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We consider a particle of mass 1/8 submitted to the action of an harmonic oscillator. If we add a
white-noise external force, it is well known that the trajectories of the particle, for 8 tending to
infinity, converge to an Ornstein—Uhlenbeck process. Using the number of crossings of the particle
with a fixed level u, we construct a consistent estimator of the Ornstein—Uhlenbeck local time, giving
an estimate of the speed of this convergence.
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1. Introduction

Wang and Uhlenbeck (1945) study the equation of the harmonic oscillator driven by white
noise dW,:

x"(£) + Bx'(1) + 0*x(£) = y dW,. (1.1)
If the initial conditions are suitably chosen, this equation has a stationary Gaussian solution
with spectral density given by
2

_ Y
SO =i = + iy

From this formula it is trivial to show that the variance of the process, 1y, and its second
spectral moment, A,, are

2 2
14 14
Ao = d L=%.
0T 2 MY 2708
Denoting by N7j(u) the number of crossings of process x with level u up to time ¢, i.e.

Ni(u)=#{0<s=<1:x =u},

we obtain, using Rice’s formula of order 1 (see Rice 1945) that:

. t u?
ENt(u):EOexp —2—/10 (1.2)
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Thus the expectation of the number of zeros does not depend on 8 and this random variable
provides an unbiased estimator for frequency 6.

Another physical model equivalent to the harmonic oscillator is the RLC (where R
denotes a resistance, L an inductance and C a condenser) circuit considered by Rice (see
Rice 1945). The equation in this case is

1
LI"(t) + RI'() + 5 1(0) = y dW,,

where the ‘frequency’ is 6> = 1/CL and 8 = R/L. In his seminal paper, in which he proved
formula (1.2), Rice (1945, p. 57) wrote:

There are experiments which indicate the possibility of the formulas [(1.2)] breaking down in some
cases. Prof. Uhlenbeck has pointed out that if a very broad band fluctuation current be forced to flow
through a circuit consisting of a condenser, C, in parallel with a series combination of inductance L,
and resistance, R, equation [(1.2)] says that the expected number of zeros per second of the current,
I, flowing through R (and L) is independent of R. ... Curves are available for this motion and it
seems that their character depends greatly upon the pressure. Unfortunately, it is difficult to tell from
the curves whether the expected number of zeros is independent of the pressure.

Nelson (1968, p. 65) found that if the parameters of the equation satisfy certain
restrictions, then the asymptotic behaviour (for S going to infinity) of the solution can be
determined. Using the law of the equipartition of energy, he obtained

,y2 _ ﬂzD
(here we take D = 1). On the other hand, he imposed
02
lim — = const.
p—oo fB
(we will take 6% := Bw?). Under these conditions equation (1.1) becomes
xX"(1) + Bx'(1) + Ba*(t) = BdW,. (1.3)
We will denote by x(¢, ) its stationary solution. Denoting by f(4, ) its spectral density, we have
B
A, B) = .
SO P = = ipA T parp
Therefore,
1
li A, B)=——F = g).
ﬁingof( B nE T o) g(d)

The function g(4) is the spectral density of the stationary solution of the Ornstein—Uhlenbeck
equation

dP, + w? P, = dW,. (1.4)
According to this, Nelson (1968) gave a rigorous proof that

lim x(¢, B) = P, a.s. (1.5)

B—o0
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uniformly over compact intervals (see Nelson’s Theorem 10.1). Therefore, the solution of
equation (1.3) provides an estimate of the Ornstein—Uhlenbeck process which has been called
the Smoluchowski approximation (see Karatzas and Shreve 1991, p. 362). For other classical
estimates of the Ornstein—Uhlenbeck process and an excellent account of its origin, we refer
the reader to Jacobsen (1996).

Using Rice’s formula for the process x(¢, ), we obtain

E{NP(u)) = é VBw exp(—i2a?). (1.6)

The process P; crosses all levels infinitely many times. Moreover, it has a bicontinuous
local time L7(u), for almost every path (see Berman 1969; Revuz and Yor 1991, Chapter
VI), defined as

P S S t|Py—u| <2e}
e
A simple computation gives

E{LP(w)} = t% exp(—u’w?).

NG

Hence we obtain
o 12
<E> (VD) = E{L ()}, (1.7

It is natural to conjecture that

B—o0

T\ /2
lim <3> NPy = LPw)  in IA(Q).

In Theorem 1 we will prove this result. In Theorem 2 we give an estimate of the speed of this
convergence. More precisely, let / be a smooth real function: we will show in Theorem 2 that
there is a Brownian motion B independent of # and a positive constant o such that

t

% /
\/EJ f (u)( (%)1 2N’f("ﬂ)(u) — Lf(u)> du — oj f(Ps)dB;s
S 0

weakly when B goes to infinity.

There are some related results in the literature. Indeed, several papers study the second-
order approximation to the Brownian local times. Borodin (1989) provides more exhaustive
information concerning this kind of problem.

The regularization of an irregular process P by convolution with an approximated
identity has been succesfully used for the estimation of the local time of P. If P is the
Brownian motion (see Wschebor 1985), a stationary Gaussian process (see Azais and
Florens 1987) or a diffusion process (see Azais (1989), then the number of crossings of the
regularized processes (suitably normalized) converges to the local time of P as in our
Theorem 1. In that context we can also find some results analogous to our Theorem 2 (see
Berzin et al. 1998). However, there are some substantial technical differences between that
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context and ours, mostly related to the fact that in our case the approximating process
x(-, B) corresponds to the convolution of P with a non-compactly supported kernel.

2. Notation and L*(Q2)-convergence

Let us define P’lf = x(t, B) and Vlf = x'(¢, B). The equation for the harmonic oscillator (1.1)
is equivalent to the following system:

dPj =vid,,  Pj=p,
dvt = —prf dt — Bw? PP dt + paw,, Vi = v,
For the sake of simplicity, we will choose as initial conditions pg, vy independent, centred

and Gaussian random variables with variances to be made precise later on. Let us first fix
some notation:

X = V2wP! yi [y o X
t ts t ﬁ t \/W

We will choose the initial conditions (Xj, Yy) to be a standard Gaussian vector,
independent of . With that choice it is easy to see that (X/f , Y [,’) ) is a stationary Gaussian
process.

Remark. 1t is casy to see that N*'(u) = NP'(u/\2w), L¥(u)=(1/v2w)LE(u/\2w).
Therefore, there is a difference of a factor v2w in the normalization of the results to be
presented in this section with respect to their statement in Section 1.

Given a standard Brownian motion M, we will denote by UM(a) the Ornstein—
Uhlenbeck process of parameter a generated by M, i.e.

UM(a) = exp(—at)Jt exp(as) dM;.
0

Define
X, = exp(—w* )Xy + \/Ec‘uiU,W(a)z).
With this new notation, Nelson’s theorem states that:
X/f(t) — X; a.s.

uniformly over compact intervals.

Using well-known results for Gaussian processes (see Wschebor 1985, p 14) it follows
that, for each level u, P{3s € [0, 1] : Xf =u, Xf =0} =0, and therefore Nf(ﬁ(u) is a.s.
finite.

On the other hand, we will denote by L (u) the local time of X at level u (up to time ?);
it can be taken as an a.s. continuous function of (¢, u).
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Useful representations of both N ﬁ(u) and L¥(u) are given by the Banach—Kac formulae
(see Nualart and Wschebor 1991, Lemma 1.1):

8
NX (u) = hm J L 0u+6)(Xﬁ)|Xﬁ|dS

20
L¥(u) = 1 1
u) = 11’1’1 25 1(u 0 u+6)(X ) ds.

A final remark on notation: we will say that a sequence of random processes converges
f.d. if their finite-dimensional distributions converge.

Theorem 1. For each level u, we have

Jim oV = 1w i 2@,

Proof. Applying Rice’s formula (see Wschebor 1985, p. 43), we obtain

E{, /2/3 2N)”‘(u)} =E{L¥(u)}.

Therefore, it is enough to see that

. T B
Jim o BV @IV ) = 11} = B{LLI @), @1
hm,/zﬁ SE{NY () LY ()} = E{[L¥ ()]} 22)

The proof of (2.1) is obtained as follows. Using Rice’s second-order formula (see
Wschebor 1985, p. 61), we obtain

BV @IV @ — 11y = | W s,

for

(t — S) eXp <— %;(@)
Wh(s) = P E{

) up(s) 03
4Bw2\/T — (pP(s))2 1+ pB(s) L+ pb(s) [’
where (Ef, Cf) is a centred Gaussian vector with
PP(s)

var(&%) = var(&’) = —pP(0) — 2.4)

[1 = (pF()*]

and
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5 b — i) M
cov(&h, &) = (s) — (pP())?1’

and pP stands for the correlation of X7.
It is easy to check that

l[fs /'{/;s B 1B
PUDER SAR S R L)
A a5 B—4w?

B
B(s) = [eMs _ oMs (5 = 47) w2,
. AL =28
PPls) = (MM — 2 }mwz

where /'Lf, i =1, 2, are the eigenvalues of (1.1), i.e.

3 - B VBB~ %)
2

5 _ B+ VBB~ 40
5 = .
2
Denoting by p(s) = e’ the correlation function of X, it follows that, for all s =0,
Jim pP(s) = p(s), lim pP(s) = p(s),
and that the Gaussian vector

£h upP(s)
a)\f 1+ pb(s)’

converges in law to a standard Gaussian vector in R2, (&, £). This implies in turn that

o _ ') )

1+ pP(s)

1 upP(s) upP(s) || E(IEI)2 1
Jm e { T80 | 7 T T R ‘} =z Bdeleh = T
and, defining
2
(t—s)exp (714)
1
W(s) — + p(s)

274/ 1 — p(s)?
it follows that, for each s >0, W#(s) converges to W(s) as 8 goes to infinity. On the other
hand, it is very easy to see that E{[L(u)]*} = [ W(s)ds. As is well known, if

0<W(s)<nl(s), Vs>0; Jim () =n(s), Vs>0; P, ne L0, )



Approximation of the Ornstein—Uhlenbeck local time 363

t t
ﬁlim J 7P (s)ds = J 7(s)ds; ﬁlim Wh(s) = W(s) Vs>0,
then

lim Jtlpﬂ(s) ds = Jflp(s) ds
0

f—00 0

Therefore, to prove (2.1), it sufficies to find 7, 5 as above.
But, using Cauchy—Schwarz and (2.3), we have

2
(t — s)exp <L>
L+ pP(s) 12 (pP(5))?
< Wh(s) < By —E 00 .
P e Ty [Var@s) T ) &2

Elementary computation shows that WA(s) < 78(s) + vf(s), with
Vi . 2 ) 2
Bs) = K, { L) (0B } pi(s) — 6D

V1=pP(sy [1—pP()PP/2pw? BT = pP(s)
Take nf =1f+0vf and define 7(s) = (1 + p(s))//T — p(s), since p(s) = e™’s; some
elementary calculus (where we use the equality p# = —B(w?p” + p#)) shows that
t t
lim 7# =7 ae., 7 tintegrable; lim J P(s)ds = J 7(s) ds
f—o0 B—o0 Jo 0
and
t
ﬁhm v =0ae., v’ integrable; ﬂlim J Uﬁ(s) ds=0
—00 —00 0

and (2.1) follows.
In order to prove (2.2), it is easy to see, from the Banach-Kac formulae, that

VetV L) = [ weas

where uP(s) = \/(2B0D)E{|X|/ XP = X, = u}; limg_.., uP(s) = y(s), for all s>0, and
hence, by Fatou’s lemma, E{(LX(u))Z} < liminfy_ \/(0/2B0D)E{NY" ()L (u)}. The
opposite inequality is obtained from the Cauchy—Schwarz inequality and (2.1). O

3. Weak convergence results

We will begin with two elementary remarks that play an essential role in the proof of
Theorem 2.

First, let M be a standard Brownian motion and U*(a) the Ornstein—Uhlenbeck process of
parameter a generated by M. Consider ZY(a), a stationary Ornstein—Uhlenbeck process
of parameter a generated by M, defined by
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ZM(a) = exp(—at) Zy + V2aUM(a),

where Z; is any N(0, 1) random variable independent of M. A straightforward computation
shows that

M '
Mi(a) = Z(a)— 2y I EJ ZM(a) ds.

V2a 2)o

we will refer to this equation as the OU inversion formula.

The second remark is a formula that enables us to integrate a function with respect to the
number of crossings. Let / be a bounded interval, g a C'(/) function, f continuous and
bounded in R, and denote by NF(u) the number of roots of the equation g(f)=u, t € I.
Then

J FOONE () du = Jlf(g(t))lg’(t)\ dr

(see Nualart and Wschebor (1991, p. 88).

Define
V(p) = JBJ_ f(@(dﬁw(ﬁ)(u) - Ly (u)) du

By using the previous formula, we get the decomposition

V(p) = \/BJOf(Xf)g(Yf) ds + \/BL[/‘(Xf) L fXIds =SB4 RB), G

where

t

J(P) = JBJOf(Xf)gw?) ds,  R(B)= JBJ LF(XP) — f(X,)]ds

0
509 =34 1.

We will show below that R(8) — 0 in L?>(Q2) when 8 goes to infinity. Hence, to obtain the
asymptotic distribution of V(f3), it is enough to consider only J(J3).
We must first study the limit of var(J(/3)), but since E(J(f)) = 0, we obtain

and

t 2
Jim var(J(B)) = lim E [JBJ f(XPg(Y?) ds} ;
—00 —00 0

we will study this limit for a more general function g.
We will use some basic properties of Gaussian chaos: define the Hermite polynomials
(H,: neN) by
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t2 o tn
exp(t —E> = ;Hn(x);

These polynomials form an orthogonal system for the standard Gaussian measure u.
Therefore, if h € L?(u) we will expand h(x) = Zflozoithn(x) and we have ”h”ZLZ(u) =
Zf;oizin!.

Mehler’s formula states that if (X, Y) is a Gaussian random vector having correlation p,
and if h, k € L*(u), then

E[A(X)K(Y)] =D hykynlp".
n=0
We will first state an auxiliary result.

Lemma 1. For any s >0, we have (X, Yo, Xf/ﬁ, Y’f/ﬁ) 1>(X0, Yo, Xo, Y), and the limit is a
Gaussian vector with E(XoYs) =0, E(YoY;) =e%.

Proof. Observe that (X, Yo, Xf I8 Yf /ﬁ) is a Gaussian vector, and compute covariances
using the fact that, for 0 < u <,

E(XOXT) = pf (s — u), BXRYD) = pP s — w), E(YRXE) = (s — w), B(Y{ YH) = —pf (s — w).

O

We shall now compute the asymptotic variance.

Proposition 1. Let h: R — R be a continuous even function such that E[h(€)*] < +o0, where
& is a standard Gaussian variable. Then

t 2
Jim E[JBJ XD ds] = o tE[f(Xo)],
—00 0

where 0% = 2]50 E{n(Yo)h(Y,)}ds and Y is a stationary Ornstein—Uhlenbeck process of
parameter 1.

Proof. Using the fact that (Xf , Y f) is stationary and that if ¢ is an even real function, then
Jo s o(u — s)duds =2 [;(t — $)p(s) ds, we obtain

t 2 t
E [JELf(Xf)h(Yf) ds] = 2ﬁj0<r — OE{f(X0)f(XPYh(Yo)h(YE)} ds := K(P).

We can split our domain of integration into [0, M /3] and [M /B, ], obtaining
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M/B
K(p) = 2ﬂj0 (1 — ELF(Xo) f(XPYh(Yo) (Y™} ds

+ 2/%] (1 — ELF(Xo) f(XEDYR(Yo)h(YP)} ds
M/B

= Ki(B) + Ka(P).
Taken u/f = s in K (f3), we obtain

M S
KB =2 (r - [—3)E{f(Xo)h<Yo)f(Xf/ﬁ)h(Yf/ﬁ)} ds.

But
[E{f(Xo)h(Yo) f(XBYR(YP)Y| < (B{f2(Xo)2(Yo) D) AE{F 2(XPY 2 (YP)})1 /2
= E(f2(X0))E(K(Yp)) < C.

Since the integrand is bounded, we can apply Lemma 1 and the dominated convergence
theorem to obtain

M
Jim K1(B) = 2tE{f2(Xo)}JO E{h(Yo)h(Y,)} ds. (3.2)

Given & >0, we will choose M in such a way that
Cre ™ M<e, (3.3)

where C* = E{f2(X0)} 3.2, h(21)*(21)! (observe that since 4 is even, h(2]+ 1) =0 V1).
Thus, by Mehler’s formula, we have

) | B0 & < B0} 3SR @DIETT) P ds
=1

<EB{/2(X)}Y_R,@hle M = C*e M <o
=1

For K,(f3), we apply Lemma 2 (see the Appendix) and obtain
lim limsup|K,(B)| =0 3.4)
M—o0 B—o0

From (3.2), (3.3) and (3.4) we obtain

lim sup

froc

ﬁJOE{f(Xo)h(Yo>f(X€>h(Y§‘} ds — ZfE{f(Xo)z}L E{h(Yo)h(¥)} ds| < e.

Since € >0 is arbitrary, the proposition follows. O

We turn now to the main result of this section.
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Theorem 2. If f is a real function with bounded and continuous second derivative, then

hm VB J f(u){,/ e N () — Lf(u)}du:ojof(Xc)dBS,

where B is a standard Brownian motion independent of W, 6% = 2 jo E{g(Yo)g(Y,)} du with
g(x) = \/(/2)|x| — 1, and Y a stationary Ornstein—Uhlenbeck process of parameter 1.

Proof. We will divide the proof into several steps:

Step 1. limg_o R(f) =0 (in L?), where R(f) = \/_IOU(Xﬁ) f(X )] ds.
Step 2. limg_.. E{J(B)*} = 02 (E{f*(X0)}, where J(B) = \/B [y f(XP)g(YP)ds.
Step 3. There is a stationary Ornstein—Uhlenbeck process of parameter 1, Z#, such that:

/3113010 \/BJ;{ g(YP) - g(zfjﬂ%) ds} =0 V¢ (in IXQ)).

Step 4. The random process C(f),, = (W,, \/_ fo g(Zﬁ s )ds) converges weakly to
(W,, 0 B;) (as a continuous process in y, f.d. with respect to t) when [ goes to infinity.
Step 5If

V(p) = \/ﬁLf(Xf)g(Yf) ds

and

_ ANt [
N =B (x| srtras
then

lim sup lim sup 1V(B) — Vn(ﬁ)”% =0.
p—

n—00

Assume that all these steps have been proved. Then, by step 4 and the fact that X7
converges a.s. uniformly over compact intervals to X, we deduce that, for fixed n, when
S — oo, V,(B) converges in distribution to V,, where

[nt]

V, _toX, (B: — BLy).

A straightforward computation shows that, when » goes to infinity, V, converges in
distribution to o jo f(X;)dB;. Then, step 5 implies in turn that V() converges in
distribution, for § tending to infinity, to o Io f(X;)dBs. Therefore, by decomposition (3.1)
and step 1, the theorem is proved.

We have seen that it suffices to show steps 1 to 5. We will present now their proofs.

Proof of step 1. By Taylor’s formula, we have
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FE(P) [VBXE — X )P
2 \/B ’
then

E{Rz(ﬂ)}<2{E[<J;f’(Xs)\/ﬁ(Xf —Xs)ds>2 }+2{ y Uof EED pxs - X)zds} }

Using Jensen’s inequality and the fact that /" is bounded, we obtain that the second term

is O(1/p).

For the first, we have

t 2 tpt
E{ Uof'(Xm/B‘(XE ~ X)) ds] } — jOLE{f'(Xs)for)JB(XE ~ XA — X,)dsdr)

VBU(XP — (X)) = f(X)VBXP — X))+

= ”tﬂﬁ(s, r)dsdr.

0J0

By Holder |tf(s, r)| < (E(f'(Xo)")vPvPE(EH)!/?, where vf —Zﬁ(l fE(XBX )) and & is

standard Gaussian; a direct computation shows that Uﬁ — w? + w22’ when B — oo,

uniformly in s. Indeed, it is easy to show that
—1 exp(2fs) + 1 exp(ifs)
=2

2028 (1 —exp((A —
=2 -

Uf = exp(—w?s)

w?)s) 1o exp((Af — wz)s)>
Yl '

This can be obtained as follows: first, use
X, = exp(—w?s)Xo + V202U (0?);

second, using the equation of the harmonic oscillator and elementary computations, compute
the deterministic functions 4?, B?, C? such that

X = Alxo+ Bl Yo+ CUUY (=) — UV (=25))
and obtain the result by using the independence of Xy, Yo, W and the fact that

—exp(—(a + b)s)
a+b

EUY (a)UY (b)) =

Hence

Wi(s, ) = C
On the other hand, the vector

wh(s, )= (Xs, X, VBXP — X)), VBXE - X))
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tends weakly to the Gaussian vector (X, X,, Dy, D,). It follows that, when 8 — oo,
W(s, r) — (s, r) = E(f"(X)f (X)) D:D,).

Using dominated convergence, we obtain, when 8 — oo,

t et tpt

J J,uﬂ(s, rydsdr — J J u(s, rydsdr.

oJo oJo
It is easy to show that

Jim E{X\/BXP - X0}y =0, VI se[o, 1],
so that
Jim E{VBOX, = X)VBX[ = XD} =0, ¥s#relo

Hence j(; Jo (s, r)dsdr =0 and step 1 follows.

Proof of step 2. Proposition 1 applied to the function g gives, when 8 — oo,
E{J(B?} — o 1E{f*(Xo)},
where 02 =2 [ E{g(Yo)g(Y.)} du.

Proof of step 3. Straightforward computations show that the following explicit representation
holds:

2
- Lo
1

2 lexp(fs) — exp(,lfjs)]xo}

% — V2
B B B B
n ﬂ\/2,3ﬂ [P0 (—P)] +[/12 exp(4; Sz A exp(A19)] Yo.
A5 =) (25 — 2]
Define a new Brownian motion W/ by
wh =/ -2w
t 1 (j)
and set
7P = 2/15U’<V >( M) 4 exp(—5)Yy = V2U"" (1) + exp(—s) Yo.
_ib

(For the last identity use UY(a) = M, — aexp(—as) f(; exp(au)M, du). Now observe that:

W[}(Y?)ds—ﬁﬂg([ﬂﬁ*qﬁ) | = 1\ [ ¥l

But, using Jensen’s inequality, when 8 — oo,
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8 ds zg_ po_ L
E(\/BL|YSd> ﬂJE(Y) 570

Then it will suffice to show that

t B _ 1B
\/BL <g (W Yf) - g(Zﬁl,];S)> ds—0  (in LA(Q))

to obtain the step.
Let us define

0= \/2(— /lﬁ)UE//)(—/'Lg)—kexp(—s)Xo.

Hence we can write

2~ ! Brh s/ -0
YP = VALY BN, BV VT2 Telsy,
ﬁ S \/B { 2 7/1§s 7lzfs 1 } \/B

AIS / B B /lgs
+X0w\;_ +Y0\/7< /’{ﬁ—%>el€s+)}012;

= Y7 + A5(s) + Bp(s) + Cp(s) + Dp(s),

where
\/ _;l'ﬁ - lf;s
Aﬁ(s) = %elﬁs}{o, Bﬂ(S) =X w\;B ,
B B ﬂ.gs
Cp(s) = YO% (—\/ —l/f — i—%) el/fs’ Dg(s) = Yy 12; .
Thus,
‘(15— .
VBJ g\ vl ) - e | ds| <
0 B

V3 (VB[ s as-+ VB[ 13seoas + VB[ 1o as + VB 1Dacoas )
0 0 0 0
therefore it suffices to prove that

Q) B (g(yﬁ) ( s )) ds — 0,

(i) /B [y |4(s)| ds — 0, \/B [, |Bs(s)| ds — 0,
VB [y 1Ca(s)| ds — 0, \/B [y |Dp(s)| ds — 0 (in LA(Q)).
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(i) is an easy consequence of the definition of the terms. To prove (i), observe that
78 =V2U"" (1) + exp(—9)Y,

and
70 = V2U"" (1) + exp(—5) X,

are stationary Ornstein—Uhlenbeck processes of parameter 1, the former associated with

wh = /- W iyt and the latter associated with W% = y/—25 W,

t/-25)"
We also have

2 5
B(Z0,01 ) = 5 @0 {(B0R A O)} = exp{~fs))

Finally, it is obvious that:
1 1
ifz—ﬂ—l—wz—l—O(B), lg:—w2+0<lg>.
An elementary computation shows that Lemma 3 (see the Appendix) applies, which proves
that (i) holds.

Proof of step 4. After a change of variables, we obtain

—Aft
C(B)ys = (Wy, %L e(Z%) ds);

M
applying the OU inversion formula, we can write W/f = (Z/f - YO)+f0t Zf ds/v/2 and
hence,

1 1 71?[
Wi=———=(Z_;s,— Yo) + J Zf ds.
YA \/ —228 0

The first term in the last expression tends to zero in L?> as 8 goes to infinity; therefore,
C(p),.: has the same asymptotic distribution as

1 1 7l¢y 71/131
D)y = —— —J 7B ds, J g(ZP)ds |.
0

\/jfﬁo

But D(f),,, has the same law as

1 l 71/15)1 | 71?[ | )
73 <EL Zds, L g(Z,)ds

which converges weakly (as a continuous process in y, f.d. in ) to (W,, 0 B,) because the
process Z' is geometrically p-mixing (see Doukhan 1994, p. 115) and the step is proved.
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Proof of step 5. Write
1V(B) = Va(Bi3 = E{V (B} + E{Vu(B} — 2E{V(B)Vu(B)}.

The first term on the right-hand side converges to o2tE{f(Xo)*} as a consequence of
proposition 1. For the second term, we have

[nt] [nt]

E{V.(B7} = ﬁZZE{f(X?I) (6‘_)[ (Yﬁ)dsj' g(Yh)ds'.

i=l j=

Fix n and t: step 4 implies that
L A
(f(X{il), r(xL), JBL;(YE) ds, JBJ/_]g(Yfr)ds)
converges in law, as 8 goes to infinity, to

(f(X2). S/ (Xi2) 0 (B; = Bia). 0 (B, = Br) ).

On the other hand, by Hoélder,
f(xﬁ ) f(Xﬁ )J g(Y7) dsJ g(Y0)ds

is bounded in L*(R2), hence it is uniformly integrable and we conclude that, for B going to
infinity, £{V,(B)*} converges to
2 S 2 1 2 2
> E{ Xe }— ~ 02 E{ f(Xo)*}.
93 S2 (X | = 0 E{f(X0))

Finally, Lemma 4 (see the Appendix) shows that E{V(f)V,(f)} converges to
02tE{f(Xo)’} if B and n converge to infinity (in that order), which concludes the proof.
O

Appendix
Lemma 2. With the notation of Proposition 1, define:
Ka()i= 26| (1= 9B CAD).
M/
Then

lim limsup|K>(B)| = 0.
M—oo B—00

Proof. Let us start by introducing some notation. Write
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Cﬂ =4/1— @ ~]——
Then, using the fact that Xg = X, Yﬁ = Yy, we obtain, for all s =0,

BT} = ) = o {01+ g6 = gt

E{XoYP} = pl(s) = e 5Hs _ o515}

f BGs
B(1070) = ph) = {0 + Eper e — - geri=eo),

We can decompose
Xo = Zo(B) + A1(B)Yo + Ax(B)YP
X = Z\(B)+ Bi(B) Yo + Bo(B)Y?,
with (Zy(B), Z1(B)) independent of (Yo, Y?). The coefficients are given by

Ph ()0l (s) ph(s)
A :— A —___ ¥
D=1 PP ey

Bi(B) = —4:(p), By(B) = —A1(P);
it is easy to verify that if M >log2, s>2M /B, we have
4i(B) = 0(1/\/B), B(B) = O(1/\/B), i =1, 2. (A1)

We also obtain
Jim VBB =0, lim \/BAo(f) = —we ",
Jim /BBi() = we ", Jim Ba(B) = 0.
Thus, we have that

E{(Z1(B) - X))} = 0(%), E{(Zo(B) — Xo)'} = 0(%),

E{(Z\(B)’} = O(1), E{(Zo(B)’’} = O(1).
Observe that if 6y(f) is between X, and Zy(f3), and () is between Xf and Z;(p), then

E{(00(B) — XoP} = 0@, E{(0(B) — XPY)} = 0(%).

Using the Taylor series

F(Xo) = f(Zo(B) + " (Zo(BYAI(B) Yo + A2(B)YE) + 3 1" (Bo( B ALY Yo + Ax(B) YT
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FXPy = £(Z1(B) + 11 (Zi(B)BI(B) Yo + Ba(B)YE) + L 17(01(B)BI(B) Yo + Ba(B)YEY,

we can decompose
2ﬁJ ( — SELS(X0)f(XPYR(Yo) h(YP)} ds

as the sum of nine terms of six different types:

Type 1. We have two terms of the type
2/3[ (t — )ELL(Z1(BS (Zo( B H AWBE(Yo h(Yo)h(YE)) + Ax(BE(YE h(Yo) (YY)} ds = 0,

because (by symmetry), if (1, v) is a centred Gaussian vector, then E(UA(U)h(V)) = 0.
Type 2. There is one term of the type

2B (1 = DB 2BV BN BYo
B

+ Ax(BYYD)(BIB) Yo + Ba(A Y M(Yo (YD)} ds;
the integrand is bounded by (A.1), and it converges with /5 to

(1 — B{/ " (Xo)f (X )we )Y h(Yo) E{—w e Vi(V)} = 0

(because (Xy, Xy, Yy, V) is Gaussian and V is independent of (Xy, Xy, Yp)); hence, by
dominated convergence, this term goes to zero.

Type 3. There are two terms of the type

Zﬂj (1 — SELSZUB) BB Yo + Ba(BYILF Ol B AP Yo

+ A2B)YE) h(Yo)h(YE)} ds = 0(\%) 5

these two terms go to zero.

Type 4. We obtain two terms of the type
ﬁj (t = SE{S(Z1(BLS"(Oo( B A1 () Yo + Ax(B)YEY h(Yo)h(Y?)} ds;
by (A.1) and dominated convergence it is easy to see that this integral converges with f§ to
ZJ;(I — E{S(X)LS(X0)h(Yo)}E{—w’e " VA(V)} ds = 0,

therefore these two terms go to zero.
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Type 5. We also have one term of the type

[, 0= B OB B Yo+ BBV GBI,
B

+ ABYEPH(Yo)h(YP)} ds = O (ﬁ);

this term is also negligible.

Type 6. The remaining term is

LM%(t — E{S(Zo(BVS(Z1(BYR(Yo) (YD)} ds = 1.
B

We conclude that
lim sup| K>(f)| = lim sup|2f31g];
B—o0 B—o0
using the independence and Hoélder we deduce that

t

21

B

Iy < CtﬂJ |E{h(Yo)h(YP)}|ds.
M
Therefore, it suffices to show that

t
Jlim limsupJ [E{h(Yo)h(YP)}|ds = 0.

s 2M
B—o0 B

By Mehler’s formula
[E{h(Yo)h(YD)} <> I3, 2m)\(ph(s)*" < (Z izé,,(zn)!>(p§(s>>2.
n=1 n=1
Hence, it suffices to prove that

t
lim lim sup 2,8J (P2(s)* ds = 0;
M—oo B—00 2M
B

but this is an easy consequence of the definition of pg(s). O

Lemma 3. Let a, b, ¢, d denote real functions. Let & = (Cf = 0) and &F = (gf = 0) be two
stationary Ornstein—Uhlenbeck processes of parameter 1, such that:

E(E, ,E5,) = c(B) exp(—h)(exp{d(B)B(h A 0)} — exp{d(P)Bs}). (A2)
Define
o = a(B)Zt + b(PEL,.
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Assume that, for B going to infinity,
1

1
a(p)=0(—=|, b(p)=1+0(—4]|,
p-o() wn-reofL)

1 1
c(f)=c+0 /_3>’ d(ﬁ):l—%Jro(E),
where a, ¢ > 0.
Then

VB| (e~ e@hnds =0 in 1@,
Proof. We have
‘Coiob B ’ T ([ BB B 1.8
E[{Jﬁjo(gm)— g(éﬁs»ds} ] - ELLﬂ[(E{IrSHnI} R

— E{I&0 %]} + E(E% 1€, 1 ds .

To compute this integral we use the elementary fact that if

L p
a0 () 1)

1—p% 2
By =2 Y =7 20

+T arcsin |p| = F(p).

then

Taking into account that £#, £° are stationary Ornstein—Uhlenbeck processes of parameter 1,
and using (A.2), we obtain:

cov(tf, 70) = a(B)* exp(—|x — s|) + b(B) exp(—plx — s|) + a(B)b(B)(Ry(s, x — 5) + Rg(x, s — X)),

where
Ry(s, h) == E(EREL, ) = c(B) exp(—h)(exp{d(B)B(h A 0)} — exp{d(B)Bs}).
In particular,
vi(s) := var(e?) = a(B) + b(B)* + 2a(B)b(B)(1 — exp(—d(B)Bs)).

Therefore, we have
E{JELNIELI} = FTys, x).  E{EL 1741} = up() FTy(s, x)),
E{|&5 1781} = g F(Ti(s. ), E{Ir?)78]} = vp(s)vp(0) F(Ty(s, X)),

where
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(s, x) := exp(—p|x — s),
(s, x) == a(B)’ exp(—|x — s|) + b(B)* exp(—B|x — s|) + a(B)b(B)(Rs(s, x — 5) + Ry(x, s — X))
3(s, X) == |
Up(s)vp(x)
[3(s, 1) 1= AOR ¥ = 9) &+ MDY exp(flr = 5D

Up(x)
F%(s, X) = I'%(x, s).

We split the integral according to whether s < x or not. We will only consider the case
s < x because the other is completely similar. Calling the integrand @g(s, x), we obtain

1= o

S=

tpt
@p(s, x)dsdx + J J @p(s, x)dsdx
0Js+e/p

0pls, ) dsde = ”

0Js
= 1g(1) + 15(2).

Since the function F is bounded by unity, we obtain

|15(1)| < Cte.

Fix £>0; it suffices to show that /g(2) — 0 when  — +oo0.
An elementary calculation shows that for x = s+ ¢/, we have

max sup [iGs, x) <sT(e) <1 VB = By.

I<n<4 {(s,x):t?s?%,xzo}
Therefore we use the second-order Taylor’s expansion of F,
T
F(p) =5+ M(p)p*,

where M(p) is uniformly bounded by M for |p| < I'(¢).
Thus, we have

(s, x) = M{(Th(s, X)) + U535, 1)) + Vs(NTHx, ) + V(S)VENTH(s, X))
It follows that:

(@) @gp is uiformly bounded for s = x+¢/f and S big enough
(b) @p(s, x) converges to zero when 8 goes to infinity, for s <ux.

An application of dominated convergence concludes the proof. O
Lemma 4. With the notation of Theorem 2, define
t
V(B) = VB reherhas

and its discretization
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[nt]

V() = ﬂzf(x,ﬁl)j/ gy ds.

n

Then
lim_lim E{V(B)V.()} = o*1E{/(Xo)’}.

Proof. Given m a positive integer and 4 € L>(u) a continuous real function, define

I=m

hn(x) = > h(D) Hy(x).
=1
Consider

y gy — JEJ FuXD) gur(YP) ds,

[nf]

) = VY (X))
Since ”
E{[V(BVu(B) — V"BV (B} < EIVA(B) — V(B IELV (B
+ EL(V(B) — V" (B)IELV X" (BN,

it suffices to show that

(i) lim lim hm E[(Vu(B) — VMm(B)? ] =0

M,m—o00 n—00

(i)  lim ﬂhm E[( V(ﬂ) vm(B))*] = 0;
(iii) lim sup lim sup lim sup E[(VM™(B)*] < o0,

M,m—o0 n—00

@iv) hm lim hm E{ VM MRV Mm(BY} = o2 tE{f(X0)*}.

This follows from an apphcatlon of the diagram formula (see Breuer and Major 1983) and
the orthogonality conditions for the random variables (Xo(3), Yo(f8), X f , ¥ f ); for the details,
we refer to Lemmas 14 and 15 of Berzin et al. (1998). O
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