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1. Introduction

A number of recent papers have been putting the ®nal touches to the asymptotic theory of the

Kaplan±Meier estimator (Kaplan and Meier 1958) and functionals based on it (see Wang

1987; Gijbels and Veraverbeke 1991; Einmahl and Koning 1992; Gill 1994; Stute 1995). The

last paper cited establishes a central limit theorem (CLT) for a Kaplan±Meier integral by ®rst

expressing it as a sum of independent and identically distributed (i.i.d.) random variables plus

an asymptotically negligible remainder term. Stute's result allows both discontinuous

populations and a general class of functions, thus generalizing other CLT results (Gill 1983;

Schick et al. 1988; Yang 1994). However, it is obtained using a delicate (and computation-

intensive) approach based on U -statistic approximations. He justi®es this approach by citing

dif®culties in the application of the counting processes techniques, and requires stronger

assumptions than those used with martingale methods. In addition, the expression for the

terms in his i.i.d. representation (and consequently for the asymptotic variance) is quite

complicated, especially for distributions with atoms.

The main purpose of the present paper is to prove the CLT and provide an alternative

i.i.d. representation with simpler terms and under weaker conditions. This is made possible

by using the martingale methods developed by Gill (1980; 1983), and the identities and

inequalities of Efron and Johnstone (1990). With the present approach the CLT is

established directly, not as a consequence of the i.i.d. representation. These techniques

require that the Kaplan±Meier integral be re-expressed as an integral in terms of the

cumulative hazard function. Efron and Johnstone (1990) studied extensively the conse-

quences of such re-expressions in the uncensored data context, and their results are central

to understanding the relation between the expressions given here and those of Stute (1995).

It will be seen that the variance expression in the present paper is related to Efron and

Johnstone's `advance time' transformation A, while the terms in our i.i.d. representation are

related to its adjoint transformation B. Surprisingly, expressions resulting from these

transformations do not change much under random censoring, while the traditional
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expressions which Stute (1995) worked with do. This explains why the present i.i.d.

representation and formula for the asymptotic variance are simpler under censoring.

The next section sets the notation and formulates the main result. The longer proofs are

given in Section 3.

2. Central limit theorem and i.i.d. representation

2.1. Notation and assumptions

Let Ti, i � 1, . . . , n, be i.i.d. random variables on the real line and let F denote their

common distribution function. The survival function of the Ti will be denoted by S, and the

cumulative hazard function by Ë; thus S � 1ÿ F and Ë(t) � � t

ÿ1[S(xÿ)]ÿ1 dF(x). The

observed data consist of

X i � min(Ti, Ci) and Äi � I(Xi � Ti), i � 1, . . . , n, (1)

where C1, . . . , Cn are i.i.d. random variables which are also independent of the Ts, and I(E)

denotes the indicator of the event E. The common distribution of the Ci will be denoted by

G. The distribution function of the Xi will be denoted by H. Thus, 1ÿ H � (1ÿ F)(1ÿ G).

Let Ni(t) � I(Xi < t, Äi � 1), N :(t) �Pn
i�1 Ni(t), Yi(t) � I(X i > t), Y :(t) �Pn

i�1Yi(t).

We will assume that all random variables are de®ned on the probability space (Ù, F , P)

and we will consider the ®ltration

F t � N _ óf(X i, Äi)I(Xi < s), I(Xi . s) : ÿ1, s < t, i � 1, . . . , ng, (2)

where N consists of all P-null sets of F . Then, Mi(t) � Ni(t)ÿ � t

ÿ1 Yi(s)dË(s) is a

martingale with respect to the ®ltration in (2). By analogy with the notation introduced above,

M :(t) �Pn
i�1 Mi(t). The Kaplan and Meier (1958) product-limit estimator (PLE) of S based

on the observations (1) will be denoted by Ŝ, while F̂ � 1ÿ Ŝ, Ë̂ will denote the

corresponding estimators of F, Ë, respectively. Aÿ(s) or A(sÿ) will denote the left-

continuous version of a right-continuous function A, and ÄA(s) � A(s)ÿ A(sÿ). Unless

otherwise explicitly indicated, the domain of integration includes the upper and lower

integration limits. Finally, de®ne ôn � max(X 1, . . . , X n), and let ôF � supfx : F(x) , 1g, for

any distribution function F.

Let ö : R! R be any measurable function such that
�
ö2 dF ,1. The objective of this

paper is to obtain a CLT for the Kaplan±Meier integral
�
ö dF̂ and to derive an i.i.d.

representation for it. The only assumption needed for the CLT and i.i.d. representation is the

following:

Assumption 1. Let ô � ôH . Then�ô
ÿ1

ö(s)2

1ÿ G(sÿ)
dF(s) ,1:

Note that assumption (1.5) of Stute (1995) is analogous to the present Assumption 1, and
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apparently of comparable strength. Indeed, in the uncensored case both reduce to�
ö(s)2 dF(s) ,1, while if both F and G are continuous Stute shows that his assumption

(1.5) reduces to the simple and transparent form of the present Assumption 1 (see his

relation (1.9)). Therefore, his assumption (1.6) is an additional assumption which is not

needed in the present derivation of the CLT.

For any integrable function ö, we de®ne

ö(s) � 1

S(s)

�
(s,ô]

ö(t) dF(t): (3)

The asymptotic variance of
���
n
p �

ö dF̂ will be

ó 2 �
�ô
ÿ1

S(s)

1ÿ H(sÿ)
[ö(s)ÿ ö(s)]2 dF(s), (4)

provided that ôn , ôF almost surely, or ö(ôF) � 0.

Remark 1. The assumption that ôn , ôF a.s. is also used, for example, in Shorack and

Wellner (1986, p. 301), but we remark here that this entails no loss of generality. Indeed, if

ôn � ôF , then
� ô
ÿ1 ö d(F̂ ÿ F) � � ôÿÿ1(öÿ ö(ô))d(F̂ ÿ F) � � ôÿ1(öÿ ö(ô))d(F̂ ÿ F), and the

asymptotic distribution in this case follows from the ®rst since, by rede®ning ö, the condition

ö(ôF) � 0 is satis®ed.

Remark 2. Set ø(s) � ö(s)(1ÿ G(sÿ))ÿ1=2, so that, according to Assumption 1,� ô
ÿ1 ø(s)2 dF(s) ,1. Assume for the moment that ô � ôF . Then, the expression for the

variance of ø(T ) obtained in Efron and Johnstone (1990) (see their relations (1.8), (3.16) and

Section 4 for the continuous, discrete and general case, respectively) is�ô
ÿ1

S(s)

S(sÿ)
(ø(s)ÿ ø(s))2 dF(s): (5)

Therefore the expression in (5) is ®nite, and since S(s)=S(sÿ) < 1, ø 2 L 2(F) and L 2

spaces are linear, we obtain
� ô
ÿ1 S(s)=S(sÿ)ø(s)2 dF(s) ,1. Repeating the same argument

for |ø|, it follows that
� ô
ÿ1(S(s)=S(sÿ))jø(s)j2 dF(s) ,1. If in this last relation we evaluate

(1ÿ Gÿ)ÿ1=2 at the lower limit of the inside integral (the one de®ning jøjand pull it out of

that integral, we obtain�ô
ÿ1

S(s)

1ÿ H(sÿ)

1

S(s)

�
(s,ô]

jö(x)j dF(x)

 !2

dF(s) ,1: (6)

If ô, ôF , the above arguments applied to the conditional distribution of T given that it is at

most ô, imply that (6) holds with F replaced by (F(s)=F(ô))I(s < ô)� I(s > ô), and thus

also for F. Relation (6) will be useful for bounding certain quantities in the proofs. In

particular, Assumption 1 and relation (6) imply that ó 2 ,1.

Remark 3. It is easy to see that with uncensored data the variance expression given in

Corollary 1.2 of Stute (1995) reduces to var(ö(T )), while the variance expression in (4)
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reduces to (5). Thus, (4) is related to the `advance time' transformation A of Efron and

Johnstone (1990). While the latter variance expression is practically never used with

uncensored data (due to its unusual form), its advantage is that it undergoes a very minor

modi®cation under censoring. Furthermore, Corollary 1.2 of Stute (1995) shows that the

traditional variance expression becomes considerably more complicated under censoring.

An alternative expression for ó 2 in (4), which is perhaps more familiar in the

biostatistical literature, is

ó 2 �
�ô
ÿ1

h(s)(1ÿ ÄË(s))dË(s), (7)

where

h(s) � h(s; ô) � ~ö(s)2 I(s < ô)

S(sÿ)(1ÿ G(sÿ))
, (8)

~ö(s) � ~ö(s; ô) � S(sÿ) ö(s)ÿ 1

S(s)

�
(s,ô]

ö(t) dF(t)

" #
: (9)

The function ~ö will appear again later in the re-expression of the Kaplan±Meier integral as

an integral in terms of the cumulative hazard function.

2.2. The main results

The CLT and i.i.d. representation will be a consequence of the following four propositions.

The ®rst establishes an asymptotic equivalence using a truncated version of the function ö.

Proposition 1. Under Assumption 1 there exists a sequence of constants Kn !1 such that

the function ö truncated at Kn, ön(s) � ö(s)I(jö(s)j < Kn), satis®es�
(ÿ1,ô]

ö(s)d(F̂(s)ÿ F(s)) �
�

(ÿ1,ô]

ön(s)d(F̂(s)ÿ F(s))� op(nÿ1=2):

The proof is given in Section 3.

The second proposition replaces the upper limit of the integral by ôn.

Proposition 2. Let ön(s) be as de®ned in Proposition 1. Then, under Assumption 1,�
(ÿ1,ô]

ön(s)d(F̂(s)ÿ F(s)) �
�

(ÿ1,ô n]

ön(s)d(F̂(s)ÿ F(s))� op(nÿ1=2):
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Proof. It will be shown that
���
n
p �

(ôn,ô]
jön(s)jdF(s)!P 0. Indeed,�

(ôn,ô]

jön(s)jdF(s) <

�
(ôn,ô]

jö(s)jdF(s)

� S(ôn)

�
(ô n,ô]

jö(s)j dF(s)

S(ôn)
< S(ôn)

�
(ôn,ô]

jö(s)j2 dF(s)

S(ôn)

 !1=2

< (1ÿ H(ôn))1=2

�
(ôn,ô]

jö(s)j2
1ÿ G(sÿ)

dF(s)

 !1=2

:

Thus, by Assumption 1 and the fact that ôn!P ô, the integral in the last relation goes to zero

as n!1 while n(1ÿ H(ôn)) � Op(1) (cf. Yang 1994). h

The third proposition expresses the centred Kaplan±Meier integral,
� ô
ÿ1 ön(s)d(F̂(s) ÿ

F(s)) as an integral in terms of Ë̂ÿË.

Proposition 3. Suppose that either ôn , ôF a.s., or that ö(ôF) � 0. De®ne

~ön(s) � ~ön(s; ô) � S(sÿ) ön(s)ÿ 1

S(s)

�
(s,ô]

ön(t) dF(t)

" #
:

Then, under Assumption 1,�ôn

ÿ1
ön(s)d(F̂(s)ÿ F(s)) �

�ôn

ÿ1
~ön(s)d(Ë̂(s)ÿË(s))� op(nÿ1=2):

The proof is given in Section 3.

The ®nal proposition gives an i.i.d. representation for
� ôn

ÿ1 ~ön(s)d(Ë̂(s)ÿË(s)).

Proposition 4. Under Assumption 1,�ôn

ÿ1
~ön(s)d(Ë̂(s)ÿË(s)) � 1

n

�ôn

ÿ1

~ön(s)

1ÿ H(sÿ)
dM :(s)� op(nÿ1=2):

The proof is given in Section 3.

We now present the main result.

Theorem 5. Let Assumption 1 hold. Then if ôn , ôF a.s. or ö(ôF) � 0 (see Remark 1),

n1=2

�ô
ÿ1

ö(s)d(F̂(s)ÿ F(s))!L N (0, ó 2),

with ó 2 de®ned in (4).
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Proof. In view of Propositions 1±4, it suf®ces to show that

~M :(ô) � nÿ1=2

�ô
ÿ1

~ön(s)I(s < ôn)

1ÿ H(sÿ)
dM :(s) �

�ô
ÿ1

~H1(s)dM :(s)!L N (0, ó 2),

where ~M :, ~H1 are de®ned by the above equation. We will ®rst show that this is true under the

assumption that F is continuous. Using the CLT of Rebolledo (1980) (see also Gill 1980,

p. 17), it suf®ces to show that, for all t < ô and å. 0,

h ~M :i(t) �
� t

ÿ1
~H1(s)2Y :(s)

dF(s)

1ÿ F(sÿ)
!P
� t

ÿ1

~ö(s)2

1ÿ H(sÿ)
dF(s), (10)

h ~M E
: i(t) �

� t

ÿ1
~H1(s)2 I(j ~H1(s)j > å)Y :(s)

dF(s)

1ÿ F(sÿ)
!P 0: (11)

Using Lemma 2.6 of Gill (1983), it follows that the integrand on the left-hand side of (10) is

bounded by

K
S(sÿ)

1ÿ H(sÿ)
jö(s)j � 1

S(s)

�
(s,ô]

jö(x)jdF(x)

" #2

,

for some constant K, with probability as high as desired. By Assumption 1 and relation (6)

the above expression is integrable. Thus, (10) follows by an application of the dominated

convergence theorem. The same argument and the fact that I(j ~H1(s)j > å)! 0, 8s, a.s.-[F],

implies that (11) is true. Finally, the extension to an arbitrary F can be done via the

construction presented by Gill (1980, pp. 74±78). h

Next we present an i.i.d. representation for the Kaplan±Meier integral.

Theorem 6. Let Assumption 1 hold, and let ~ö be given by (9). Assume that ôn , ôF a.s., or

that ö(ôF) � 0 (see Remark 1), and de®ne

Zi �
~ö(Xi)Äi

1ÿ H(X iÿ)
ÿ
�Xi

ÿ1

~ö(s)

1ÿ H(sÿ)
dË(s): (12)

Then, E(Zi) � 0, var(Zi) � ó 2, where ó 2 is de®ned in (4), and

n1=2

�ô
ÿ1

ö(s)d(F̂(s)ÿ F(s)) � nÿ1=2
Xn

i�1

Zi � op(1): (13)

Proof. Note that

Zi �
�ôn

1

~ö(s)

1ÿ H(sÿ)
dMi,

so, by the properties of martingales, E(Zi) � 0, var(Zi) � ó 2, with ó 2 de®ned in (4). Let now
~ön be as de®ned in Proposition 3 and write
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1���
n
p

�ô n

ÿ1

~ön(s)ÿ ~ö(s)

1ÿ H(sÿ)
dM :(s) � 1���

n
p

Xn

i�1

Z n,i,

where, for each n, Z n,1, . . . , Z n,n are i.i.d. random variables and, by the properties of

martingales, it can be seen that E(Z n,i) � 0, and var(Z n,i)! 0, as n!1. By the Chebyshev

inequality, it follows that

1���
n
p

�ô n

ÿ1

~ön(s)ÿ ~ö(s)

1ÿ H(sÿ)
dM :(s) � op(1): (14)

In view of Propositions 1±4, the above implies the stated i.i.d. representation and thus the

proof of the theorem is complete. h

Remark 4. In the uncensored case the random variable Zi of Theorem 6 is related to the

`backward time' transformation B of Efron and Johnstone (1990). On the other hand, the

terms in the i.i.d. representation of Stute (1995) reduce to ö(Ti). As in Remark 3, the present

simpli®cation is due to the fact that this transformation undergoes very minor change under

censoring.

3. Proofs

The proofs that follow make repeated use of Lemma 2.6 of Gill (1983); though not stated

there, we remark that this result does not require continuous distributions (see Gill 1980,

Theorem 3.2.1).

Proof of Proposition 1. First, it will be shown that for any sequence Kn so that

Kn nÿ1=2 !1, �ô
ÿ1

ö(s)I(jö(s)j. Kn) dF(s) � o(nÿ1=2): (15)

Set ö(s) � 0 for s . ô, and write�ô
ÿ1

ö(s)I(jö(s)j. Kn) dF(s) �
�1
ÿ1

xI(jxj. Kn)dFö(x)

� Kn(1ÿ Fö(Kn))�
�1

Kn

(1ÿ Fö(x)) dx� Kn Fö(ÿKn)

ÿ
�ÿKn

ÿ1
Fö(c) dx, (16)

where Fö(x) � � I(ö(s) < x)dF(s). We will show that the ®rst and second terms on the right-

hand side of (16) are op(nÿ1=2); similar arguments apply for the other two terms. For the ®rst

term, write (for large n)
���
n
p

Kn(1ÿ Fö(Kn)) < K2
n(1ÿ Fö(Kn)) <

�1
Kn

x2 dFö(x)! 0

as n!1, where we use Kn nÿ1=2 !1 for the ®rst inequality and Assumption 1 for
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the convergence to zero. Replacing Kn by x in the middle inequality, we obtain

x2(1ÿ Fö(x))! 0 as x!1, implying that, for large x, (1ÿ Fö(x)) < xÿ2. From this it

follows that
���
n
p �1

Kn
(1ÿ Fö(x))dx <

���
n
p �1

Kn
xÿ2 dx � ���

n
p

Kÿ1
n ! 0. Thus (16) is shown, and

so, consequently, is (15). Next, it will be shown that there is a sequence Kn !1 such that�ô
ÿ1

ö(s)I(jö(s)j. Kn)dF̂(s) � op(nÿ1=2): (17)

Let X (n2) denote the largest uncensored observation and write���
n
p �ô

ÿ1
ö(s)I(jö(s)j. Kn)dF̂(s)

���� ���� < max
1<i<n

fjö(X i)Äijg
���
n
p �ô

ÿ1
I(jö(s)j. Kn)dF̂(s)

< max
1<i<n

fjö(Xi)Äijg
���
n
p Xn

i�1

I(jö(X i)Äij. Kn)ÄF̂(X (n2))

� max
1<i<n

fjö(Xi)Äijg
���
n
p Xn

i�1

I(jö(X i)Äij. Kn)(1ÿ F̂(X (n2)ÿ))
ÄN :(X (n2))

Y :(X (n2))
(18)

< B max
1<i<n

fjö(X i)Äijg
���
n
p Xn

i�1

I(jö(X i)Äij. Kn)
1ÿ F(X (n2)ÿ)

1ÿ H(X (n2)ÿ)

ÄN :(X (n2))

n
,

where, by Lemmas 2.6 and 2.7 of Gill (1983) the positive constant B can be chosen large

enough for the last inequality in (18) to hold with probability as high as desired. Using

Markov's inequality and Assumption 1, it can be seen that, for any sequence Kn !1,

R1,n � K2
n

n

Xn

i�1

I(jö(Xi)Äij. Kn) � op(1), (19)

R2,n � nÿ1=2 max
1<i<n

fjö(X i)Äijg � op(1): (20)

By (18), (19) and (20) we can write���
n
p �ô

ÿ1
ö(s)I(jö(s)j. Kn)dF̂(s) < BR1,n R2,n

n2

K2
n

1ÿ F(X (n2)ÿ)

1ÿ H(X (n2)ÿ)

ÄN :(X (n2))

n
, (21)

with the inequality holding for n large enough and with probability as high as desired by

choosing B large enough. This relation implies that if ô is an atom for H, (17) holds by

choosing Kn nÿ1 !1. If ô is not an atom for H, we need some further arguments. Set

ù(x) � (1ÿ F(x))ÿ1 and pick Kn so that n=ù(mn) remains bounded as n!1, where

mÿ1
n � n2=K2

n. It can be seen that, for any t . 0,

P mÿ1
n

1

1ÿ G(X (n2)ÿ)
. t

� �
� 1ÿ P

Äi

1ÿ G(X iÿ)
< mnt

� �� �n

� 1ÿ 1ÿ P
Äi

1ÿ G(X iÿ)
. mnt

� �� �n

� 1ÿ 1ÿ 1

ù(mnt)

� �n

,
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which, by the choice of Kn (and hence of mn) converges to an arbitrarily small positive

constant by choosing t large enough. Thus mÿ1
n (1=(1ÿ G(X (n2)ÿ))) remains bounded in

probability. This shows that the expression in (21) is op(1) which implies that relation (17),

and hence the proposition, is shown. h

Proof of Proposition 3. First, using the identity

F̂(t)ÿ F(t) � S(t)

� t

ÿ1
Ŝ(xÿ)[S(x)]ÿ1d(Ë̂(x)ÿË(x))

(Gill 1980) and a straightforward calculation, it follows that�ôn

ÿ1
ön(s)d(F̂(s)ÿ F(s)) �

�ôn

ÿ1
~ö�n (s; ôn)d(Ë̂(s)ÿË(s)), (22)

where ~ö�n (s; t) � Ŝ(sÿ)[ön(s)ÿ [S(s)]ÿ1
�

(s, t]
ön(x) dF(x)], for all t. Next, it will be shown

that �ôn

ÿ1
( ~ö�n (s; ôn)ÿ ~ö�n (s; ô))d(Ë̂(s)ÿË(s)) � op(nÿ1=2): (23)

Clearly, if ô is a point of discontinuity of H , then ôn � ô almost surely for some n large

enough, and so (23) holds. Suppose that ô is a continuity point of H . Showing (23) reduces

to showing ���
n
p �

(ô n,ô]

ön(t) dF(t)
F̂(ôn)ÿ F(ôn)

S(ôn)
!P 0: (24)

If F(ô) , 1, (24) follows by direct calculations. Consider now the case where ô is a point of

continuity of F and F(ô) � 1. By Remark 2.2 in Gill (1983), the expression in (24) is zero at

ôn � ô. Using Theorem 4.2 in Billingsley (1968), to show (24) it suf®ces to show that the

process

øn(t)Z1n(t) :�
�

( t,ô]

ön(s) dF(s)
���
n
p F̂(t)ÿ F(t)

S(t)
(25)

is `tight at ô', that is to say, that

lim
s"ô

lim sup
n!1

P sup
s< t<ôn

jøn(t)Z1n(t)ÿ øn(s)Z1n(s)j. å
� � � 0, (26)

for all å. 0. We will follow the arguments used by Gill (1983) to prove his relation (2.7).

Note, however, that his function h is now replaced by øn which depends on n and, moreover,

is only right-continuous (as opposed to the continuous h function), and is not necessarily non-

increasing. Therefore we brie¯y repeat the arguments he uses to prove his relation (2.7).

Write

sup
s< t<ôn

jøn(t)Z1n(t)ÿ øn(s)Z1n(s)j < sup
s< t<ô n

jøn(t)(Z1n(t)ÿ Z1n(s))j � j(øn(t)ÿ øn(s))Z1n(s)j:

(27)
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By the weak convergence of Z1n(s) to a Gaussian process with variance function

C(t) �
� t

0

dË(s)

1ÿ H(sÿ)
,

it follows that

lim sup
n!1

P(j(øn(t)ÿ øn(s))Z1n(s)j. å) < lim sup
n!1

P

�
(s, t]

jö(x)jdF(x)Z1n(s)

����� �����. å

 !

<

�
(s, t]

jö(x)jdF(x)

 !2

C(s)

å2
:

The right-hand side of the above expression is seen to converge to zero, as s! ô, with

s < t , ô, from Assumption 1 and the following set of inequalities:�
(s, t]

jö(x)jdF(x)

 !2

C(s) < S(s)

�ô
s

jö(x)j dF(x)

S(s)

� �2� s

ÿ1

dF(x)

S(xÿ)2(1ÿ G(xÿ)

< S(s)2

�ô
s

ö(x)2 dF(x)

S(s)

� s

ÿ1

dF(x)

S(xÿ)2(1ÿ G(xÿ))

< S(s)

�ô
s

ö(x)2 dF(x)
1

1ÿ G(sÿ)

� s

ÿ1

S(x)

S(xÿ)

ÿdS(x)

S(xÿ)S(x)

< S(s)

�ô
s

ö(x)2

1ÿ G(xÿ)
dF(x)

� s

ÿ1

ÿdS(x)

S(xÿ)S(x)

� S(s)

�ô
s

ö(x)2

1ÿ G(xÿ)
dF(x)

� s

ÿ1
d

1

S(x)

� �
:

The ®rst inequality is due to replacing t by ô, the second follows by the Cauchy±Schwarz

inequality, the third and fourth by the monotonicity of distribution functions. For the ®rst

term on the right-hand side of (27), write

sup
s< t<ôn

jøn(t)(Z1n(t)ÿ Z1n(s))j < sup
s< t<ôn

�
( t,ô]

jö(x)jdF(x)(Z1n(t)ÿ Z1n(s))

����� �����:
Next, note that the inequality in Lemma 2.9 of Gill (1983) holds also for right-continuous

functions, and thus (26) will follow from

lim
s"ô

lim sup
n!1

P sup
s< t<ôn

� t

s

�
(x,ô]

jö(y)jdF(y)dZ1n(x)

�����
�����. å

 !
� 0:

This follows by the use of the inequality of Lenglart (1977) as in the proof of Theorem 2.1 of

Gill (1983) by noting that the ®rst of the series of two inequalities is valid for non-continuous
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distributions by the fact that 0 < 1ÿ ÄË < 1. This completes the proof of (24) and thus of

(23).

Finally, it will be shown that�ô n

ÿ1
( ~ö�n (s; ô)ÿ ~ön(s; ô))d(Ë̂(s)ÿË(s)) � op(nÿ1=2): (28)

This can be rewritten as �ô
ÿ1

~H2(s)dM :(s)!P 0, (29)

where

~H2(s) �
���
n
p

( ~ö�n (s; ô)ÿ ~ön(s; ô))

Y :(s)
I(s < ôn):

Using the CLT of Rebolledo (1980) (see also Gill 1980, p. 17), it suf®ces to show that�ô
ÿ1

~H2(s)2(1ÿ ÄË(s))Y :(s)
dF(s)

1ÿ F(sÿ)
!P 0: (30)

The integrand on the left-hand side of (30) is bounded by

(Ŝ(sÿ)� S(sÿ))jŜ(sÿ)ÿ S(sÿ)j(ön(s)ÿ ön(s))2

nÿ1Y :(s)

1

1ÿ F(sÿ)

< K
jŜ(sÿ)ÿ S(sÿ)j(jö(s)j � jö(s)j)2

1ÿ H(sÿ)
(31)

< K
S(sÿ)(jö(s)j � jö(s)j)2

1ÿ H(sÿ)
, (32)

where the inequalities in (31), (32) hold (with appropriate choices of K) with probability as

high as desired by Lemmas 2.6 and 2.7 of Gill (1983). By Assumption 1 and relation (6),

(32) is F-integrable. Also, (31) and the uniform consistency result of Wang (1987) imply that

the dominated convergence theorem applies on a set of probability as high as desired. This

implies (30) and thus (28) is shown. The proof of the proposition is a result of (22), (23) and

(28). h

Proof of Proposition 4. First, note that���
n
p �ôn

ÿ1
~ön(s)d(Ë̂(s)ÿË(s)) � 1���

n
p

�ô n

ÿ1

~ön(s)

nÿ1Y :(s)
dM :(s):

Thus it suf®ces to show that �ô
ÿ1

~H3(s)dM :(s)!P 0, (33)
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where

~H3(s) � 1���
n
p

~ön(s)

nÿ1Y :(s)
ÿ

~ön(s)

1ÿ H(sÿ)

 !
I(s < ôn):

This, however, can be shown by the same arguments used for showing (29). h
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