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Exponential-polynomial families like the Nelson-Siegel or Svenson family are widely used to estimate

the current forward rate curve. We investigate whether these methods go well with intertemporal

modelling. We characterize the consistent ItoÃ processes which have the property to provide an

arbitrage-free interest rate model when representing the parameters of some bounded exponential-

polynomial type function. This includes diffusion processes in particular. We show that there is a

strong limitation on their choice. Bounded exponential-polynomial families are best not used for

modelling the term structure of interest rates.
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1. Introduction

The current term structure of interest rates contains all the necessary information for pricing

bonds, swaps and forward rate agreements of all maturities. It is used by the central banks as

an indicator for their monetary policy.

There are several algorithms for constructing the current forward rate curve from the

(®nitely many) prices of bonds and swaps observed in the market. Widely used are splines

and parametrized families of smooth curves fF(:, z)gz2Z, where Z � RN , N > 1, denotes

some ®nite-dimensional parameter set. By an optimal choice of the parameter z in Z , an

optimal ®t of the forward curve x 7! F(x, z) to the observerd data is attained. Here x > 0

denotes time to maturity. In that sense z represents the current state of the economy taking

values in the state space Z .

Examples are the Nelson and Siegel (1987) family with curve shape

FNS(x, z) � z1 � (z2 � z3x) eÿz4 x

and the Svenson (1994) family, an extension of Nelson±Siegel,

FS(x, z) � z1 � (z2 � z3x) eÿz5 x � z4x eÿz6 x:

Table 1 gives an overview of the ®tting procedures used by some selected central banks.

It is taken from the documentation of the Bank for International Settlements (BIS 1999).

Despite the ¯exibility and low number of parameters of FNS and FS, their choice is

somewhat arbitrary. We shall discuss them from an intertemporal point of view: plenty of
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cross-sectional data ± daily estimations of z ± are available. Therefore it would be natural

to want to ®nd the stochastic evolution of the parameter z over time. But then there exist

economic constraints based on no-arbitrage considerations.

Following BjoÈrk and Christensen (1999), instead of FNS and FS we consider general

exponential-polynomial families containing curves of the form

F(x, z) �
XK

i�1

Xni

ì�0

zi,ìxì

 !
eÿzi, ni�1 x,

that is, linear combinations of exponential functions exp(ÿzi,ni�1x) over some polynomials of

degree ni 2 N0. Obviously FNS and FS are of this type. We then replace z by an ItoÃ process

Z � (Z t) t>0 taking values in Z . The following questions arise:

· Does F(:, Z) provide an arbitrage-free interest rate model?

· And what are the conditions on Z for it?

Working in the Heath, Jarrow and Morton (1992) ± henceforth HJM ± framework with

deterministic volatility structure, BjoÈrk and Christensen (1999) showed that the exponential-

polynomial families are in a certain sense too large to carry an interest rate model. This

result has been generalized for the Nelson±Siegel family in FilipovicÂ (1999b), including

stochastic volatility structure. Expanding the methods used there, we give in this paper the

general result for bounded exponential-polynomial families.

The paper is organized as follows. In Section 2 we introduce the class of ItoÃ processes

consistent with a given parametrized family of forward rate curves. Consistent ItoÃ processes

provide an arbitrage-free interest rate model when driving the parametrized family. They are

characterized in terms of their drift and diffusion coef®cients by the HJM drift condition.

By solving an inverse problem we obtain the main result for consistent ItoÃ processes,

Table 1. Forward rate curve ®tting procedures

Central bank Curve ®tting procedure

Belgium Nelson±Siegel, Svensson

Canada Svensson

Finland Nelson±Siegel

France Nelson±Siegel, Svensson

Germany Svensson

Italy Nelson±Siegel

Japan Smoothing splines

Norway Svensson

Spain Nelson±Siegel (before 1995), Svensson

Sweden Svensson

UK Svensson

USA Smoothing splines
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stated in Section 3. It is shown that they are remarkably limited. The proof is divided into

several steps, given in Sections 4, 5 and 6.

In Section 7 we extend the notion of consistency to e-consistency when P is not a

martingale measure.

The main result is much clearer when restricting to diffusion processes, as shown in

Section 8. It turns out that e-consistent diffusion processes driving bounded exponential-

polynomial families like Nelson±Siegel or Svensson are very limited: most of the factors

are either constant or deterministic. It is shown in Section 9 that there is no non-trivial

diffusion process which is e-consistent with the Nelson±Siegel family. Furthermore, we

identify the diffusion process which is e-consistent with the Svensson family. It contains just

one non-deterministic component. The corresponding short rate model is shown to be the

generalized Vasicek model.

We conclude that bounded exponential-polynomial families, in particular FNS and FS, are

best not used for modelling the term structure of interest rates.

2. Consistent ItoÃ processes

For the stochastic background and notation, we refer to Revuz and Yor (1994) and Jacod and

Shiryaev (1987). Let (Ù, F , (F t)0< t ,1, P) be a ®ltered complete probability space,

satisfying the usual conditions, and let W � (W 1
t , . . . , W d

t )0< t ,1 denote a standard d-

dimensional (F t)-Brownian motion, d > 1.

Let Z � (Z1, . . . , Z N ) denote an RN -valued ItoÃ process, N > 1, of the form

Zi
t � Zi

0 �
� t

0

bi
s ds�

Xd

j�1

� t

0

ó i, j
s dW j

s, i � 1, . . . , N , 0 < t ,1,

where Z0 is F 0-measurable, and b and ó are progressively measurable processes with values

in RN and RN3d respectively, such that� t

0

(jbsj � jó sj2)ds ,1, P-almost surely, for all finite t:

Let F(x, z) be a function in C1,2(R� 3 RN ); that is to say, F and the partial derivatives

@F=@x, @F=@zi, @
2 F=@zi@z j, which exist for 1 < i, j < N, are continuous functions on

R� 3 RN . Interpreting Z t as the state of the economy at time t, we let x 7! F(x, Z t) stand

for the corresponding term structure of interest rates, meaning that F(x, Z t) denotes the

instantaneous forward rate at time t for date t � x.

Notice that

G(x, z) :� exp ÿ
�x

0

F(ç, z)dç

� �
is in C1,2(R� 3 RN ) too. Therefore the price processes for zero coupon T-bonds

P(t, T ) :� G(T ÿ t, Z t), 0 < t < T ,1, (1)
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and the process of the savings account

B(t) :� exp ÿ
� t

0

@

@x
G(0, Zs)ds

� �
, 0 < t ,1,

form continuous semimartingales.

Let Z denote an arbitrary subset of RN . The function F generates in a canonical way a

parametrized set of forward curves fF(:, z)gz2Z. We shall refer to Z as the state space of

the economy.

De®ntion 2.1. Z is called consistent with fF(:, z)gz2Z , if the support of Z is contained in Z
and

P(t, T )

B(t)

� �
0< t<T

(2)

is a P-martingale, for all T ,1.

Set a :� óó�, where ó� denotes the transpose of ó, that is, a
i, j
t �

Pd
k�1ó

i,k
t ó j,k

t , for

1 < i, j < N and 0 < t ,1. Then a is a progressively measurable process with values in

the symmetric non-negative de®nite N 3 N matrices.

Using ItoÃ's formula, the dynamics of (2) can be decomposed into ®nite variation and

local martingale parts. Since consistency is required, the former has to vanish. This is the

well-known HJM drift condition and is stated explicitly in the following proposition.

Proposition 2.2. If Z is consistent with fF(:, z)gz2Z then

@

@x
F(x, Z) �

XN

i�1

bi @

@zi

F(x, Z)

�
XN

i, j�1

ai, j 1

2

@2

@zi@z j

F(x, Z)ÿ @

@zi

F(x, Z)

�x

0

@

@z j

F(ç, Z)dç

 !
, (3)

for all x > 0, dt 
 dP-a.s.

Proof. Analogous to the proof of FilipovicÂ (1999b, Proposition 3.2). h

3. Exponential-polynomial families

In this section we introduce a particular class of functions F. Our main result characterizes

the corresponding consistent ItoÃ processes.

Let K denote a positive integer and let n � (n1, . . . , nK) be a vector with components

ni 2 N0, for 1 < i < K. Write jnj :� n1 � . . . � nK . For a point

z � (z1,0, . . . , z1,n1�1, z2,0, . . . , z2,n2�1, . . . , zK,0, . . . , zK,n K�1) 2 Rjnj�2K , (4)
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de®ne the polynomials pi(z) as

pi(z) � pi(x, z) :�
Xni

ì�0

zi,ìxì, 1 < i < K:

The function F is now de®ned as

F(x, z) :�
XK

i�1

pi(x, z) eÿzi, ni�1 x: (5)

Obviously F 2 C1,2(R� 3 Rjnj�2K ). Hence the previous section applies with N � jnj � 2K.

From an economic point of view, it seems reasonable to restrict to bounded forward rate

curves. Let, therefore, Z denote the set of all z 2 RN such that supx2R� jF(x, z)j,1.

De®ntion 3.1. The exponential-polynomial family EP(K, n) is de®ned as the set of forward

curves fF(:, z)gz2RN :
The bounded exponential-polynomial family BEP( K, n) � EP( K, n) is de®ned as the set

of forward curves fF(:, z)gz2Z.

Clearly FNS(x, z) 2 BEP(2, (0, 1)) and FS(x, z) 2 BEP(3, (0, 1, 1)), if in each case the

parameter z is chosen such that the curve is bounded. From now on, the Nelson±Siegel and

Svensson families are considered as subsets of BEP(2, (0, 1)) and BEP(3, (0, 1, 1)),

respectively.

If two exponents zi,ni�1 and z j,n j�1 coincide, the sum (5) de®ning F reduces to a linear

combination of K ÿ 1 exponential functions. Thus for z 2 RN we introduce the equivalence

relation

i � z j :, zi,ni�1 � z j,n j�1 (6)

on the set f1, . . . , Kg and denote by [i] � [i]z the equivalence class of i. We will use the

notation

n[i] � n[i](z) :� maxfnjj j 2 [i]zg,
I [i],ì � I [i],ì(z) :� f j 2 [i]zjnj > ìg, 0 < ì < n[i](z),

z[i],ì � z[i],ì(z) :�
X

j2I [i],ì(z)

z j,ì, 0 < ì < n[i](z),

p[i](z) :�
X
j2[i]z

pj(z): (7)

In particular p[i](z) �Pn[i]

ì�0z[i],ìxì, and (5) now reads

F(x, z) �
X

[i]2f1,:::,Kg=�
p[i](z) eÿzi, ni�1 x:

Observe that for z 2Z we have
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zi,ni�1
� 0 only if p[i](z) � z[i],0,

, 0 only if p[i](z) � 0:

�
(8)

We shall write the RN -valued ItoÃ process Z with the same indices as we use for a point

z 2 RN (see (4)),

Z
i,ì
t � Z

i,ì
0 �

� t

0

bi,ì
s ds�

Xd

ë�1

� t

0

ó i,ì;ë
s dW ë

s , 0 < ì < ni � 1, 1 < i < K: (9)

Its diffusion matrix a consists of the components

ai,ì; j,í �
Xd

ë�1

ó i,ì;ëó j,í;ë, 0 < ì < ni � 1, 0 < í < nj � 1, 1 < i, j < K:

Notice that, for 1 < i < K,

fzj p[i](z) � 0g �
[

J�f1,:::,Kg
J3i

fzjz j,n j�1 � zi,ni�1 for all j 2 Jg

0BB@

\
\maxfnjj j2Jg

ì�0

z

���� X
j2J

n j>ì

z j,ì � 0

8>><>>:
9>>=>>;
� [

l2J c

fzjzl,n l�1 � zi,ni�1g

1CCCA (10)

is not closed in general but nevertheless a Borel set in RN . We introduce the optional random

sets of singular points (t, ù)

Ai :� fpi(Z) � 0 or p[i](Z) � 0g, 1 < i < K,

B :�
[K

i, j�1
i 6� j

fZ i,ni�1 � Z j,nj�1g,

C :�
[K

i, j�1
i 6� j

f2Z i,ni�1 � Z j,nj�1g,

and the optional random sets of regular points (t, ù)

D :� (R� 3 Ù)

� [K
i�1

Ai [B [ C

 !
,

D 9 :� (R� 3 Ù)n(B [ C ):

Let us recall that for stopping times S and T, a stochastic interval like [S, T ] is a subset
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of R� 3 Ù. Hence [S] � [S, S] is the restriction of the graph of the mapping

S : Ù! [0, 1] to the set R� 3 Ù.

For any stopping time ô with [ô] 2 (R� 3 Ù)nAi, we de®ne

ô9(ù) :� infft . ô(ù)j(t, ù) 2Aig,
the debut of the optional set [ô, 1[\Ai. Observe that in general it is not true that ô9 . ô on

fô,1g. This can be seen from the following example. For

F(x, z) � z1,0 eÿz1,1 x � z2,0 eÿz2,1 x � z3,0 eÿz3,1 x 2 BEP(3, (0, 0, 0)),

let Z1,0
t � Z3,0

t � 1, Z2,0
t � ÿ1, Z3,1

t � 1� t and Z1,1
t � Z2,1

t � 1 for t 2 [0, 1]. Then

p1(Z0) � p[1](Z0) � 1 and p[1](Z t) � 0 for all t 2 (0, 1]. Hence [0] 2 (R� 3 Ù)nA1, but

ô9 � 0. However, by continuity of Z we always have

ô, ô9 P-a:s: on fùj(ô(ù), ù) 2 D 9g: (11)

Recall the fact that there is a one-to-one correspondence between the ItoÃ processes Z

starting in Z0 (up to indistinguishability) and the equivalence classes of b and ó with

respect to the dt 
 dP-nullsets in R� 
 F . Hence we may state the following inverse

problem to equation (3). Given a family of forward curves, for which choices of coef®cients

b and ó do we obtain a consistent ItoÃ process Z starting at Z0?

The main result is the following characterization of all consistent ItoÃ processes, which is

remarkably restrictive. The proof of the theorem will be given in Sections 5 and 6.

Theorem 3.2. Let K 2 N, n � (n1, . . . , nK ) 2 NK
0 and Z be as above. If Z is consistent with

BEP(K, n), then necessarily, for 1 < i < K,

ai,ni�1;i,ni�1 � 0, on fpi(Z) 6� 0g, dt 
 dP-a:s: (12)

bi,ni�1 � 0, on fpi(Z) 6� 0g \ fp[i](Z) 6� 0g, dt 
 dP-a:s: (13)

Consequently, Z i,ni�1 is constant on intervals where pi(Z) 6� 0 and p[i](Z) 6� 0. That is, for

P-almost every ù,

Z i,ni�1
t (ù) � Zi,ni�1

u (ù), for t 2 [u, v],

if pi(Z t(ù)) 6� 0 and p[i](Z t(ù)) 6� 0 for t 2 (u, v).

For a stopping time ô with [ô] � D 9, let ô9(ù) :� infft > ô(ù)j(t, ù) =2 D 9g denote the

debut of the optional random set (B [ C ) \ [ô, 1[. Then we have that ô, ô9 on fô,1g
and

Z
i,ì
ô� t � Zi,ì

ô eÿZ
i, ni�1
ô t � Zi,ì�1

ô t eÿZ
i, ni�1
ô t

Z i,ni

ô� t � Zi,ni

ô eÿZ
i, ni�1
ô t

on [0, ô9ÿ ô[ , for 0 < ì < ni ÿ 1 and 1 < i < K , up to evanescence.
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If D 9 above is replaced by D and ô9 is the debut of ([K
i�1A i [B [ C ) \ [ô, 1[ , then

ô9 � 1 and in addition

Zi,ni�1
ô� t � Zi,ni�1

ô

for 1 < i < K, P-a:s: on fô,1g.

Remark 3.3. It will be made clear in the proof of the theorem that it is actually suf®cient to

assume Z to be consistent with EP(K, n) for (12) to hold.

As an immediate consequence we may state the following corollaries. The notation is the

same as in the theorem.

Corollary 3.4. If Z is consistent with BEP(K, n) and if the optional random sets fpi(Z) � 0g
and fp[i](Z) � 0g have dt 
 dP-measure zero, then the exponent Z i,ni�1 is indistinguishable

from Zi,ni�1
0 , 1 < i < K.

Proof. If fpi(Z) � 0g and fp[i](Z) � 0g have dt 
 dP-measure zero, then fpi(Z) 6�
0g \ fp[i](Z) 6� 0g � R� 3 Ù up to a dt 
 dP-nullset. The claim follows using (12) and

(13). h

Corollary 3.5. If Z is consistent with BEP(K,n) and if the following three points are P-a.s.

satis®ed:

(i) pi(Z0) 6� 0, for all 1 < i < K,

(ii) there exists no pair of indices i 6� j with Zi,ni�1
0 � Z

j,nj�1

0 ,

(iii) there exists no pair of indices i 6� j with 2Zi,ni�1
0 � Z

j,nj�1

0 ,

then Z and hence the interest rate model F(x, Z) is quasi-deterministic, that is, all

randomness remains F 0-measurable. In particular, the exponents Z i,ni�1 are indistinguish-

able from Zi,ni�1
0 , for 1 < i < K.

Proof. If (i), (ii) and (iii) hold P-a.s. then [0] � D . The claim follows from the second part

of the theorem, setting ô � 0. h

4. Auxiliary results

For the proof of the main result we need three auxiliary lemmas, presented in this section.

First, there is a result on the identi®cation of the coef®cients of ItoÃ processes.
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Lemma 4.1. Let

X t � X 0 �
� t

0

âX
s ds�

Xd

j�1

� t

0

ãX , j
s dW j

s,

Yt � Y0 �
� t

0

âY
s ds�

Xd

j�1

� t

0

ãY , j
s dW j

s

be two ItoÃ processes. Then dt 
 dP-a:s:

1fX�Yg
Xd

j�1

(ãX , j)2 � 1fX�Yg
Xd

j�1

ãX , jãY , j � 1fX�Yg
Xd

j�1

(ãY , j)2

1fX�YgâX � 1fX�YgâY :

Proof. We write k�, �l for the scalar product in Rd . Then

jhãX , ãX i ÿ hãX , ãY ij � jhãX , ãX ÿ ãY ij <
������������������
hãX , ãX i

p �����������������������������������������
hãX ÿ ãY , ãX ÿ ãY i

p
:

By the occupation times formula (see Revuz and Yor 1994, Corollary (1.6), Chapter VI),� t

0

1fX s�YsghãX
s ÿ ãY

s , ãX
s ÿ ãY

s i ds � 0, for all t ,1, P-a:s:

Hence, by the HoÈlder inequality,� t

0

1fX s�YsgjhãX
s , ãX

s i ÿ hãX
s , ãY

s ij ds

<

� t

0

1fX s�Ysg
������������������
hãX

s , ãX
s i

q �����������������������������������������
hãX

s ÿ ãY
s , ãX

s ÿ ãY
s i

q
ds

<

� t

0

1fX s�YsghãX
s , ãX

s i ds

� �1=2 � t

0

1fX s�YsghãX
s ÿ ãY

s , ãX
s ÿ ãY

s i ds

� �1=2

� 0, for all t ,1, P-a:s:

Thus, by symmetry,

1fX�YghãX , ãX i � 1fX�YghãX , ãY i � 1fX�YghãY , ãY i, dt 
 dP-a:s:

By continuity of the processes X and Y, there are sequences of stopping times (Sn) and

(Tn), Sn < Tn, with [Sm, Tm] \ [Sn, Tn] � Æ for all m 6� n and

fX � Yg �
[
n2N

[Sn, Tn], up to evanescence.

To see this, let n 2 N and let S(n, 1) :� infft . 0j jX t ÿ Ytj � 0g. De®ne T (n, p) :� infft .
S(n, p)j jX t ÿ Ytj. 0g and inductively
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S(n, p� 1) :� infft . S(n, p)j jX t ÿ Ytj � 0 and supS(n, p)<s< tjX s ÿ Ysj. 2ÿng:
Then by continuity we have lim p!1 S(n, p) � 1 for all n 2 N and it follows that

fX � Yg � [n, p2N[S(n, p), T (n, p)]. Now proceed as in Jacod and Shiryaev (1987, Lemma

I.1.31) to ®nd the sequences (Sn) and (Tn) with the desired properties.

From above we have 1fX�Yg(ãX ÿ ãY )2 � 0, dt 
 dP-a:s: For any 0 < t ,1, therefore,� Tn^ t

Sn^ t
(ãX

s ÿ ãY
s )dWs � 0, P-a.s. Hence

0 � (X ÿ Y )Tn^ t ÿ (X ÿ Y )S n^ t �
�Tn^ t

S n^ t

(âX
s ÿ âY

s )ds, P-a:s:

We conclude that� t

0

1fX s�Ysg(â
X
s ÿ âY

s )ds �
X
n2N

�Tn^ t

Sn^ t

(âX
s ÿ âY

s )ds � 0, for 0 < t ,1, P-a:s:

Using the same arguments as in the proof of FilipovicÂ (1999b, Proposition 3.2), we derive the

desired result. h

Next, we list two results in matrix algebra.

Lemma 4.2. Let ã � (ãi, j) be an N 3 d matrix and de®ne the symmetric non-negative

de®nite N 3 N matrix á :� ãã�, that is, ái, j � á j,i �
Pd

ë�1ãi,ëã j,ë. Let I and J denote two

arbitrary subsets of f1, . . . , Ng. De®ne

á I ,J � áJ , I :�
X
j2J

X
i2 I

ái, j:

Then á I , I > 0 and já I ,J j < ��������
á I , I
p ���������

áJ ,J
p

.

Proof. For 1 < ë < d, de®ne ã I ,ë :�Pi2 Iãi,ë. Then by de®nition

á I ,J �
X
j2J

X
i2 I

Xd

ë�1

ãi,ëã j,ë �
Xd

ë�1

X
i2 I

ãi,ë

 ! X
j2J

ã j,ë

 !
�
Xd

ë�1

ã I ,ëãJ ,ë:

Hence

á I , I �
Xd

ë�1

(ã I ,ë)2 > 0,

and by the Cauchy±Schwarz inequality

já I ,J j <
��������������������Xd

ë�1

(ã I ,ë)2

vuut ��������������������Xd

ë�1

(ãJ ,ë)
2

vuut � ��������
á I , I
p ���������

áJ ,J
p

:

h
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Lemma 4.3. Let á � (ái, j) be an n 3 n matrix, n 2 N, which is diagonally dominant from

the right, that is,

jái,ij >
Xn

j�1
j 6�i

jái, jj

jái,ij.
Xn

j�i�1

jái, jj set
Xn

j�n�1

� � � :� 0

 !
,

for all 1 < i < n. Then á is regular.

Proof. The proof, involving Gaussian elimination, is a slight modi®cation of an argument

given in Schwarz (1986, Theorem 1.5).

By assumption já1,1j.
Pn

j�2já1, jj > 0, in particular á1,1 6� 0. If n � 1 we are done. If

n . 1, the elimination step

á(1)
i, j :� ái, j ÿ ái,1

á1,1

á1, j, 2 < i, j < n,

leads to the (nÿ 1) 3 (nÿ 1) matrix á(1) � (á(1)
i, j )2<i, j<n. We show that á(1) is diagonally

dominant from the right. If ái,1 � 0, there is nothing to prove for the ith row. Let ái,1 6� 0,

for some 2 < i < n. We have

já(1)
i, j j > jái, jj ÿ

���� ái,1

á1,1

����já1, jj, 2 < j < n:

Therefore

Xn

j�i�1

já(1)
i, j j <

Xn

j�2
j 6�i

já(1)
i, j j �

Xn

j�2
j6�i

����ái, j ÿ ái,1

á1,1

á1, j

���� <
Xn

j�2
j 6�i

jái, jj �
���� ái,1

á1,1

����Xn

j�2
j 6�i

já1, jj

�
Xn

j�1
j 6�i

jái, jj ÿ jái,1j �
���� ái,1

á1,1

���� Xn

j�2

já1, jj ÿ já1,ij
 !

, jái,ij ÿ jái,1j �
���� ái,1

á1,1

����(já1,1j ÿ já1,ij)

� jái,ij ÿ
���� ái,1

á1,1

����já1,ij < já(1)
i,i j:

Proceed inductively to á(2), . . . , á(nÿ1). h
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5. The case BEP(1, n)

We will treat the case K � 1 separately, since it represents a key step in the proof of the

general BEP(K, n) case. For simplicity we shall skip the index i � 1 and write n � n1 2 N0,

p � p1, b j � b1, j, ai, j � a1,i;1, j, etc. In particular, we use the notation of Section 2 with

N � n� 2.

Lemma 5.1. Let n 2 N0 and Z be as above. If Z is consistent with BEP(1, n) , then

necessarily

Z i
t � Zi

0 eÿZ n�1
0

t � Zi�1
0 t eÿZ n�1

0
t,

Z n
t � Z n

0 eÿZ n�1
0

t,

Z n�1
t � Z n�1

0 �
� t

0

bn�1
s ds�

Xd

j�1

� t

0

ó n�1, j
s dW j

s

0@ 1A1Ù0
,

for 0 < i < nÿ 1 and 0 < t ,1, P-a:s:, where Ù0 :� fp(Z0) � 0g.

Consequently, if Z is consistent with BEP(1, n), then fp(Z) � 0g � R� 3 Ù0. Hence

fZ n�1 6� Z n�1
0 g � fp(Z) � 0g. Therefore we may state:

Corollary 5.2. If Z is consistent with BEP(1, n), then Z is as in Lemma 5.1 and

F(x, Z) � p(x, Z) eÿZ n�1
0

x:

Hence the corresponding interest rate model is quasi-deterministic, that is, all randomness

remains F 0-measurable.

Proof of Lemma 5.1. Let n 2 N0 and let Z be an ItoÃ process, consistent with BEP(1, n). Fix

a point (t, ù) in R� 3 Ù. For simplicity we write zi for Zi
t(ù), ai, j for a

i, j
t (ù) and bi for

bi
t(ù). The proof relies on expanding equation (3) at the point z � (z0, . . . , zn�1). The terms

involved are

@

@x
F(x, z) � @

@x
p(x, z)ÿ zn�1 p(x, z)

� �
eÿzn�1 x, (14)

@

@zi

F(x, z) � xi eÿzn�1 x, 0 < i < n,

ÿxp(x, z) eÿzn�1 x, i � n� 1,

�
(15)

@2 F(x, z)

@zi@z j

� @
2 F(x, z)

@z j@zi

�
0, 0 < i, j < n,

ÿxi�1 eÿz n�1 x, 0 < i < n, j � n� 1,

x2 p(x, z) eÿzn�1 x, i � j � n� 1:

8><>: (16)

Finally, the following relation for m 2 N0 is useful:
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�x

0

çm eÿz n�1ç dç �
ÿrm(x) eÿzn�1 x � m!

zm�1
n�1

, zn�1 6� 0,

x m�1

m� 1
, zn�1 � 0,

8>><>>: (17)

where

rm(x) �
Xm

k�0

m!

(mÿ k)!

x mÿk

zk�1
n�1

is a polynomial in x of order m.

Let us suppose ®rst that zn�1 6� 0. Thus, subtracting (@=@x)F(x, Z) from both sides of

(3), we obtain a null equation of the form

q1(x) eÿzn�1 x � q2(x) eÿ2z n�1 x � 0, (18)

which has to hold simultaneously for all x > 0. The polynomials q1 and q2 depend on the zi,

bi and ai, j. Equality (18) implies q1 � q2 � 0. This again yields that all coef®cients of the qi

have to be zero.

To proceed we have to distinguish the two cases p(z) 6� 0 and p(z) � 0. Let us ®rst

suppose the former is true. Then there exists an index i 2 f0, . . . , ng such that zi 6� 0. Set

m :� maxfi < njzi 6� 0g. With regard to (15)±(17), it follows that deg q2 � 2m� 2. In

particular,

q2(x) � an�1,n�1

z2
m

zn�1

x2m�2 � . . . ,

where . . . denotes terms of lower order in x. Hence an�1,n�1 � 0. But the matrix a has to be

non-negative de®nite, so necessarily

an�1, j � a j,n�1 � 0, for all 1 < j < n� 1:

In view of Lemma 4.1 (setting Y � 0), since we are characterizing a and b up to dt 
 dP-

nullsets, we may assume ai, j � a j,i � 0, for 0 < j < n� 1, for all i > m� 1. Thus the

degree of q2 reduces to 2m. Explicitly,

q2(x) � am,m

zn�1

x2m � . . . :

Hence am,m � 0 and so am, j � a j,m � 0, for 0 < j < n� 1. Proceeding inductively for

i � mÿ 1, mÿ 2, . . . , 0, we ®nally obtain that the diffusion matrix a is equal to zero and

hence q2 � 0 is ful®lled.

Now we determine the drift b. By Lemma 4.1, we may assume bi � 0 for

m� 1 < i < n. With regard to (14) and (15), q1 reduces therefore to

q1(x) � ÿbn�1zmx m�1 � . . . :

It follows that bn�1 � 0 and we are left with
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q1(x) � (bm � zn�1zm)x m �
Xmÿ1

i�0

(bi ÿ zi�1 � zn�1zi)x
i

� (bn � zn�1zn)x n �
Xnÿ1

i�0

(bi ÿ zi�1 � zn�1zi)x
i:

We now turn to the singular cases. If p(z) � 0, that is z0 � . . . � zn � 0, we may assume

ai, j � a j,i � bi � 0, 0 < j < n� 1, for all i < n. But this means that q1 � q2 � 0,

independently of the choice of bn�1 and an�1,n�1.

For the case where zn�1 � 0, we need the boundedness assumption z 2Z. By (8) it

follows that z1 � . . . � zn � 0. So by Lemma 4.1 again ai, j � a j,i � bi � 0, 0 < j < n� 1,

for all i > 1. Thus in this case equation (3) reduces to

0 � b0 ÿ a0,0x,

and therefore b0 � a0,0 � 0.

Summarizing all cases, we conclude that necessarily

bi � ÿzn�1zi � zi�1, 0 < i < nÿ 1,

bn � ÿzn�1zn,

ai, j � 0, for (i, j) 6� (n� 1, n� 1);

while bn�1 and an�1,n�1 are arbitrary real and non-negative real numbers, respectively,

whenever p(z) � 0. Otherwise bn�1 � an�1,n�1 � 0.

The rest of the proof is analogous to the proof of FilipovicÂ (1999b, Proposition 4.1).

h

6. The general case BEP(K,n)

Using again the notation of Section 3, we give the proof of Theorem 3.2 for the case K > 2.

The exposition is somewhat complicated, which is due to the multidimensionality of the

problem. The idea, however, is simple. For a ®xed point (t, ù) 2 R� 3 Ù we expand

equation (3), which turns out to be a linear combination of linearly independent exponential

functions, over the ring of polynomials, equalling zero. Consequently, many of the

coef®cients have to vanish, which leads to our assertion.

The dif®culty is that some exponents may coincide. This causes a considerable number

of singular cases which require a separate discussion.

Let K > 2, n � (n1, . . . , nK ) 2 NK
0 , and let Z be consistent with BEP(K, n). As in the

proof of Lemma 5.1, we ®x a point (t, ù) in R� 3 Ù and use the shorthand notation zi,ì

for Z
i,ì
t (ù), ai,ì; j,í for a

i,ì; j,í
t (ù) and bi,ì for b

i,ì
t (ù), etc. Since we are characterizing a and

b up to a dt 
 dP-nullset, we assume that (t, ù) is chosen outside an exceptional dt 
 dP-

nullset. In particular, the lemmas from Section 4 shall apply each time this choice is made.

The strategy is the same as for the case K � 1. Thus we expand equation (3) at the point
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z � (z1,0, . . . , zK,n K�1) to obtain a linear combination of (ideally) linearly independent

exponential functions over the ring of polynomialsXK

i�1

qi(x) eÿzi, ni�1 x �
X

1<i< j<K

qi, j(x) eÿ(zi, ni�1�z j, n j�1)x � 0: (19)

Consequently, all polynomials qi and qi, j have to be zero. The main difference between this

case and the case K � 1 is that representation (19) may not be unique due to the possibly

multiple occurrence of the following singular cases:

(i) zi,ni�1 � z j,n j�1, for i 6� j,

(ii) 2zi,ni�1 � z j,n j�1 � zk,nk�1,

(iii) 2zi,ni�1 � z j,n j�1,

(iv) zi,ni�1 � z j,n j�1 � zk,nk�1,

for some indices 1 < i, j, k < K. However, the lemmas in Section 4 and the boundedness

assumption z 2Z are good enough to settle these four cases.

Let us suppose ®rst that pi(z) 6� 0, for all i 2 f1, . . . , Kg. To settle case (i), let � denote

the equivalence relation de®ned in (6). After reparametrization if necessary, we may assume

that

f1, . . . , Kg=� � f[1], . . . , [ ~K]g
and z1,n1�1 , . . . , z ~K,n ~K�1 for some integer ~K < K. Write I :� f1, . . . , ~Kg. In view of

Lemma 4.1 we may assume

a j,n j�1; j,n j�1 � ai,ni�1;i,ni�1 and b j,n j�1 � bi,ni�1 for all j 2 [i], i 2 I : (20)

The proof of (12) and (13) is divided into four lemmas.

Lemma 6.1. ai,ni�1;i,ni�1 � 0, for all i 2 I .

Proof. Expression (19) takes the formX
i2 I

~qi(x) eÿzi, ni�1 x �
X
i, j2 I
i< j

~qi, j(x) eÿ(zi, ni�1�z j, n j�1)x � 0, (21)

for some polynomials ~qi and ~qi, j. Taking into account cases (ii)±(iv), this representation may

still not be unique. However, if for an index i 2 I there exist no j, k 2 I such that

2zi,ni�1 � z j,n j�1 � zk,nk�1 or 2zi,ni�1 � z j,n j�1 (in particular, zi,ni�1 6� 0) then we have

~qi,i(x) � ai,ni�1;i,ni�1

P
j2I [i],ìm

z2
j,ìm

zi,ni�1

x2ìm�2 � . . . ,

where ìm :� maxfíjí < nj and z j,í 6� 0 for some j 2 [i]g 2 N0. Hence ai,ni�1;i,ni�1 � 0 and

the lemma is proved for the regular case.

For the singular cases observe ®rst that zi,ni�1 � 0 implies ai,ni�1;i,ni�1 � 0, which

follows from Lemma 4.1. Now we split I into two disjoint subsets I1 and I2, where

Exponential-polynomial families and interest rates 1095



I1 :� fi 2 I jzi,ni�1 6� 0, and there exist j, k 2 I such that

2zi,ni�1 � z j,n j�1 � zk,nk�1 or 2zi,ni�1 � z j,n j�1g,

I2 :� InI1:

Observe that z ~K,n ~K�1 . 0 implies ~K 2 I2 and z1,n1�1 , 0 implies 1 2 I2. Since at least one of

these events has to happen, the set I2 is not empty. We have shown above that

ai,ni�1;i,ni�1 � 0, for i 2 I2. If I1 is not empty, we will show that for each i 2 I1, the

parameter zi,ni�1 can be written as a linear combination of z j,n j�1s with j 2 I2. From this it

follows by Lemmas 4.1 and 4.2 that ai,ni�1;i,ni�1 � 0 for all i 2 I1 and the lemma is

completely proved. We proceed as follows. Write I1 � fi1, . . . , irg with zi1,ni1
�1 ,

. . . , zi r ,ni r�1. For each ik 2 I1 there exists one linear equation of the form

(�, . . . , �, 2, �, . . . , �)

zi1,ni1
�1

..

.

zi k ,ni k
�1

..

.

zi r ,ni r�1

0BBBBBBB@

1CCCCCCCA � ák ,

where � stands for 0 or ÿ1, but with at most one ÿ1 on each side of 2. The ák on the right-

hand side is 0 or zi,ni�1 or zi,ni�1 � z j,n j�1 for some indices i, j, 2 I2. Hence we obtain the

system of linear equations

2 � . . . �
� . .

. . .
. ..

.

..

. . .
. . .

. �
� . . . � 2

0BBBB@
1CCCCA

zi1,ni1
�1

..

.

..

.

zi r ,ni r�1

0BBBBB@

1CCCCCA �
á1

..

.

..

.

ár

0BBBBB@

1CCCCCA:

By Lemma 4.3, the matrix on the left-hand side is invertible, from which our assertion

follows. h

Lemma 6.2. a j,n j�1;k,í � ak,í; j,n j�1 � 0, for 0 < í < nk, for all 1 < j, k < K.

Proof. In view of (20), the lemma follows immediately from Lemmas 6.1 and 4.2. h

Analogous to the notation introduced in (7), we set
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b[i],ì :�
X

j2I [i],ì

b j,ì,

ó [i],ì;ë :�
X

j2I [i],ì

ó j,ì;ë,

a[i],ì;k,í :�
X

j2I [i],ì

a j,ì;k,í,

for 0 < ì < n[i], 0 < í < nk , 1 < k < K, 1 < ë < d, i 2 I, and

a[i],ì;[k],í :�
X

l2I [ k],v

X
j2I [i],ì

a j,ì; l,í,

for 0 < ì < n[i], 0 < í < n[k], i, k 2 I.

Lemma 6.3. If z[i],ì � 0, for i 2 I and ì 2 f0, . . . , n[i]g, then

b[i],ì � a[i],ì;[i],ì � a[i],ì;k,í � ak,í;[i],ì � 0,

for all 0 < í < nk , 1 < k < K.

Proof. Notice that a[i],ì;[i],ì �
Pd

ë�1ó
2
[i],ì;ë. Hence Lemma 6.3 follows by Lemmas 4.1 and

4.2. h

Lemma 6.4. bi,ni�1 � 0, for all i 2 I such that p[i](z) 6� 0.

Proof. Suppose ®rst that zi,ni�1 6� 0, for all i 2 I . Let i 2 I such that p[i](z) 6� 0, and let us

assume there exist no j, k 2 I with zi,ni�1 � z j,n j�1 � zk,n k�1. What does the polynomial ~qi

in (21) look like? With regard to (20), Lemmas 6.2 and 4.1, and equalities (14)±(17), the

contributing terms are

@

@x
pj(x, z) e

ÿz j, n j�1 x �
Xìm^nj

ì�1

z j,ìxìÿ1

0@ 1Aÿ zi,ni�1

Xìm^nj

ì�0

z j,ìxì

0@ 1A0@ 1A eÿzi, ni�1 x, (22)

Xnj�1

ì�0

b j,ì
@

@z j,ì
F(x, z) �

Xìm^nj

ì�0

b j,ìxì

0@ 1Aÿ bi,ni�1

Xìm^nj

ì�0

z j,ìxì�1

0@ 1A0@ 1A eÿzi, ni�1 x (23)

and
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ÿ
Xnj

ì�0

a j,ì;k,í
@

@z j,ì
F(x, z)

�x

0

@

@zk,í
F(ç, z)dç

0@ 1A

� ÿ
Xìm^nj

ì�0

a j,ì;k,í
nk !

zn k�1
k,n k�1

xì

0@ 1A eÿzi, ni�1 x ÿ polynomial

in x

� �
eÿ(zi, ni�1�zk, n k�1)x, (24)

for 0 < í < nk, for all 1 < k < K and j 2 [i]. We have used the integer

ìm :� maxfëjë < nl and zl,ë 6� 0 for some l 2 [i]g:
De®ne ~ìm :� maxfëjë < n[i] and z[i],ë 6� 0g 2 N0. Obviously ~ìm < ìm. By Lemma 6.3 we

have a[i],ì;k,í � 0, for all ~ìm , ì < n[i]. Thus summing the above expressions over j 2 [i], we

obtain

~qi(x) � ÿbi,ni�1z[i], ~ìm
x ~ìm�1 � . . . : (25)

Consequently, bi,ni�1 � 0 in the regular case.

For the singular cases the boundedness assumption z 2Z is essential. We split I into two

disjoint subsets J1 and J2, where

J1 :� fi 2 I j there exist j, k 2 I , such that zi,ni�1 � zj,nj�1 � zk,n k�1

and z j,n j�1 . 0 and zk,n k�1 . 0g,

J2 :� InJ1:

Notice that in any case 1 2 J2. We have shown above that for each i 2 J2 such that zi,ni�1 is

not the sum of two other z j,n j�1s it follows that bi,ni�1 � 0. We will now show that

bi,ni�1 � 0 for all i 2 J2. Let i 2 J2 and assume there exist j, k 2 I with zi,ni�1 �
z j,n j�1 � zk,nk�1. Then necessarily one of the summands is strictly less than zero. Without

loss of generality z j,n j�1 , 0. Since z 2Z, we have p[ j](z) � 0 (see (8)). Thus a[ j],ì;[ j],ì � 0

by Lemma 6.3 and therefore a[ j],ì;k,í � 0, for all 0 < ì < n[ j], 0 < í < nk , 1 < k < K. The

terms contributing to the polynomial in front of eÿzi, ni�1 x, that is ~qi � ~q j,k � . . . , are those in

(22)±(24) and also

ÿ al,ì;m,í
@

@zl,ì
F(x, z)

�x

0

@

@zm,í
F(ç, z) ç � ÿal, ì;m,í

xì eÿz j, n j�1 x

�x

0

çí eÿzk, n k�1ç dç, (26)

for 0 < ì < nl, 0 < í < nm, l 2 [ j], m 2 [k]. However, summing ± for ®xed ì, m and í ±

the right-hand side of (26) over l 2 I [ j],ì gives zero. Hence the terms in (26) do not actually

contribute to the polynomial. The same conclusion can be drawn for all j, k 2 I with the

property that zi,ni�1 � z j,nj�1 � zk,n k�1. It ®nally follows, as in the regular case, that

bi,ni�1 � 0 for all i 2 J2.

If J1 is not empty, we show that for each i 2 J1, the parameter zi,ni�1 can be written as a

linear combination of z j,n j�1s with j 2 J2. From this it follows by Lemma 4.1 that

bi,ni�1 � 0 for all i 2 J1. We proceed as follows. Write J1 � fi1, . . . , ir9g with

zi1,ni1
�1 , . . . , zi r9,ni r9

�1. For each ik 2 J1 there exists one linear equation of the form
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(�, . . . , �, 1, 0 . . . , 0)

zi1,ni1
�1

..

.

zi k ,ni k
�1

..

.

zi r9,ni r9
�1

0BBBBBBB@

1CCCCCCCA � á9k ,

where the � stand for 0 or ÿ1, but at most two of them are ÿ1. The á9k on the right-hand side

is 0 or zi,ni�1 or zi,ni�1 � z j,n j�1 for some indices i, j 2 J2 with zi,ni�1 . 0 and z j,n j�1 . 0.

Obviously á91 is of the latter form. Hence we obtain the system of linear equations

1 0 . . . 0

� . .
. . .

. ..
.

..

. . .
. . .

.
0

� . . . � 1

0BBBBB@

1CCCCCA
zi1,ni1

�1

..

.

..

.

zi r9,ni r9
�1

0BBBBB@

1CCCCCA �
zi,ni�1 � z j,n j�1

á92

..

.

á9r9

0BBBB@
1CCCCA,

for some i, j 2 J2. On the left-hand side is a lower-triangular matrix, which is therefore

invertible. Hence the lemma is proved in the case where zi,ni�1 6� 0 for all i 2 I .

Assume now that there exists i 2 I with zi,ni�1 � 0. Then i 2 J2. We have to make sure

that also in this case b j,n j�1 � 0, for all j 2 J2. Clearly bi,ni�1 is zero by Lemma 4.1. The

problem is that z j,n j�1 � zi,ni�1 � z j,n j�1 for all j 2 J2. But following the lines above, it is

enough to show a[i],ì;[i],ì � 0, for all 0 < ì < n[i]. From the boundedness assumption

z 2Z we know that p[i](z) � z[i],0 (see (8)). Hence a[i],ì;[i],ì � 0, for 1 < ì < n[i]. Suppose

there is no pair of indices j, k 2 Infig with z j,n j�1 � zk,nk�1 � 0. Summing the contributing

terms in (22)±(24) over j 2 [i], we obtain the polynomial in front of e0, i.e.

~qi(x)� ~qi,i(x) � ÿa[i],0;[i],0x � . . . , (27)

hence a[i],0;[i],0 � 0. If there exist a pair of indices j, k 2 Infig with z j,n j�1 � zk,n k�1 � 0,

then one of these summands is strictly less than zero. Arguing as before, the polynomial in

front of e0 remains of the form (27) and again a[i],0;[i],0 � 0. Thus the lemma is completely

proved. h

So far we have established (12) and (13) under the hypothesis that pi(z) 6� 0, for all

i 2 f1, . . . , Kg. Suppose now that there is an index i 2 f1, . . . , Kg with pi(z) � 0. By

Lemma 4.1, we may assume ai,ì;i,ì � bi,ì � 0, for all 0 < ì < ni. But then Lemma 4.2

tells us that none of the terms including the index i appears in (19). In particular,

ai,ni�1;i,ni�1 and bi,ni�1 can be chosen arbitrarily without affecting equation (19). This means

that we may skip i and proceed, after a reparametrization if necessary, with the remaining

index set f1, . . . , K ÿ 1g to establish Lemmas 6.1±6.4 as above.

This all has to hold for dt 
 dP-a:e: (t, ù). Hence (12) and (13) are fully proved. A

closer look to the proof of (12), that is, Lemma 6.1, shows that the boundedness assumption

z 2Z was not explicitly used there ± whence Remark 3.3.

Next we prove that the exponents Z i,ni�1 are locally constant on intervals where pi(Z)
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and p[i](Z) do not vanish. Let v > 0 be a rational number and let Tv :�
infft . vjpi(Z t) � 0 or p[i](Z) � 0g denote the debut of the optional set [v, 1[\Ai. By

(12) and (13) and the continuity of Z we have that Z i,ni�1 is P-a.s. constant on [v, Tv],

hence P-a.s. constant on every such interval [v, Tv]. Since every open interval where

pi(Z t) 6� 0 or p[i](Z t) 6� 0 is covered by a countable union of intervals [v, Tv] and by

continuity of Z, the assertion follows and the ®rst part of the theorem is proved.

To establish the second part of the theorem, let ô be a stopping time with [ô] 2 D 9 and

P(ô,1) . 0. De®ne the stopping time ô9(ù) :� infft > ô(ù)j(t, ù) =2 D 9g. By continuity

of Z, we conclude that ô, ô9 on fô,1g. Choose a point (t, ù) in [ô, ô9[. We use

shorthand notation as above.

By de®nition of D 9 we can exclude the singular cases zi,ni�1 � z j,n j�1 or 2zi,ni�1 �
z j,n j�1, for i 6� j. In particular, ~K � K, hence I � f1, . . . , Kg. First, we show that the

diffusion matrix for the coef®cients of the polynomials pi(z) vanishes.

Lemma 6.5. ai,ì; j,í � a j,í;i,ì � 0, for 0 < ì < ni and 0 < í < nj, for all i, j 2 I .

Proof. By Lemma 4.1 it is enough to prove that the diagonal ai,ì;i, ì vanishes for 0 < ì < ni

and i 2 I . If there is an index i 2 I with pi(z) � 0 then, arguing as above, ai,ì;i,ì � bi,ì � 0,

for all 0 < ì < ni, and we may skip the index i. Hence we assume now that there is a

K9 < K such that pi(z) 6� 0 (and thus zi,ni�1 > 0, since z 2Z) for all 1 < i < K9. Let

I9 :� f1, . . . , K9g. To handle the singular cases, we split I9 into two disjoint subsets I91 and

I92, where

I91 :� fi 2 I9jzi,ni�1 . 0, and there exist j, k 2 I9

such that 2zi,ni�1 � z j,n j�1 � zk,n k�1g,

I92 :� I9nI91:

Hence zi,ni�1 � 0 for i 2 I9 implies i 2 I92. We have already shown in the proof of Lemma

6.4 that in this case ai,ì;i,ì � 0, for all 0 < ì < ni. The same follows for i 2 I92 with

zi,ni�1 . 0, as was demonstrated for the case K � 1.

Now let i 2 I91 and let l, m 2 I9, such that l < m and 2zi,ni�1 � zl,nl�1 � zm,nm�1. Thus

the polynomial in front of eÿ2zi, ni�1 x is qi,i � ql,m � . . . , and among the contributing terms

are also those in (26). If l or m is in I92, those are all zero. Write I91 � fi1, . . . , ir 0g with

zi1,ni1
�1 , . . . , zi r 0 ,ni r 0

�1. Then necessarily l 2 I92 in the above representation for zi1,ni1
�1.

Thus the polynomial in front of e
ÿ2zi1, ni1

�1 x
is qi1,i1 . It follows that ai1,ì;i1,ì � 0, for all

0 < ì < ni1 , as was demonstrated for the case K � 1. Proceeding inductively for

i2, . . . , ir 0, we eventually derive that ai,ì;i,ì � 0, for all 0 < ì < ni and i 2 I9. This

establishes the lemma. h

We are left with the task of determining the drift of the coef®cients in pi(z). By (13), we

have bi,ni�1 � 0 for all i 2 I9. Straightforward calculations show that (19) reduces to
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XK9

i�1

qi(x) eÿzi, ni�1 x � 0,

with

qi(x) � (bi,ni
� zi,ni�1zi,ni

)x ni �
Xniÿ1

ì�0

(bi,ì ÿ zi,ì�1 � zi,ni�1zi,ì)xì:

We conclude that for all 1 < i < K (in particular, if pi(z) � 0)

bi,ì � zi,ì�1 ÿ zi,ni�1zi,ì, 0 < ì < ni ÿ 1,

bi,ni
� ÿzi,ni�1zi,ni

: (28)

By continuity of Z, Lemma 6.5 and (28) hold pathwise on the semi-open interval

[ô(ù), ô9(ù)[ for almost every ù. Therefore Zô�: is of the claimed form on [0, ô9ÿ ô[.

Now replace D 9 by D and proceed as above. By (11) we have ô, ô9 on fô,1g, and,

since D � D 9, all the above results remain valid. In addition, pi(z) � p[i](z) 6� 0 and thus

ai,ni�1;i,ni�1 � bi,ni�1 � 0, for all 1 < i < K, by (12) and (13). Hence Zi,ni�1
ô�: � Zi,ni�1

ô on

[0, ô9ÿ ô[, for all 1 < i < K, up to evanescence. But this again implies ô9 � 1 by the

continuity of Z.

7. E-consistent ItoÃ processes

An ItoÃ process Z is by de®nition consistent with a family fF(:, z)gz2Z if and only if P is a

martingale measure for the discounted bond price processes. We could generalize this

de®nition and call a process Z e-consistent with fF(:, z)gz2Z if there exists an equivalent

martingale measure Q. Then obviously consistency implies e-consistency, and e-consistency

implies the absence of arbitrage opportunities as is well known.

Where the ®ltration is generated by the Brownian motion W, that is, (F t) � (F W
t ), we

can give the following stronger result:

Proposition 7.1. Let K 2 N and n � (n1, . . . , nK) 2 NK
0 . If (F t) � (F W

t ), then any ItoÃ

process Z which is e-consistent with BEP(K, n) is of the form stated in Theorem 3.2.

Proof. Let Z be an e-consistent ItoÃ process under P, and let Q be an equivalent martingale

measure. Since (F t) � (F W
t ), we know that all P-martingales have the representation

property relative to W. By Girsanov's theorem it follows, therefore, that Z remains an ItoÃ

process under Q, which is consistent with BEP(K, n). The drift coef®cients bi,ì change

under Q into ~bi,ì; while bi,ì � ~bi,ì on fai,ì;i,ì � 0g, dt 
 dP-a.s. The diffusion matrix a

remains the same. Therefore, and since the measures dt 
 dQ and dt 
 dP are equivalent on

R� 3 Ù, the ItoÃ process Z is of the form stated in Theorem 3.2. h
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Notice that in this case the quasi-deterministic, that is, F 0-measurable, expression in

Corollaries 3.5 and 5.2 is a purely deterministic one.

8. The diffusion case

The main result from Section 3 is much clearer for diffusion processes. In all applications the

generic ItoÃ process Z on (Ù, F , (F t)0< t ,1, P) given by (9) is the solution of a stochastic

differential equation

Z
i,ì
t � Z

i,ì
0 �

� t

0

bi,ì(s, Zs)ds�
Xd

ë�1

� t

0

ó i,ì;ë(s, Zs)dW ë
s , (29)

for 0 < ì < ni � 1 and 1 < i < K, where b and ó are some Borel measurable mappings

from R� 3 RN to RN and RN3d, respectively.

The coef®cients b and ó could be derived by statistical inference methods from the daily

observations of the diffusion Z made by some central bank. These observations are of

course made under the objective probability measure. Hence P is not a martingale measure

in applications of this kind.

On the other hand, we want a model for pricing interest rate sensitive securities. Thus the

diffusion has to be e-consistent. If we assume that (F t) � (F W
t ), the previous section

applies. To stress the fact that F W
0 -measurable functions are deterministic, we denote the

initial values of the diffusion in (29) with small letters z
i,ì
0 .

Since all reasonable theory for stochastic differential equations requires continuity

properties of the coef®cients, we shall assume in the following that b(t, z) and ó (t, z) are

continuous in z. The main result for e-consistent diffusion processes is divided into the two

following theorems. The ®rst one only requires consistency with EP(K, n).

Theorem 8.1. Let K 2 N, n � (n1, . . . , nK) 2 NK
0 , (F t) � (F W

t ), and let the diffusion Z, b

and ó be as above. If Z is e-consistent with BEP(K, n) or with EP(K, n), then necessarily

the exponents are constant,

Z i,ni�1 � zi,ni�1
0 ,

for all 1 < i < K.

Proof. The signi®cant difference between this proof and that of Theorem 3.2 is that now the

diffusion matrix a and the drift b depend continuously on z.

First, observe that the following sets of singular values,

M :�
[K
i�1

fz 2 RN j pi(z) � 0 or p[i](z) � 0g

and

N :� fz 2 RN jzi,ni�1 � z j,n j�1 � zk,nk�1 for some 1 < i, j, k < Kg,
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are contained in a ®nite union of hyperplanes of RN (see (10)). Hence (M [N ) � RN has

Lebesgue measure zero. Thus the topological closure of G :� RNn(M [N ) is RN .

Now let Z be the diffusion in (29), which is e-consistent with either BEP(K, n) or

EP(K, n). A closer look at the proof of Lemma 6.4 shows that the boundedness assumption

z 2Z was not used for the regular case z 2 G (see (25)). Combining this with (12), (13)

and Remark 3.3, we conclude that, for any 1 < i < K and 1 < ë < d,

bi,ni�1(t, Z t(ù)) � ó i,ni�1;ë(t, Z t(ù)) � 0, for (t, ù) 2 fZ 2 G gnN ,

where N is an R� 
 F -measurable dt 
 dP-nullset. By the very de®nition of the product

measure,

0 �
�

N

1 dt 
 dP �
�

R�
P[Nt] dt,

where Nt :� fùj(t, ù) 2 Ng 2 F . Consequently P[N t] � 0 for almost every t 2 R�. Hence,

by continuity of b(t, :) and ó (t, :),

bi,ni�1(t, :) � ó i,ni�1;ë(t, :) � 0 (30)

on supp(Z t) \ G , for almost every t 2 R�. Here supp(Z t) denotes the support of the

(regular) distribution of Z t, which is by de®nition the smallest closed set A � RN with

P[Z t 2 A] � 1. Thus, again by continuity of b(t, :) and ó (t, :), equality (29) holds for almost

every t 2 R� on the closure of supp(Z t) \ G , which is supp(Z t). Hence we may replace the

functions bi,ni�1(t, :) and ó i,ni�1;ë(t, :) by zero for almost every t without changing the

diffusion Z, whence the assertion follows. h

The sum of two real-valued diffusion processes with coef®cients continuous in some

argument is again a real-valued diffusion with coef®cients continuous in that argument.

Consequently, we may assume that the exponents zi,ni�1
0 of the above e-consistent diffusion

are mutually distinct. Since otherwise we add the corresponding polynomials to obtain in a

canonical way an R
~N -valued diffusion ~Z which is e-consistent with BEP( ~K, ~n) or

EP( ~K, ~n), for some ~K , K, ~N , N and some ~n 2 N
~K

0 . Clearly ~Z provides the same interest

rate model as Z and its coef®cients are continuous in z.

For the second theorem we have to require e-consistency with BEP(K, n). After a

reparametrization if necessary, we may thus assume that

0 < z1,n1�1
0 , . . . , zK,nK�1

0

(see (8)). The continuation of Theorem 8.1 is now as follows:

Theorem 8.2. If Z is e-consistent with BEP(K, n), then it is non-trivial only if there exists a

pair of indices 1 < i , j < K, such that

2zi,ni�1
0 � z

j,nj�1

0 :

Proof. If there is no pair of indices 1 < i , j < K such that 2zi,ni�1
0 � z

j,nj�1

0 , then

D 9 � R� 3 Ù. But then Z is deterministic by the second part of Theorem 3.2. h
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The message of Theorem 8.1 is the following: there is no possibility of modelling the

term structure of interest rates by exponential-polynomial families with varying exponents

driven by diffusion processes. From this point of view there is no use for daily estimations

of the exponents of exponential-polynomial type functions such as FNS or FS. Once the

exponents are chosen, they have to be kept constant. Furthermore, there is a strong

restriction on this choice by Theorem 8.2. It will be shown in the next section what this

means for FNS and FS in particular.

Remark 8.3. The boundedness assumption in Theorem 8.2 ± that is, e-consistency with

BEP(K, n) ± is essential for the strong (negative) result to be valid. It can easily be checked

that F(x, z) � z0 � z1x 2 EP(1, 1) allows for a non-trivial consistent diffusion process (see

FilipovicÂ 1999a).

Remark 8.4. The choice of an in®nite time horizon for traded bonds is not a restriction (see

(1)). Indeed, we can limit our considerations to bonds P(t, T ) which mature within a given

®nite time interval [0, T�]. Consequently, the HJM drift condition (3) can only be deduced

for x 2 [0, T� ÿ t], for dt 
 dP-a:e: (t, ù) 2 [0, T�] 3 Ù. But the functions appearing in (3)

are analytic in x. Hence, whenever t , T�, relation (3) extends to all x > 0. All conclusions

on e-consistent ItoÃ processes (Z t)0< t<T� can now be drawn as before.

9. Applications

In this section we apply the results on e-consistent diffusion processes to the Nelson±Siegel

and Svensson families, whose curve shapes were given in Section 1.

9.1. The Nelson±Siegel family

In view of Theorem 8.1 we have z4 . 0. Hence it is immediate from Theorem 8.2 that there is

no non-trivial e-consistent diffusion. This result has already been obtained in FilipovicÂ

(1999b) for e-consistent ItoÃ processes.

9.2. The Svensson family

By Theorems 8.1 and 8.2 there remain the two choices

(i) 2z6 � z5 . 0,

(ii) 2z5 � z6 . 0.

We shall identify the e-consistent diffusion process Z � (Z1, . . . , Z6) in both cases. Let Q

be an equivalent martingale measure. Under Q the diffusion Z transforms into a consistent

one. Now we proceed as in the proof of Theorem 3.2. The expansion (19) is given by

Q1(x)� Q2(x) eÿz5 x � Q3(x) eÿz6 z � Q4(x) eÿ2z5 x � Q5(x) eÿ(z5�z6)x � Q6(x) eÿ2z6 x � 0,

1104 D. FilipovicÂ



for polynomials Q1 . . . , Q6. Explicitly,

Q1(x) � ÿa1,1x � . . .

Q2(x) � ÿa1,3x2 � . . .

Q3(x) � ÿa1,4x2 � . . .

Q4(x) � a3,3

z5

x2 � . . .

Q6(x) � a4,4

z6

x2 � . . .

where . . . denotes terms of lower order in x. Hence a1,1 � 0 in any case. By the usual

arguments (the matrix a is non-negative de®nite) the degree of Q2 and Q3 reduces to at most

1. Thus in both cases (i) and (ii) it follows that a3,3 � a4,4 � 0. We are left with

Q1(x) � b1,

Q2(x) � (b3 � z3z5)x� b2 ÿ z3 ÿ a2,2

z5

� z2z5,

Q3(x) � (b4 � z4z6)xÿ z4,

Q4(x) � a2,2

z5

(31)

while Q5 � Q6 � 0. Since in case (i) Q4 must be 0, we have a2,2 � 0 and Z is deterministic.

We conclude that there is no non-trivial e-consistent diffusion in case (i).

In case (ii) the condition Q3 � Q4 � 0 leads to

a2,2 � z4z5: (32)

Hence there is a possibility of a non-deterministic consistent diffusion Z. We derive, from

(31) and (32), that

b1 � 0,

b2 � z3 � z4 ÿ z5z2,

b3 � ÿz5z3,

b4 � ÿ2z5z4:

Therefore the dynamics of Z1, Z3, . . . , Z6 are deterministic. In particular,

Z1
t � z1

0,

Z3
t � z3

0 eÿz5
0

t, (33)

Z4
t � z4

0 eÿ2z5
0

t,

while Z5
t � z5

0 and Z6
t � 2z5

0. Denoting by ~W the Girsanov transform of W, we have under the

equivalent martingale measure Q
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Z2
t � z2

0 �
� t

0

Ö(s)ÿ z5
0 Z2

s

ÿ �
ds�

Xd

ë�1

� t

0

ó 2,ë(s)d ~W ë
s , (34)

where Ö(t) and ó 2,ë(t) are deterministic functions in t, namely

Ö(t) :� z3
0 eÿz5

0
t � z4

0 eÿ2z5
0

t

and

Xd

ë�1

ó 2,ë(t)
ÿ �2� z4

0z5
0 eÿ2z5

0
t:

By LeÂvy's characterization theorem (see Revuz and Yor 1994, Theorem (3.6), Chapter IV),

the real-valued process

W�t :�
Xd

ë�1

� t

0

ó 2,ë(s)��������
z4

0z5
0

p
eÿz5

0
s

d ~W ë
s , 0 < t ,1,

is an (F t)-Brownian motion under Q. Hence the corresponding short rates

rt � FS(0, Z t) � z1
0 � Z2

t satisfy

drt � (ö(t)ÿ z5
0 rt)dt � ~ó (t)dW�t ,

where ö(t) :� Ö(t)� z1
0z5

0 and ~ó (t) :� ��������
z4

0z5
0

p
eÿz5

0
t. This is just the generalized Vasicek

model. It can be easily given a closed-form solution for rt (see Musiela and Rutkowski 1987,

p. 293).

Summarizing case (ii), we have found a non-trivial e-consistent diffusion process, which

is identi®ed by (33) and (34). Actually Ö has to be replaced by a predictable process ~Ö due

to the change of measure. Nevertheless, this is just a one-factor model. The corresponding

interest rate model is the generalized Vasicek short rate model. This is very unsatisfactory

since Svensson-type functions FS(x, z) have six factors z1, . . . , z6 which are observed. And

it is evident that just one of them, z2, can be chosen to be non-deterministic.

10. Conclusions

Bounded exponential-polynomial families such as the Nelson±Siegel and Svensson families

may be well suited for daily estimations of the forward rate curve. They are best not used for

intertemporal interest rate modelling by diffusion processes. This is because the exponents

have to be kept constant and, moreover, this choice is very restrictive whenever you want to

exclude arbitrage possibilities. It has been shown for the Nelson±Siegel family in particular

that there exists no non-trivial diffusion process providing an arbitrage-free model. However,

there is a choice for the Svensson family, albeit a very limited one, since all parameters but

one have to be kept either constant or deterministic.
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