jo ae

cn < (1—- e)x>
=s—x exp|— R
yr ae

where ¢ denotes a finite constant. We also have

1 (o]
A3 < WJ u" P AP(X < u)
y

n+[on
_ E(x " +on)
yn+[(5n]

_ ((1 +e)a(n + [5n])) rHon]
y
In view of (3.4), A = 34, and A; = 3A43. This gives
1+0 1—¢

1
liminf — log P(X > x) = I
iminf TlogP(X >x) == = log =5

which yields the lower bound in the lemma by sending ¢ and 0 to 0 (in this order). O

Proof of Theorem 3.1. Let p be as before a (normalized) excursion process. The exact
distribution of jo p(%) dt has been determined by several authors, among them Darling (1983),
Louchard (1984), Groeneboom (1989) and Takacs (1991; 1992). For all y >0,

1 4 2l 2lal
< =; - .
<J p(1)de y) 9y75 § (6, 3277 | P\ "7, | (3.5)

where U(a, b; x) is the confluent hypergeometric function, and 0> a; > a, > ... are the real
zeros of the Airy function Ai(:).

According to Abramowitz and Stegun (1965, p. 508), for fixed a and b, U(a, b; x) ~ x~¢
(x — 00), whereas as k goes to infinity, |a;| behaves like a constant multiple of /3
(Abramowitz and Stegun 1965, p. 450). Consequently,

1 2 3
10g|]3’<J p(t)dt<y> ~— ] y— 0",
0

27y%”°

Since by (2.8),

J (L) dx' 2J p()dr, (3.6)

—00

this yields (3.1).
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It remains to check (3.2). Curiously, the exact distribution (3.5) does not seem to

immediately yield the upper tail of J}} p(t)dt. However, the moments of this variable are
also estimated in Takacs (1991; 1992):

1 " n n/2
E (Jop(t)dt> ~3\/§n(m) , n— o0o. (3.7)

Applying Lemma 3.2 gives

1
logIP’(J p(t)dt > y) ~ —6)?, y — o0.
0

Together with (3.6), this implies (3.2), hence the theorem. O
Remark 3.1. In the proof of Theorem 3.1, that y~2 log [P’(jo1 p(?)dt > y) has a non-denegerate
limit (as y goes to infinity) follows from a large-deviation result for general Gaussian

processes; see Azencott (1980, p. 57). However, the identification of the limit is easier using
3.7).

4. Tails of the third moment

The tail probabilities of the third moment of the local time of the Brownian bridge bear the
following simple form:

Theorem 4.1. If y is a Brownian bridge,

o0 9

logP(J (Li(y)’ dx < y) ~ oy y—07, 4.1
00 2

1og[F"(J_ (Lf(y))3 dx > y) ~ —%, y — Q. 4.2)

In order to prove Theorem 4.1, we need the following preliminary result.

Lemma 4.2. Fix m = 2. Let &, &, ..., &, denote independent non-negative variables, such
that for any 1 < i< m,

logP(&i>y) ~ —ay,  y— o0, (43)
for some constant a > 0. Then
logP& + ...+ &n>y) ~ —ay, y — oo.
Proof of Lemma 4.2. Only the upper bound needs checking. By induction, we only have to

treat the case m = 2. According to (4.3), for € >0, there exists a constant C,, depending on
€, such that
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P = x) < Coe 794,
for i =1 or 2, and all x = 0. Therefore,

PéE +&>y)sPE>y)+PE +5H>y, 86 s y)

))
< ¢, U0 _ j P& >y — 1) dPE = x)
0

y
< Cpe 179w _ C,SJ e 17990=9 4 P(E) = x).
0

By integration by parts, the integral expression on the right-hand side is

y
PE = y)—e 179 (1 — e)aJ e I=940—IP(E, = x)dx
0

y
= (o _ CeaJ o (1-0)a(y—) g~(1-e)ax g
0

_ _e—(l—s)ay _ Cgay e—(l—e)ay.

Assembling these pieces yields limsup, .oy 'logP(§ + & >y) < —(1 — &)a. This
completes the proof of the lemma by sending € to 0. O

Proof of Theorem 4.1. The Laplace transform of fol p?()dt is well known (see, for example,
Pitman and Yor 1982, p. 432): for all 1 >0,

3/2
. ! 2 . \/27
E [exp ( /'LJOp (nde || = b vl . (4.4)

This, combined with an exponential-type Tauberian theorem (see Bingham et al. 1987,
Theorem 4.12.9), yields the following lower tail:

! 9
log P Jpz(t)dt<y ~—, y—0t.
0 8y

In view of (2.8), this is equivalent to (4.1).

It is also possible to prove (4.2) from (4.4) by means of analytic continuation and a
sophisticated version of the Tauberian theorem. However, there is an easier way to handle
the problem. According to Williams’s identification (see, for example, Rogers and Williams
1987, pp. 88—89), p can be realized as a standard three-dimensional Bessel bridge, that is,

v/ 7%+ 72 + 92 is an excursion process, 4.5)

where 7 and § denote two independent copies of the Brownian bridge y. The exact
distribution function of fol y2(£)dt is explicitly known (see, for example, Csdrgd and Révész
1981, p. 43): for y>0,
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1 km 2
—yt/2
P Jyz(t)dtsy —1——2( k“J xp (/2 4,
0 Q@k—Dx 1/ t|sin ¢|
from which it immediately follows that
1 2
1ogu3><JOy2(t)dt>y> ~ _%, y — 0.

By (2.8), f[}qg(L’f(;/))3 dx is distributed as 4]01 p?(t)dt. This, together with (4.5) and Lemma
4.2, yields (4.2), hence the theorem. O

5. Upper tails of higher moments

This section is devoted to the study of the upper tail of Lj(y) under the L”-norm, where y is,
as before, a Brownian bridge.

Theorem 5.1. For any p =3,

log[F"(J (Li(y)? dx> y) ~—

—0o0

yl/q
m, Yy = o0, (5.1)
where qdéf(p —1)/2, and b(q) is as in (1.8).

Proof. Clearly, qdif(p —1)/2 = 1. For any procgsfs Z indexed by [0, 1], write its L7-norm
under the Lebesgue measure over [0, 1] as || Z||, = (Io |Z(£)|?dr)'/4. Let 7 and § denote two

independent copies of y. Define

p(E VPO + 70+ 720, 0=t<1,

which, according to (4.5), is an excursion process. By the triangular inequality,

1720y < 10*llg < 121l + 172 1lg + 172 1l4- (5.2)
Assume for the moment that we could show
2
2 _ .
then by (5.2) and Lemma 4.2, we would also have
2
2
logP(Hp ”q>y)~_b'T(q)y’ y — o0.

Using (2.8), this would complete the proof of Theorem 5.1.
It remains to prove (5.3). There exists a finite positive constant ¢(g), depending only on
g, such that

logP([y*lly>») ~ —c(@)y, vy — cc. (5.4)
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This follows from a well-known large-deviation result (Azencott 1980, p. 62), or from the
general theory for Gaussian measures (Fernique 1997, p. 39; Ledoux and Talagrand 1991,
p- 59). Therefore, the proof of (5.3) is reduced to showing

cq) = (5.5)

bVi(g)

The Gaussian theory does give the exact value of the constant ¢(g), in the form of an extreme
value of some functional in a Gaussian space. However, in our setting, we do not need to do
any technical computation in order to determine the value of c¢(gq). Indeed, according to the
strong approximation theorem of Komlos ef al. (1975), possibly in an enlarged probability
space, there exist a coupling for a, and a sequence of independent Brownian bridges

{¥«}r=1, such that
1
<( Oj;) ) a.s

Applying (5.4) and the usual Borel-Cantelli argument, we obtain:

el _ 1

sup
o<r<I

an(t) = nyk(o

li 5.6
el loglogn  c(q) 66
On the other hand, the Finkelstein (1971) functional LIL confirms that
2
timsup I e 2, & g, as, 5.7)

n—oo 2loglogn N €S, £(1)=0

where S = {f: f(1) = fot f(s)ds, fol f2(s)ds < 1} is Strassen’s set. Comparing (5.6) and (5.7)
yields ¢(q) = 1/(2d(g)). To compute d(g), recall that, according to Strassen (1964),
A= supllf?ll, = b/%(q)

where b(q) is as in (1.8). Since {f € S: (1) =0} is a compact subset (in the space of
continuous functions on [0, 1] endowed with the uniform topology), the ‘sup’ expression in
(5.7) is attained by some function, say f'y, with f, € S and (1) = 0. By symmetry, f(?)
= fe(l =1 Letf(t) = 2f*(t/2) for 1 € [0, 1]. Then / € S and realizes sup res || /?[l4, that
is

d(@) = 1F?llg = 412 1l
which yields

d(q) b'(q)
—

Since ¢(q) = 1/(2d(g)), we obtain (5.5). This completes the proof. O

dg)= 13 1lg =
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6. Joint tail

In order to prove Tgl?orem 1.1, we need the joint tail behaviour of L(l)(y) (v being a Brownian
bridge) and L} (y) = SUPyeR L{(y). Here is the main result of this section.

Theorem 6.1. Fix 0 <x; <x; <y <y, <1. There exists ny = no(x1, X2, ¥1, y2) <00 such
that, for all n = ny,

0 * 1
P(xl < ;1(%) <y <o y2> > (6.1)

where @ is the function defined in (1.3).

The main ingredient in the proof of Theorem 6.1 is the following estimate. Recall (S, I)
from (2.9).

Lemma 6.2. As a and b go to infinity,
logP(S > a, |I| > b) ~ —2(a + b)*. (6.2)

Proof of Lemma 6.2. The upper bound in the lemma is easy. Indeed, P(S>a,
|[I|>b) < P(S+ |I|>a+b), whereas from (2.17), it is easily seen that log[P(S
+ |I|>a+ b) ~ —2(a + b)* (for a + b — o00). This yields the desired upper bound in (6.2).

To verify the lower bound, we use the representation y(t)= W(¢)— tW(1l) (for
0=<1t=<1), where W is a standard Wiener process. Fix 0 <e<1. For a>1 and b>1,
let us assume a < b without loss of generality, to see that

P(S>a, |1|>b) = P(sup (W(1) = tW(1)>a, inf (W(1)— (D)< —b, [W(D)|<e)
0 =<

=<1

= P(sup W(t)>(1+ é€)a, Oi<r}£1 W) <—(1+2&)b, |W()|<e)

o=i=<l1
=P((1+ea<Wu)<(l+2¢8)a,
—(1+5e)b<W)<—(1+2e)b, —e<W(1)<e),
for any 0 <u <v <1. By the Markov property,
P(S>a, |[I|>b) = P((1+e&a<Wu) < (1+2¢)a)
XP(—(1+3e)a+b)<Ww—u)<—(1+2¢&)(a+ b))

. e B _ .
—(1+5¢)b <12f< —(1+2¢)b P( € W(l U) 8| W(O) x)

We now choose u = a/2(a + b) and v = u + 1/2. By Mill’s ratio for Gaussian tails, for any
£, >0, when a — oo and b — oo,
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logP(S>a, |[I|>b) = — (1 + e)[(1 + &)*a(a + b) + (1 + 3&)*(a + b)* + (1 + 6&)*b(a + b)]

= —2(1 + &)1 + 6¢)*(a + b)?,

which yields the lower bound in (6.2) since € and €| can be as close to 0 as possible. Lemma
6.2 is proved. O

Proof of Theorem 6.1. By Corollary 2.3,

law

(LY(r) = L)), L)) = (28, 2|1)). (6.3)

Now fix 0<x; <x; <y <y,<l1. Without loss of generality, we can assume y; —
x; <y, —x, (otherwise, we certainly will have x, + y; — 1, >0 and can replace x; by
X+ (1 — 12)/2). In view of (6.3), the probability term on the left-hand side of (6.1) is
greater than or equal to

* 0 0
L0 B0 )y < HO x2>

:[p(yl_x1< S _»n-—x x_ | <x2),

|]3’<y1—x1 =

2 o) 2 "2 ¢n) 2

which, according to Lemma 6.2, is greater than exp (—(1 + &)y3¢*(n)/2) for any fixed € >0
and sufficiently large n. Since y; <1, we can choose & such that (1 +&)yf<<1. This
completes the proof. (|

7. Proof of Theorem 1.1

The proofs of Theorems 1.1-1.4 are based on the corresponding tail estimates evaluated in
Sections 3—6, together with the usual Borel-Cantelli argument. The latter is quite similar to
the argument in Bass and Khoshnevisan (1995), who provide in full detail the proof of
Theorem B. Hence, we give the proof of Theorem 1.1, and we feel free to omit the rest of the
proofs. The key ingredients in the Borel—Cantelli argument are the following Facts 7.1-7.3
(all of which can be found in Bass and Khoshnevisan 1995), and the usual LIL for the
uniform empirical process a, (see, for example, Csorgoé and Révész 1981, p. 157).

Fact 7.1. Fix 0<u< %. Possibly in an enlarged probability space, there exists a coupling for
a, and a sequence of Brownian bridges (y,)n=1, such that for all sufficiently large n,

[FD(sup|L'f(a,,) —Li(yn)| = rf“) <n?2 (7.1)
xeR

Consequently, as n goes to infinity,

su§|L'1‘(an) — Li(yn)| =0@™*") as. (7.2)
xXe
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Fact 7.2. Let {Z1(¢); 0 <t <1} and {Zy(1); 0 < t <1} be adapted stochastic processes.
For any b> 0,

. N Zi(t) — Zo()] & .
sup|L{(Z1) = Li(Z2)| < sup 120 = 2] sup  |LN(Z) - L{(Z)).
xXe

2
=t<l1 b =1 x,yER,|x—y|<b

Fact 7.3. Let y be a Brownian bridge. There exists a universal constant C >0 such that for
all 0<b<1 and 1>0,

/12
[P’( sup |LX(y) — L{(»)| = Vb(2+/log (1/b) —i—ﬂ.)) < Cexp (— E) (7.3)

x,yER,|x—y|<b

Fact 7.4. The following LIL holds:

lo, ()] 1

limsup sup =— as.,
n—oo 0=r=1 P(n) 2

where ¢ is defined in (1.3).

Proof of Theorem 1.1. In view of (1.4) and (1.5) (though our proof outlined below would
also yield Theorems A and B, with only a few modifications), the only part to check is that
any (x, y) € .7 is a limit point of (L%(a,)/p(n), L (a,)/¢(n)). Without loss of generality,
we can assume 0 <x <<y <1. Fix 6 >0 so small that

0<x—30<x+4+30<y—-30<y+306<l.

Define n(k)Gléf k'7k. Recall from Section 1 that a, is the empirical process based on the
first n observations of an independent and identically distributed sampling {U;};=1. Let

def

Ak) & nk) — n(k — 1),

n(k)
5o def 1 Yy ¢
a = —— (Tu,=sy — D, 0=sr=<1.
VA(K) i=n(k—1)+1
Observe that a; is the empirical process based on the observations (U,—1)+1, - - -» Uni)-

For each k, the process aj is distributed as anacr). Write LT(&k)é supyer Li(ak), and
consider the measurable events

0/~ *(6
B x o= @) L os yps< @D sl
k {x ) D oy 7"

By (7.1), for all sufficiently large £,
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_ _ Loy _ _ L) _ |

= P("_é S o0y =TT TS Gy =) T A
1 1

logn(k) A(k)’

=

the last inequality following from Theorem 6.1. This yields >, P(Ex) = oco. Since the events
(Ey) are independent, we can apply the Borel—Cantelli lemma to see that, almost surely, there
are infinitely many k satisfying:

_ L@y LY (ax)
< 20 —20 <
Sty T Y P(n(k))

Now we want to show that for all sufficiently large &, Lj(ay) is ‘very close(; fto Li(anry),
uniformly in x. The idea is to apply Fact 7.2 to the processes Z; = Gy and Z, = Qn(ky. First,
observe that

< y+20. (7.4)

\/ n(k Ank) = n(k —1 Ank—1) + \/A(k)&k.

Therefore,

_ _ V(B — VA Vn(k—=1)
011:21|ak(2‘)7a,,(k)(1)| Al Oi‘i&'“"“‘)(”'*fm Sup |1y (D)]

< k= sup |aup(D] + k% sup |au—1)(0)].
o=r=<1 O=r=1

Applying the LIL for a, (see Fact 7.4) gives that (almost surely) for all large &,

sup [ax(1) — ani(t)| < (7.5)

0=r=l1

Now we study the oscillations of the local times of a; and a ). Fix 0 < u <%. By (7.1) and
(7.3),

IP( sup |LY(ni) — Ly (Oneiy)| = k1>

x,yER,|x— y|<k=3

Sn%k)w( sup |Lf<y>—Lf<y>|>k1—2nﬂ<k>>

x,yeR,Jx— y|<k-3

<n*k)y+k>

< k2 (7.6)
Similarly, we have

'P( sup |L(aam) — Li(aam)| = kl)

X, yER,|x—y|<k3

I

k2. (7.7)
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Recall that a; has the same law as aacx). Applying the Borel-Cantelli lemma to (7.7) and
(7.6) yields that almost surely, for all large £,

sp  |Li@n) — @) < £,
x, yER |x— y|<k—3

sup |LY(0nery) — LY (@) < KL
x, yER,|x— y|<k—3

Combining these two inequalities with (7.5), and applying Fact 7.2 to b = k=3, we obtain
that, for all large £,

X/ X 3
sup|Li(0x) — Li(aniy)| < e
xeR

In view of (7.4), we have proved that, with probability one, there are infinitely many » such
that

x—30 <

L%a,)
< 30 —30 <
oy T #(n)

This completes the proof. O

8. Local time of the reflecting empirical process

We start with the local time of the reflecting Brownian bridge. Let /' be a Wiener process,
and let G denote the last zero of W before time 1 (see (2.1)). The process

{lW(G+(1 -G
1-G)z

is referred to by Chung (1976) as the Brownian meander process.

It is observed by Kennedy (1976) that the supremum of the meander is distributed as
2 supo</<1|y(?)|, where y is a Brownian bridge. A pathwise explanation to this (a la
Vervaat) is provided by Biane and Yor (1987); see also Bertoin and Pitman (1994).

The following analogue of Jeulin’s theorem (Theorem D) for the local time of the
reflecting Brownian bridge is known.

Ostsl}

Theorem E (Biane and Yor 1987). Let K(s)défjg Li(lyDdx for all s = 0; then
(L Ogyho=r=1}

is distributed as a Brownian meander process.

Remark 8.1. For a unified approach to Theorems E and D, as well as for some extensions, we
refer to Carmona et al. (1999), Pitman (1999).

From Theorem E, we can easily deduce the following identity in law, which is the
counterpart of Corollary 2.3:
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@iy D. Ly e (2 3, (o), 2m(D), (8.1)

where LT(|]/|)d§f supy=0 Li(|y]), and {m(#); 0 < ¢ < 1} denotes a meander process.

The joint law of supo<,<; m(f) and m(1l) is determined by the following ‘Gauss
transform’: let ./ denote a Gaussian ./'(0, 1) variable, independent of the meander process
m; then according to Pitman and Yor (1998b), for all y>x>0,

0? sinh x

Unfortunately, we have not succeeded in obtaining accurate asymptotics of the joint tail of
LY(ly]) and L{(y]) from (8.1)=(8.2).

If we are only interested in the variable LT(M), then (8.1) confirms that it has the same
distribution as twice the supremum of the meander. The latter having been explicitly
evaluated by Chung (1976) and Kennedy (1976), we arrive at:

Theorem 8.1. For any x >0,

32 202k — 1)?x?
P(L(y]) <) :QZ exp<_ 202k — 1y )
k=1

x2

3 k2 2
=1- 22(71)1‘+1 exp ( Tx)
=1

In particular,

% 2m? N
IOgP(L1(|V|)<)’)N—y—» y—07,
* y2
logP(Ly(lyD) > y) ~ -5 y — 00.

We also have the following LILs for the maximum local time of the reflecting empirical
process, which is to be compared with Theorem B. Note that the local time at 0 of the
reflecting empirical process is easy, since it is twice that of the original empirical process.
Theorem 8.2. Let a, be a uniform empirical process, and let

def X
Lf(Jaa)) = sup Li(ja)-

Then

lim inf(loglog m 2L (o)) = V2r as.,

where ¢ is defined in (1.3).
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