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We investigate compound distributions ± for example, compound mixed Poisson distributions ± in the

case where the summands, the mixing distribution or the number of summands are subexponential. It

is shown that such distributions are subexponential. As an illustration the tail of the maximum of a

BjoÈrk±Grandell process is obtained.
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1. Introduction and main results

In problems considered in applied probability ± for example, risk theory, queuing theory or

storage theory ± the class S of subexponential distributions is quite important. In queuing

theory heavy tails appear as a consequence of long-range dependence, and in insurance

aggregate claims from catastrophe insurance have a heavy tail behaviour. S , introduced by

Chistyakov (1964), consists of all distributions G with the property that

lim
x!1

G�2(x)

G(x)
� 2,

where G(x) � 1ÿ G(x). Here F � G denotes the convolution of the distribution functions F

and G, G�1 � G and G�(n�1) � G�n � G. The intuitive interpretation of this de®nition is that

a sum of two independent random variables can only exceed a large threshold x if one of the

random variables exceeds the threshold x. A special class of subexponential distributions is

R, the class of distributions with a regularly varying tail, i.e.

lim
x!1

G(xt)

G(x)
� tÿá

for some á > 0. We will use the notation X 2 S for a random variable X if the distribution

function G of X is subexponential.

In applications one often has to deal with compound sums SN �
PN

i�1Yi, where N is a

random variable taking values in N and (Yi) is a sequence of independent identically

distributed positive random variables independent of N . The case where N has a mixed

Poisson distribution is of special interest; see, for instance, Embrechts et al. (1993),

Grandell (1991) or Schmidli (1996). If Yi 2R, N 2R or the mixing distribution in the
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compound Poisson case is in R then it is possible to show that SN 2R; see the discussion

following Theorem 1 below.

In recent work Asmussen et al. (1999a) show that in order to ®nd the maximum of a

process in the presence of heavy tails it is often enough only to consider the process at

some regeneration points. The maximum of a process can be considered as the ruin

probability in insurance risk or as the tail of the steady-state waiting time in a queuing

model. The increment between two regeneration points then contains a term of the form of

SN . It is therefore of interest to know whether SN 2 S or not also in the case where

N =2R. We will give an answer under a light-tail assumption on the other distributions

involved. Another motivation for considering N 2 S comes from hurricane insurance. Here

the individual claims are bounded, i.e. light-tailed. But the number of claims makes the

aggregate claims from one hurricane clearly show heavy tails. This indicates that N is

heavy-tailed.

We denote by Ã the class of distributions G with the property that either G(x0) � 1 for

some x0 2 (0, 1) or

lim
x!1

G�(m�1)(x)

G�m(x)
> a (1)

for some a . 1 and all m 2 N. Note that for any n 2 N condition (1) implies that

lim
x!1

G�(m�n)(x)

G�m(x)
> an: (2)

All light-tailed distribution functions of practical interest belong to Ã. For instance, if G has a

gamma tail, i.e. G(x) � cxãÿ1 eÿáx (ã > 0) then G 2 Ã by the lemma below. The class S (á)

of Embrechts and Goldie (1982) belongs to Ã for á. 0, but S � S (0) does not. Indeed,

because G�n(x) � nG(x) (Lemma 2(iii)) it follows that a < (n� 1)=n and therefore a < 1.

For a de®nition of S (á), see Embrechts and Goldie (1982). Note that if G(x) � cxãÿ1 eÿáx

for some ã, 0, then G 2 S (á).

The following condition is easier to verify than (1).

Lemma 1. Let G be a distribution function such that G(x) , 1 for all x . 0 and

lim
x!1

G�2(x)

G(x)
� 1 and lim

x!1
G�2(x)

G(xÿ x0)
>

1

b
(3)

for all x0 . 0 and some b , 1 independent of x0. Then G 2 Ã.

Let us denote by G the distribution function of the summands Yi, by F the distribution

function of the sum SN �
PN

i�1Yi, and by pn � P[N � n] the distribution of the number

N . We will henceforth use indices to denote independent copies of a random variable, for

instance N1 and N2 will be independent random variables with P[Ni � n] � pn. For

notational convenience we deal with positive summands only, i.e. G(0) � 0. Theorems 1 and
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2 below will also hold for the more general subexponential distribution functions with

G(0) 6� 0.

We say N has a mixed Poisson distribution with mixing distribution H if

pn �
�1

0

l n

n!
eÿl dH(l ),

where H will always denote the mixing distribution and has the property that H(0ÿ) � 0.

Then we obtain the following result. The ®rst part can be found in Grandell (1997); see also

Athreya and Ney (1972, p. 150).

Theorem 1.

(i) Assume that there exists an å. 0 such that E[(1� å)N ] ,1. If Y 2 S then

SN 2 S . Moreover, P[SN . x] � E[N ]P[Y . x].

(ii) Assume that G 2 Ã. If N 2 S then SN 2 S .

Corollary 1. Let N have a mixed Poisson distribution. If H 2 S then N 2 S . If, moreover,

G 2 Ã then SN 2 S .

Note that (i) is ful®lled if and only if
�1

0
eål dH(l ) ,1 in a mixed Poisson model. It may

be possible to extend Corollary 1 to other mixed distributions. In applications, however, the

mixed Poisson distribution is of special interest as a generalization of classical models ± for

instance, the CrameÂr±Lundberg model in risk theory or the M/G/1 queuing model, where N

has a Poisson distribution.

In the regularly varying case the assumptions of Theorem 1 can be weakened and the

explicit asymptotic behaviour can be obtained. The following case was proved in Stam

(1973). Let L(x) be a slowly varying function, i.e. L(xt)=L(x)! 1 as x!1. Assume

lim
x!1 L(x)xáG(x) � â, lim

n!1 L(n)náP[N . n] � ã,

for some â, ã 2 [0, 1). If E[Y ], E[N ] ,1 (this implies á > 1), or if 0 < á, 1 and

E[N ] ,1 (this implies ã � 0), or if 0 < á, 1 and E[Y ] ,1 (this implies â � 0), then

lim
x!1 L(x)xáF(x) � ãE[Y ]á � âE[N ]:

If the tail of the distribution of N is thicker than the tail of the distribution of Y , as it is the

case in the situation of Theorem 1(ii), we have in the case N 2R

P[SN . x] � ã(x=E[Y ])ÿá=L(x) � ã(x=E[Y ])ÿá=L(x=E[Y ]) � P[N . x=E[Y ]]:

This result tells us that SN only can become large if N becomes large, and that, conditioned

on SN . x, the conditional mean of Yi is asymptotically E[Y ]. Indeed, for a large N the

strong law of large number implies SN=N � E[YijSN . x] given SN . x. Grandell (1997,

Proposition 8.4 and Corollary 8.5) shows that, for á 6� 1, L(n)náP[N . n]! ã as n!1
holds if N is mixed Poisson distributed with a mixing distribution H satisfying

H(l )L(l )l á ! ã as l !1, i.e. P[N . n] � H(n).

It seems natural to expect P[SN . x] � P[N . x=E[Y ]] also in the case N 2 S or
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P[N . n] � H(n) also in the case H 2 S . But, as often happens for subexponential

distributions, intuition fails, as the following counterexample shows.

Let ~N be Weibull distributed, i.e. P[ ~N . x] � expfÿxág, and let N � [ ~N ] denote the

integer part of ~N . Assume 1
2

,á, 1. Then N is subexponential. Let Y be Poisson

distributed with mean 1. It is easy to see that Y ful®ls (3). From Theorem 1 it follows that

SN 2 S . Let (X (t)) be a Poisson process with rate 1. Note that SN and X (N ) have the

same distribution. From Lemma 2(vii) we ®nd that F(x) � P[X ( ~N ) . x]. Note that X ( ~N )

has a mixed Poisson distribution, and we also obtain a counterexample to the conjecture

P[X ( ~N ) . n] � P[ ~N . n]. It is shown in Asmussen et al. (1999b) that

P[X ( ~N ) . x] � exp ÿxá 1ÿ á� x1ÿá

á

� �ÿ1
 !á

ÿ áxá ÿ 1� x

á� x1ÿá=á

8<:
9=;:

Thus the tail of SN is heavier than the tail of N . It seems that the Weibull distribution with

á. 1
2

is not `heavy-tailed enough' for N to be the `only' variable responsible for SN . x. As

in the light-tail case SN can only become large if both N and the Yi are large.

In applications one is often interested in the probability that a random walk with negative

drift exceeds a certain threshold. This probability is called the ruin probability in risk

theory and the tail of the steady-state waiting time distribution in queuing theory. For this

problem it is not the distribution of Y itself that is important but the integrated tail

distribution de®ned by

G0(x) � 1

E[Y ]

�x

0

P[Y . y] dy;

see Veraverbeke (1977) or Embrechts and Veraverbeke (1982). If we, for example, consider

the random walk with increments Yi ÿ Ti, where (Ti) is a sequence of positive independent

and identically distributed random variables independent of (Yi) with E[Y ] , E[T ], then the

ladder height distribution is tail-equivalent to G0. Because the geometric distribution of the

number of ladder heights is light-tailed, the tail of the distribution of the maximum of the

random walk can be obtained from Theorem 1(i) provided G0 2 S . This is why Asmussen et

al. (1999a) need the assumption F0 2 S in some of their results.

In KluÈppelberg (1988) a class S � of distributions is introduced via the de®nition

G 2 S � if and only if
�1

0
G(y) dy ,1 and

lim
x!1

� x

0

G(xÿ y)

G(x)
G(y) dy � 2

�1
0

G(y) dy:

The use of L'HoÃpital's rule veri®es that G0 2 S if G 2 S �. This motivates the de®nition of

S �. Moreover, G 2 S � implies G 2 S ; see KluÈppelberg (1988). It should be noticed that

G 2 S � implies that the density of G0 is a subexponential density. A subexponential density

is a density g with g(x� y)=g(x)! 1 for all y and g � g(x)=g(x)! 2 as x!1. Thus

analogues of Theorems 1 and 2 are also possible for subexponential densities.

Obviously R � S �. Note that it is not possible to interchange limit and integral in the

above de®nition. We obtain the following result.
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Theorem 2.

(i) Assume that there exists an å. 0 such that E[(1� å)N ] ,1. If Y 2 S � then

SN 2 S �.
(ii) Assume that G 2 Ã and that E[Y ÿ xjY . x] < B ,1 for all x such that

P[Y . x] . 0 and for some B 2 R. If N 2 S � then SN 2 S �.

Corollary 2. Let N have a mixed Poisson distribution. If H 2 S � then N 2 S �. If,

moreover, G 2 Ã and for some B 2 R, E[Y ÿ xjY . x] < B ,1 for all x such that

P[Y . x] . 0, then SN 2 S �.

The condition E[Y ÿ xjY . x] < B is also a light-tail assumption. For a discussion of this

assumption, see Hogg and Klugman (1984) or Embrechts et al. (1993).

The conditions G 2 Ã and E[Y ÿ xjY . x] < B seem to be far from necessary, as the

results of Grandell (1997) for N 2R indicate. But these conditions appear in a natural way

from the proofs below. The author conjectures that there exist counterexamples if the

conditions are violated. In order to construct a counterexample, the asymptotic behaviour of

the tail of F would be useful to know. But this cannot be obtained by our approach.

2. Proofs of the results

We start by recalling some properties of subexponential distributions. The proofs can be

found in Athreya and Ney (1972) and Chistyakov (1964) or are straightforward.

Lemma 2.

(i) If

lim
x!1

G�2(x)

G(x)
< 2

then G 2 S .

(ii) If

lim
x!1

�x

0

G(xÿ y)

G(x)
G(y) dy < 2

�1
0

G(y) dy

then G 2 S �.
(iii) If G 2 S then for any å. 0 there exists a D 2 R (independent of n) such that

G�n(x) < D(1� å)nG(x) for all n 2 N and all x > 0. Moreover,

lim
x!1

G�n(x)

G(x)
� n:

(iv) Assume that G9(x)=G(x)! c 2 (0, 1). Then G9 2 S if and only if G 2 S .

(v) Let G 2 S . Then for any y 2 R
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lim
x!1

G(xÿ y)

G(x)
� 1

uniformly for y-compact sets.

(vi) Let G 2 S . For any å. 0 one has G(x) eåx !1 as x!1. Equivalently, for any

å. 0 there exists a c � c(å) . 0 such that G(x) . c eÿåx.

(vii) Let G 2 S and G9 be a distribution function such that G9(x)=G(x)! 0. Then

G � G9(x)=G(x)! 1.

Proof of Lemma 1. We prove by induction that

lim
x!1

G�(m�1)(x)

G�m(x)
� 1:

Assume G�m(x)=G�(mÿ1)(x)!1 and let C . 0. There exists x0 such that for all x > x0 one

has G�m(x)=G�(mÿ1)(x) > C. Then

G�(m�1)(x)

G�m(x)
>

1

G�m(x)

�x

0

G�m(xÿ y)

G�(mÿ1)(xÿ y)
G�(mÿ1)(xÿ y) dG(y)

>
1

G�m(x)
C

�xÿx0

0

G�(mÿ1)(xÿ y) dG(y) > C 1ÿ G(xÿ x0)

G�m(x)

 !
:

Using G�m(x) > G�2(x), it follows that

lim
x!1

G�(m�1)(x)

G�m(x)
> C(1ÿ b):

Because C is arbitrary the result is proved. h

We prove now Theorem 1. The proof of (i) can be found in Grandell (1997) or Athreya

and Ney (1972, p. 150).

For the proof of (ii) we also need to express P[S . x] in terms of the tail probabilities

P[N . n].

Lemma 3. The tail probability of SN can be represented as

P[SN . x] �
X1
n�0

P[N . n](G�n(x)ÿ G�(n�1)(x)):

Proof. This follows readily from

P[SN . x] �
X1
m�1

pmG�m(x) �
X1
m�1

pm

Xmÿ1

n�0

(G�n(x)ÿ G�(n�1)(x)):

h
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Proof of Theorem 1(ii). We have to consider

P
XN1�N2

i�1

Yi . x

" #

P
XN

i�1

Yi . x

" # �
X1
n�0

P[N1 � N2 . n])G�n(x)ÿ G�(n�1)(x))

X1
n�0

P[N . n](G�n(x)ÿ G�(n�1)(x))

:

We have to show that the ®rst few terms do not matter. Let å. 0. Then there exists an

M 2 N such that P[N1 � N2 . n] , (2� å)P[N . n] for all n > M . For the ®rst M termsXMÿ1

n�0

P[N1 � N2 . n](G�n(x)ÿ G�(n�1)(x)) <
XMÿ1

n�0

(G�n(x)ÿ G�(n�1)(x))

� G�M (x):

If G(x0) � 1 for some x0 then obviously, for x > M x0,

G�M (x)X1
n�1

pnG�n(x)

� 0,

because for any n0 2 N there exists n . n0 with pn . 0. Assume therefore that G(x) , 1 for

all x 2 R. Then

G�M (x)X1
n�1

pnG�n(x)

<
1X1

n�M

pnG�n(x)=G�M (x)

:

But because by Lemma 2(vi), for a . 1,X1
n�0

pnan � E[aN ] � 1,

it follows from (2) and Fatou's lemma that

G�M (x)X1
n�1

pnG�n(x)

! 0 as x!1:

For the remaining term we ®ndX1
n�M

P[N1 � N2 . n](G�n(x)ÿ G�(n�1)(x)) < (2� å)
X1
n�M

P[N . n](G�n(x)ÿ G�(n�1)(x))

< (2� å)
X1
n�0

P[N . n](G�n(x)ÿ G�(n�1)(x)):
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It follows that

lim
n!1

P
XN1�N2

i�1

Yi . x

" #

P
XN

i�1

Yi . x

" # < 2� å:

Because å was arbitrary, the assertion follows. h

For the mixed Poisson case we need the following representation from Grandell (1997),

which is easy to prove.

Lemma 4. Let N have a mixed Poisson distribution. Then

P[N . n] �
�1

0

x n

n!
eÿx H(x) dx:

Proof of Corollary 1. Note that N1 � N2 has the same distribution as a mixed Poisson

distribution with mixing distribution H�2. Thus

P[N1 � N2 . n]

P[N1 . n]
�

�1
0

(xn=n!) eÿx H�2(x) dx�1
0

(xn=n!) eÿx H(x) dx

:

Choose å. 0. There exists an l 0 such that

H�2(x)

H(x)
< 2� å for all x > l 0:

Intuitively N can only become large if the Poisson parameter is large, in particular larger than

l 0. Indeed, for c � inffex H(x) : x > 0g. 0 (see Lemma 2(vi))�l 0

0

(x n=n!) eÿx H�2(x) dx�1
0

(x n=n!) eÿx H(x) dx

<

� l 0

0

x n eÿx dx�1
0

x n eÿxc eÿx dx

� 2

c

� l 0

0

(2x)n

n!
eÿx dx,

which is readily seen to converge to 0 as n!1. The remainder can be estimated as�1
l 0

(xn=n!) eÿx H�2(x) dx�1
0

(xn=n!) eÿx H(x) dx

< (2� å)

�1
l 0

xn eÿx H(x) dx�1
0

xn eÿx H(x) dx

< 2� å:

It follows that
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lim
n!1

P[N1 � N2 . n]

P[N1 . n]
< 2� å:

Because å was arbitrary, the assertion follows. h

We now start with the proof of Theorem 2.

Proof of Theorem 2(i). Note that E[N ] ,1 and E[SN ] � E[N ]E[Y ] ,1. Since Y 2
S � � S we have SN 2 S . Recall from Theorem 1(i) that P[SN . x] � E[N ]P[Y . x]. The

assertion follows now from Lemma 2(v) and Theorem 2.1(b) of KluÈppelberg (1988). h

The second statement turns out to be the hardest one to prove. This is also indicated by

the additional condition needed. We start by proving two lemmas.

Lemma 5. Under the conditions of Theorem 1(ii),

lim
x!1 P[SN < xjSN � YN�1 . x] � 0:

Under the conditions of Theorem 2(ii) one has

lim
x!1

E[(SN � YN�1 ÿ x)1(SN , x , SN � YN�1)]

P[SN . x]
� 0:

Proof. Recall from the proof of Theorem 1(ii) that G(x)=F(x)! 0 as x!1. The ®rst

assertion then follows from Lemma 2(vii), noting that P[SN < x , SN � YN�1]=
P[SN � YN�1 . x] � 1ÿ P[SN . x]=P[SN � YN�1 . x]. To prove the second assertion we

note that

E[E[YN�1 ÿ (xÿ SN )jSN , YN�1 . (xÿ SN )]1(SN , x , SN � YN�1)]

< BP[SN , x , SN � YN�1],

and now the assertion follows from the ®rst part and Lemma 2(vii), recalling that SN 2 S :
h

Lemma 6. Let G be a distribution with G(0) � 0 and
�1

0
G(y) dy ,1, and let Sn have

distribution function G�n. Then�x

0

(G�m(xÿ y)ÿ G�(m�1)(xÿ y))(G�(nÿm)(y)ÿ G�(nÿm�1)(y)) dy

� E[Y ]P[Sn , x < Sn�1]� E[(Sn�2 ÿ x)1(Sn�1 , x , Sn�2)]ÿ E[(Sn�1 ÿ x)1(Sn , x , Sn�1)]:

In particular, the expression is independent of m.

Proof. The independence of m follows readily by calculating the Laplace transform. Suppose,

therefore, that m � 0. We write Sn �
Pn

i�1Yi. Then
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�x

0

G(xÿ y)(G�n(y)ÿ G�(n�1)(y)) dy

� E

�x

0

1(y . xÿ Yn�2)1(Sn < y , Sn�1) dy

� �
� E[(fSn�1 ^ xg ÿ fSn _ xÿ Yn�2g)1(Sn , x , Sn�2)]

� E[(f(Sn�2 ÿ x) ^ Yn�2g ÿ fSn � Yn�2 ÿ xg�)1(Sn , x , Sn�2)]

� E[(f(Sn�2 ÿ x) ^ Yn�2g ÿ fSn�1 ÿ xg�)1(Sn , x , Sn�2)]

� E[Yn�2]P[Sn , x < Sn�1]ÿ E([Sn�1 ÿ x)1(Sn , x , Sn�1)]

� E[(Sn�2 ÿ x)1(Sn�1 , x , Sn�2)]:

h

Note that the condition N 2 S � can be written as E[N ] ,1 and

lim
n!1

Xn

m�0

P[N . m]P[N . nÿ m]

P[N . n]
� 2E[N ]:

Proof of Theorem 2(ii). Note that E[Y ] < B and E[SN ] � E[N ]E[Y ] ,1. By Lemma 3 we

can write�x

0

P[SN . xÿ y]P[SN . y] dy

�
X1
m�0

X1
k�0

P[N . m]P[N . k]

�x

0

(G�m(xÿ y)ÿ G�(m�1)(xÿ y))(G�k(y)ÿ G�(k�1)(y)) dy

�
X1
n�0

Xn

m�0

P[N . m]P[N . nÿ m]

�x

0

(G�m(xÿ y)ÿ G�(m�1)(xÿ y))(G�(nÿm)(y)

ÿ G�(nÿm�1)(y)) dy

Choose å. 0. There exists a M such that, for all n > M ,

Xn

m�0

P[N . m]P[N . nÿ m]

P[N . n]
< 2E[N ]� å:

Then
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XMÿ1

n�0

Xn

m�0

P[N . m]P[N . nÿ m](E[Y ]P[Sn , x < Sn�1]

� E[(Sn�2 ÿ x)1(Sn�1 , x , Sn�2)]ÿ E[(Sn�1 ÿ x)1(Sn , x , Sn�1)])

< M
XMÿ1

n�0

E[Y ]P[Sn , x < Sn�1]� E[(Sn�2 ÿ x)1(Sn�1 , x , Sn�2)]

ÿ E[(Sn�1 ÿ x)1(Sn , x , Sn�1)]

< M(E[Y ]� B)G�(M�1)(xÿ):

Using Lemma 6, it now follows as in the proof of Theorem 1(ii) that the above term has no

asymptotic contribution.

Because of Lemma 6, it remains to show thatX1
n�0

P[N . n](E[Y ]P[Sn , x < Sn�1]� E[(Sn�2 ÿ x)1(Sn�1 , x , Sn�2)]

ÿ E[(Sn�1 ÿ x)1(Sn , x , Sn�1)])=P[SN . x]! E[Y ]

as x!1 or, equivalently,X1
n�0

P[N . n](E[(Sn�2 ÿ x)1(Sn�1 , x , Sn�2)]

ÿ E[(Sn�1 ÿ x)1(Sn , x , Sn�1)])=P[SN . x]! 0:

It follows readily that the left-hand side can be written as

(E[(SN � YN�1 ÿ x)1(SN , x , SN � YN�1)]ÿ E[(Y1 ÿ x)1(Y1 . x)])=P[SN . x]:

In view of Lemma 5, this proves the theorem. h

The next proof is similar to the proof of Corollary 1.

Proof of Corollary 2. Note that E[N ] � �1
0

H(x) dx ,1. Using Lemma 4, we ®ndXn

m�0

P[N . m]P[N . nÿ m] �
�1

0

�1
0

Xn

m�0

x m y nÿm

m!(nÿ m)!
eÿ(x� y) H(x)H(y) dy dx

�
�1

0

�1
0

(x� y)n

n!
eÿ(x� y) H(x)H(y) dy dx

�
�1

0

� z

0

z n

n!
eÿz H(x)H(zÿ x) dx dz:

Let å. 0. Choose l 0 such that
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� z

0

H(x)H(zÿ x) dx < 2

�1
0

H(x) dx� å

� �
H(z)

for all z > l 0. It follows as in the proof of Corollary 1 that

lim
x!1

�l 0

0

� z

0

(z n=n!) eÿz H(x)H(zÿ x) dx dz�1
0

(zn=n!) eÿz H(z) dz

< lim
x!1

�l 0

0

z n�1 eÿz dz�1
0

z n eÿz H(z) dz

� 0:

The rest of the proof now proceeds similarly to the proof of Corollary 1. h

3. An example

Let ((Li, ó i)) be a sequence of independent identically distributed vectors with Li > 0 and

0 , ó i < s0 almost surely. Set Ón �
Pn

i�1ó i. The times Ói are the times where the intensity

changes. Let ë t � Ln if Ónÿ1 , t < Ón denote the intensity at time t and let Ë t �
� t

0
ës ds.

Finally, let N (t) � ~N (Ë t) be a point process where (N̂ (t)) is a homogeneous Poisson process

with rate 1. As before, the sequence (Yi) of positive independent and identically distributed

random variables is assumed to be independent of (N (t)). The stochastic process

X (t) �
XN ( t)

i�1

Yi ÿ t

is a special case of a BjoÈrk and Grandell (1988) model. If ó i � s0 is deterministic it is the

Ammeter (1948) model; see also Grandell (1995). We are interested in the tail of the

maximum M � supfX (t) : t > 0g of the stochastic process (X (t)). This tail probability is

called the ruin probability in risk theory, the steady-state waiting time in queuing theory and

the stationary dam content in storage theory. In order that M 6� 1 almost surely we have to

assume that E[Ló ]E[Y ] , E[ó ]. This can be interpreted as saying that in an interval of length

ó the mean income (or out¯ow) is larger than the mean expenditure (input).

In Grandell (1995) the tail probability of M is investigated in the case of an Ammeter

model and summands Y such that the integrated tail distribution

G0(x) � 1

E[Y ]

�x

0

G(y) dy 2 S :

This is, for instance, the case if G 2 S �. In Asmussen et al. (1999a) the assertion is shown

for a general BjoÈrk±Grandell model. We treat here the case of subexponential intensity

levels.

Theorem 3. Let (X (t)) be a BjoÈrk±Grandell model with ó i < s0. Denote the marginal

distribution of Li by H. Then under the conditions of Corollary 2 we have

lim
x!1

P[M . x]

F0(x)
� E[Ló ]E[Y ]

E[ó ]ÿ E[Ló ]E[Y ]
, (4)
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where F is the distribution of Xó 1
.

Proof. The theorem would follow immediately from Theorem 2 and Embrechts and

Veraverbeke (1982) if we could replace M by M� � supfX (Ón) : n 2 Ng. It is therefore

enough to show that P[M�. x]=P[M . x]! 1 as x!1. It is clear that

P[M�. x] , P[M . x] and P[M�. xÿ s0] . P[M . x]. From Theorem 2 it follows that

F 2 S � and therefore F0 2 S . The theorem now follows because

lim
x!1

F0(x)

F0(xÿ s0)
� 1

by Lemma 2(v). h

The above theorem shows the limits of the application of Theorems 1 and 2. Because no

explicit tail behaviour for SN was obtained, one has to use F0. The problem of ®nding the

asymptotic behaviour of F0(x) if F =2R seems to be hard. For N 2R one can show that

P[SN . xE[Y ]] � P[N . x]: (5)

This yields another open question. When does (5) hold? Some special cases of this problem

are considered in Asmussen et al. (1999b).
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