
A generalized class of Lyons±Zheng

processes

F R A N C E S C O RU S S O 1, P I E R R E VA L L O I S 2 and JOCHEN WOLF 1,3

1Institut GalileÂe, MatheÂmatiques, UniversiteÂ Paris 13, Avenue J.B. CleÂment, F-93430

Villetaneuse, France. E-mail: russo@math.univ-paris13.fr
2DeÂpartement de MatheÂmatiques, UniversiteÂ de Nancy 1, B.P. 239, F-54506 Vandñuvre-les-

Nancy, France
3FakultaÈ t fuÈr Mathematik und Informatik, Institut fuÈ r Stochastik, UniversitaÈ t Jena, D-07740

Jena, Germany. E-mail: wolf_ j@minet.uni-jena.de

Generalizing work by Lyons and Zheng, we study Dirichlet processes admitting a decomposition into

the sum of a forward and a backward local martingale plus a bounded variation process. We develop a

framework of stochastic calculus for these processes and deal with existence and uniqueness for

stochastic differential equations driven by such processes. In particular, Bessel processes turn out to be

an interesting example of Lyons±Zheng processes.
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1. Introduction

Lyons and Zhang (1994) considered a stationary symmetric good Markov process (X (t),

t > 0) associated with a Dirichlet form and showed that, for every function f belonging to

the domain of the form, f (X ) can be represented as the sum of a forward and a backward

martingale. Previously, Fukushima (1990) had shown that f (X ) is a Dirichlet process (see

also FoÈllmer 1981; Bertoin 1986) for a pathwise approach), that is, it can be written as the

sum of a local martingale and a zero-energy process. Thus, Lyons and Zhang (1994) gave in

particular more detailed information about the zero-energy part of certain Dirichlet processes.

For us the above decomposition, which was ®rst considered by Lyons and Zheng (1988),

is the starting point for de®ning a class of Dirichlet processes which appear to be

particularly appropriate for stochastic calculus and include time-reversible semimartingales.

A Lyons±Zheng (LZ) process X will be essentially the sum of a forward and a backward

local martingale plus a bounded variation process. It is possible to de®ne an LZ type of

symmetric Stratonovich integral; the integrands are required to have increments which are

adapted both to the future and the past of X. This integral does not necessarily coincide

with the now classical pathwise de®ned symmetric Stratonovich integral which can be

found, for instance, in Nualart and Pardoux (1988), Nualart (1995), Zakai (1990) and Russo

and Vallois (1993). They may differ by a bracket term. We would also like to mention a

®rst approach to this LZ type of integration by Nakao (1985) and the classical reference

(Ogawa, 1984) for symmetric integration.
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This paper is organized as follows. Section 2 recalls some useful results. Sections 3 and

4 de®ne the class of LZ processes and develop a framework for stochastic calculus. We

show that this class is stable under C1-transformations and symmetric LZ integration. We

develop an ItoÃ formula for C1-transformations. Furthermore, we deal with existence and

uniqueness for stochastic differential equations driven by an LZ process. Section 5 extends

some considerations about time reversal of diffusions contained in Pardoux (1986) and

Millet et al. (1989). These will be used in Section 6 to show that Bessel processes of

arbitrary dimension are interesting examples of LZ processes.

2. Notation and preliminaries

In this paper C(R) will be the FreÂchet space of continuous functions on R endowed with the

topology of uniform convergence on compacts (u.c.p.).

We ®x a probability space (Ù, A, P). All processes will be indexed by [0, 1]. The

FreÂchet space of continuous processes equipped with the above topology is denoted by C .

We recall that a sequence of processes (Hn) 2 C converges uniformly on compacts in

probability (u.c.p.) to H if sup t2[0,1] j(Hn ÿ H)(t)j converges to zero in probability (see

Protter 1990, p. 49). Note that H will belong automatically to C .

For convenience, we follow the framework of stochastic calculus introduced in Russo and

Vallois (1993) and continued in Russo and Vallois (1995; 1996; 2000) and Wolf (1997a;

1997b; 1998).

Let X � (X (t), t 2 [0, 1]) denote a continuous stochastic process and Y � (Y (t),

t 2 [0, 1]) a process with paths in L1([0, 1]). The forward, backward and symmetric

integrals and the covariation process are de®ned by the following limits in the u.c.p. sense

whenever they exist:� t

0

Y (s)dÿX (s) :� lim
å!0�

� t

0

Y (s)
X (s� å)ÿ X (s)

å
ds, (2:1)

� t

0

Y (s)d�X (s) :� lim
å!0�

� t

0

Y (s)
X (s)ÿ X ((sÿ å) _ 0)

å
ds, (2:2)

� t

0

Y (s)d0 X (s) :� lim
å!0�

� t

0

Y (s)
X (s� å)ÿ X ((sÿ å) _ 0)

2å
ds, (2:3)

[X , Y ](t) :� lim
å!0�

Cå(X , Y )(t), (2:4)

where

Cå(X , Y )(t) :� 1

å

� t

0

(X (s� å)ÿ X (s))(Y (s� å)ÿ Y (s))ds:

For [X , X ] we write [X ] for short. All stochastic integrals and covariation processes will, of

course, be elements of C .

For a given process Z � (Z(t), t 2 [0, 1]), we set Ẑ(t) :� Z(1ÿ t), t 2 [0, 1].
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Remark 2.1. If the forward and backward integrals exist, then

(a)
� t

0
Y (s)d0 X (s) � 1

2

� t

0
Y (s)dÿX (s)� 1

2

� t

0
Y (s)d�X (s),

(b) [X , Y ](t) � � t

0
Y (s)d�X (s)ÿ � t

0Y (s)dÿX (s),

(c) [X , Y ](t) � [X̂ , Ŷ ](1)ÿ [X̂ , Ŷ ](1ÿ t):

Remark 2.2. If one of the two following integrals exists, then� t

0

Y (s)d�X (s) � ÿ
�1

1ÿ t

Ŷ (s)dÿ X̂ (s)

holds, where the integrals from a to b (a, b 2 [0, 1]) are de®ned analogously to (2.1).

Remark 2.3.

(i) If [X , X ] exists then it is always an increasing process and X is called a ®nite

quadratic variation process. If [X , X ] � 0, then X is said to be a zero quadratic

variation process (or a zero-energy process).

(ii) If X, Y are continuous processes such that [X , Y ], [X , X ], [Y , Y ] exist then [X , Y ]

has bounded (total) variation. If f, g 2 C1, then

[ f (X ), g(Y )](t) �
� t

0

f 9(X (s))g9(Y (s))d[X , Y ](s):

(iii) If A is a zero quadratic variation process and X is a ®nite quadratic variation

process, then [X , A] � 0.

(iv) A bounded variation process is a zero quadratic variation process.

(v) We have [X , V ] � 0 if V is a bounded variation process.

In this paper all ®ltrations are assumed to ful®l the usual conditions. If F � (F t) t2[0,1] is

a ®ltration, X is a (continuous) F-semimartingale and Y is F-adapted, then
� t

0
Y dÿX is the

usual ItoÃ integral. If Y is an F-semimartingale then
� t

0
Y d0 X is the classical Fisk±

Stratonovich integral and [X , Y ] the usual covariation process hX , Y i.
A semimartingale X such that X̂ is again a semimartingale is said to be a time reversible

semimartingale.

3. A class of Lyons±Zheng processes

Let F � (F t) t2[0,1], H � (Ht) t2[0,1] be two ®ltrations. A process Y � (Y (t), t 2 [0, 1]) is said

to be (F, H)-adapted if Y is F-adapted and Ŷ is H-adapted. If Y (t)ÿ Y (0) is F-adapted and

Ŷ (t)ÿ Ŷ (0) is H-adapted then we say that Y is weakly (F, H)-adapted.

A continuous weakly (F, H)-adapted process X is called an (F, H)-Lyons±Zheng process

(or simply LZ process) if there are continuous processes Mi � (Mi(t), t 2 [0, 1]), i � 1, 2,

V � (V (t), t 2 [0, 1]), such that

X � 1
2
M1 � 1

2
M2 � V (3:1)

and the following conditions are satis®ed:
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Conditions 3.1.

(i) M1 is a local F-martingale with M1(0) � 0.

(ii) M̂2 is a local H-martingale with M̂2(0) � M2(1) � 0.

(iii) V is a bounded variation process.

(iv) M1 ÿ M2 is a zero quadratic variation process.

A Lyons±Zheng process is said to be square integrable if M1, M2, V 2 L2(Ù 3 [0, 1]).

Remark 3.2.

(i) If X is an (F, H)-LZ process then [X ] � 1
2
([M1]� [M2]) holds. In fact, Condition

3.1(iv) implies [M1 ÿ M2] � 0; the bilinearity of the covariation gives

[M1, M2] � 1
2
([M1]� [M2]). In particular, X is a ®nite quadratic variation process

and we have [X ] � [M1] � [M2].

(ii) If X is an (F, H)-LZ process then X̂ is an (H, F)-LZ process.

(iii) The decomposition (3.1) is unique. Indeed, if 1
2
M1 � 1

2
M2 � V � 0 then (i) implies

[M1]� [M2] � 0. Since M1 and M̂2 are local martingales vanishing at zero, we

then have M1 � M2 � 0.

(iv) A continuous time-reversible semimartingale is an LZ process with respect to the

natural ®ltrations. In fact, if X is a continuous F-semimartingale and X̂ an H-

semimartingale, then

X � M1 � V 1, X̂ � M̂2 � V̂ 2,

where M1 is an F-local martingale with M1(0) � 0, and M̂2 is an H-local

martingale with M̂2(0) � 0. Then

X � 1
2
M1 � 1

2
M2 � V ,

where V � (V 1 � V 2)=2, is the LZ decomposition (3.1). Clearly, M1 ÿ M2 is a

bounded variation process and thus a zero quadratic variation process.

(v) An LZ process X is a Dirichlet process in the sense of FoÈllmer (1981) and Bertoin

(1986). Indeed, we have X � M1 � A, where A � 1
2
(M2 ÿ M1)� V is a zero

quadratic variation process, being the sum of two zero quadratic variation processes.

(vi) If X is a stationary symmetric Markov process associated with a Dirichlet form

(see, for example, Fukushima 1990) and u belongs to the domain of the form, then

u(X ) is an LZ process (see Lyons and Zhang 1994). In this case we have V � 0.

If X is an LZ process and, moreover, X and X̂ are F- and H-adapted, respectively, then X

is called a strong Lyons±Zheng process.

4. Calculus with respect to LZ processes

We begin this section by introducing stochastic integration with respect to an (F, H)-Lyons±

Zheng process X. First of all, if Y is a weakly (F, H)-adapted (continuous) process, then we

de®ne the LZ symmetric integral by
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� t

0

Y � dX � 1

2

� t

0

Y dÿM1 ÿ 1

2

�1

1ÿ t

Ŷ dÿM̂2 �
� t

0

Y dV : (4:1)

We observe that � t

0

Y dÿM1 � Y (0)M1(t)�
� t

0

(Y (s)ÿ Y (0))dM1(s),

so that the left-hand term is well de®ned. A similar consideration holds for
� t

0
Ŷ dÿM̂2. The

following question immediately arises: what is the relation with the pathwise symmetric,

forward and backward integrals introduced in Section 2?

We denote by P 2 (P 1) the family of weakly (F, H)-adapted continuous processes Y

ensuring the existence of [Y , M2] ([Y , M1]). If Y 2 P 2, then the forward integral of Y with

respect to X is well de®ned and gives� t

0

Y dÿX � 1
2

� t

0

Y dÿM1 ÿ 1
2

�1

1ÿ t

Ŷ dÿM̂2 �
� t

0

Y dV ÿ 1
2
[Y , M2](t):

If Y 2 P 1, then we easily see that the backward integral is well de®ned and we have� t

0

Y d�X � 1
2

� t

0

Y dÿM1 ÿ 1
2

�1

1ÿ t

Ŷ dÿM̂2 �
� t

0

Y dV � 1
2
[Y , M1](t):

Consequently, for Y 2 P 1 \ P 2, the symmetric integral of Y with respect to X exists and is

given by � t

0

Y d0 X � 1
2

� t

0

Y dÿM1 ÿ 1
2

�1

1ÿ t

Ŷ dÿM̂2 �
� t

0

Y dV � 1
4
[Y , M1 ÿ M2](t):

Comparing with (4.1) immediately yields:

Proposition 4.1. If Y 2 P 1 \ P 2, then� t

0

Y d0 X �
� t

0

Y � dX � 1
4
[Y , M1 ÿ M2](t): (4:2)

If, moreover, [Y , M1 ÿ M2] � 0, then� t

0

Y d0 X �
� t

0

Y � dX : (4:3)

Remark 4.2.

(i) Since M1 ÿ M2 is a zero quadratic variation process, by Remark 2.3(iii), a suf®cient

condition ensuring [Y , M1 ÿ M2] � 0 is the existence of [Y ]. As an example, we

mention Y � f (X ) for f 2 C1. In this case [Y , Mi], i � 1, 2, and [Y ] exist because

of Remark 2.3(ii).

(ii) If X is a time-reversible semimartingale, then, according to Remark 3.2(iv),

M1 ÿ M2 � V 2 ÿ V 1 is a bounded variation process. Thus, Remark 2.3(v) implies in

particular that (4.3) holds for every ®nite quadratic variation process Y 2 P 1 \ P 2.
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Take, for instance, Y � f (X (t), t), where X is a Brownian motion and f is

continuous (see Bouleau and Yor 1981; Russo and Vallois 1996; FoÈllmer et al. 1995).

Another situation where (4.3) holds is described in the following proposition.

Proposition 4.3. Let us suppose that X is an LZ process such that [ f (X ), Mi], i � 1, 2, exist

for every f 2 C0(R). Then � t

0

f (X )d0 X �
� t

0

f (X ) � dX

holds for every f 2 C0(R).

Proof. The maps f 7! Cå( f (X ), Mi), å. 0, i � 1, 2, are continuous linear operators from

C0(R) to C. If f 2 C1(R), Remark 4.2(i) tells us [ f (X ), M1 ÿ M2] � 0. Now the Banach±

Steinhaus theorem for FreÂchet spaces (see Dunford and Schwartz 1967, Chapter 2) yields that

f 7! [ f (X ), M1 ÿ M2]

is continuous. Thus, it must be zero since C1(R) is dense in C0(R). h

LZ processes admit an ItoÃ formula for C1-transformations. We recall that, for time-

reversible semimartingales, such a formula was established in Russo and Vallois (1996) and

mention that, in the special case of Brownian motion, a more general formula is stated in

FoÈllmer et al. (1995).

Proposition 4.4. Let X be an LZ process. Then, for every f 2 C1, we have

f (X (t)) � f (X (0))�
� t

0

f 9(X ) � dX : (4:4)

Proof. For f 2 C2(R), (4.4) holds by Proposition 2.1 of Russo and Vallois (1995). Moreover,

by de®nition, we have� t

0

g(X ) � dX � 1
2

� t

0

g(X )dM1 ÿ 1
2

�1

1ÿ t

g(X̂ )dM̂2 �
� t

0

g(X )dV

for every g 2 C0(R). Thus, by localization and Doob's inequality, it is easy to verify that

g 7! � :
0
g(X ) � dX is a continuous mapping from C0(R) to C . Therefore (4.4) follows for

every f 2 C1(R) by regularizing f and taking the limit. h

Proposition 4.5. Let Y be an (F, H)-adapted process. Then

Z(t) �
� t

0

Y � dX

admits a decomposition of Lyons±Zheng type (3.1).
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Proof. We can decompose Z into the sum

1
2
N 1(t)� 1

2
N2(t)� V 0(t),

where N1(t) � � t

0
Y dÿM1, N2(t) � ÿ � 1

t
Y d�M2 and V 0(t) � � t

0
Y dV � 1

2

� 1

0
Y d�M2. We

observe that

N̂ 2(t) � ÿ
�1

1ÿ t

Y d�M2 �
� t

0

Ŷ dÿM̂2:

h

The decomposition in the above proposition satis®es Conditions 3.1(i)±(iii). In the

following situation we also know that Condition 3.1(iv) holds.

Proposition 4.6. Let X be a strong LZ process and g 2 C1. Then Z � g(X ) is again a strong

LZ process.

Proof. By the ItoÃ formula, we have Z(t) � g(X (0))� � t

0
g9(X ) � dX so that Z admits an LZ

decomposition according to Proposition 4.5.

On the other hand, Z is easily seen to be a Dirichlet process with martingale part N1 �� :
0
g9(X )dM1. Indeed, set Q :� Z ÿ N 1. Then, by bilinearity, we have

[Q] � [g(X )]� [N 1]ÿ 2[g(X ), N 1]:

By Remark 2.3(ii), we know that

[g(X )](t) �
� t

0

g9(X (s))2 d[X ](s),

[g(X ), N 1](t) �
� t

0

g9(X (s))d[X , N 1](s) �
� t

0

g9(X (s))2 d[X , M1](s),

[N 1](t) �
� t

0

g9(X (s))2 d[M1](s):

Because of [X ] � [X , M1] � [M1], we obtain [Q] � 0. Since Q � 1
2
(N2 ÿ N 1)� V 0, we can

conclude that [N1 ÿ N 2] � 0. Thus, Z is an LZ process. Since it is (F, H)-adapted it is also a

strong LZ process. h

We now start studying stochastic differential equations driven by an (F, H)-LZ process.

Proposition 4.7. Let ó : [0, 1] 3 R! R be a continuous function which is Lipschitz in the

second variable x. Let X be an (F, H)-LZ process such that [Mi](t) � � t

0
Y i(s)ds, i � 1, 2, and

V (t) � � t

0
Y 3(s)ds, where Y i, i � 1, 2, 3, are bounded processes. Then there is at most one

(F, H)-adapted square-integrable process Z satisfying

Z(t) � y�
� t

0

ó (s, Z(s)) � dX (s), y 2 R, t 2 [0, 1]: (4:5)
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Proof. Let Zi, i � 1, 2, be (F, H)-adapted square-integrable continuous processes which are

solutions to (4.5). We then have

(Z1 ÿ Z2)(t) � 1
2

� t

0

dM1(s)(ó (s, Z1(s))ÿ ó (s, Z2(s)))ÿ 1
2

�1

1ÿ t

dM̂2(s)(ó (1ÿ s, Ẑ1(s))

ÿ ó (1ÿ s, Ẑ2(s)))�
� t

0

dV (s)(ó (s, Z1(s))ÿ ó (s, Z2(s))):

Therefore, if k is a Lipschitz constant for ó, we obtain

E(Z1 ÿ Z2)2(t) <
3k2

4
E

� t

0

dsY 1(s)jZ1 ÿ Z2j2(s)

� �
� 3k2

4
E

�1

1ÿ t

dsY 2(s)jẐ1 ÿ Ẑ2j2(s)

 !

� 3k2E

� t

0

dsjY 3j(s)jZ1 ÿ Z2j(s)

� �2

:

So, for some constant C, we have

E(Z1 ÿ Z2)2(t) > C

� t

0

ds E(Z1 ÿ Z2)2(s)

and the conclusion follows by Gronwall's lemma. h

If ó is autonomous (i.e. depends only on x) then we can prove the existence of a solution

to equation (4.5).

Proposition 4.8. Let ó : R! R be a continuous function with at most linear growth and X a

strong (F, H)-LZ process with X (0) � 0. Then there exists a strong (F, H)-LZ process Z

solving the stochastic differential equation

Z(t) � y�
� t

0

ó (Z(s)) � dX (s), y 2 R, t 2 [0, 1]:

Proof. We follow the method of Doss (1977) and Sussman (1977). Using the Peano theorem,

we ®nd locally a solution of

f 9(r) � ó ( f (r)),

f (0) � y,

for every y 2 R. This solution can be extended to the real line using the linear growth and

Gronwall estimates. By the ItoÃ formula of Proposition 4.4, Z(t) � f (X (t)) solves

Z(t) � y�
� t

0

ó (Z(s)) � dX (s):

So Z is a strong LZ process in view of Proposition 4.6. h
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Remark 4.9.

(i) If ó is locally Lipschitz, another way of proving the above result on existence is to

apply the Picard method using estimates of the same type as in the proof of

Proposition 4.7.

(ii) Solutions to classical stochastic differential equations are semimartingales. However,

the LZ processes which solve equations of type (4.5) are, in general, only Dirichlet

processes and need not enjoy the semimartingale property. Indeed, in the notation of

Proposition 4.8, if we choose X to be a Brownian motion then, by CË inlar et al. (1980),

a solution Z is a semimartingale if and only if f is a difference of convex functions, or

equivalently, f 9 � ó � f has locally bounded total variation. But, if we choose a

positive continuous function ó which is not of locally bounded variation, then ó � f

cannot be of locally bounded variation either. So, in fact, there exist solutions to

stochastic differential equations of type (4.5) that are not semimartingales.

5. Time reversal of diffusions

In this section we give a slight generalization of results on time reversal of diffusion

processes obtained in Pardoux (1986) and Millet et al. (1989). Furthermore, we present a

straightforward technique for calculating the coef®cients of the time-reversed diffusion. We

will exploit these results in the next section in order to study Bessel processes as LZ

processes.

Let

X (t) � X (0)�
� t

0

ó (s, X (s))dB(s)�
� t

0

b(s, X (s))ds

be a diffusion with locally bounded coef®cients ó and b and a Brownian motion B. We

assume that, for every 0 , t < 1, the law of X (t) has a density p(t, x) with respect to

Lebesgue measure.

The following theorem gives a suf®cient condition ensuring that the time-reversed

process is again a diffusion.

Theorem 5.1. Suppose that ó and b are jointly continuous,

ó 2(s, :) 2 W 2,1
loc(R), b(s, :) 2 W 1,1

loc(R), xp(s, :) 2 W 2,1
loc (R)

and

( pó 2)(s, :) 2 W 1,1
loc(R) hold for almost every s 2 [0, 1]

and that @=@x( pó 2), @2=@x2(xp) 2 L1([0, t] 3 R), 0 , t < 1. Then the time-reversed process

X̂ is a semimartingale and satis®es the stochastic differential equation

X̂ (t) � X (1)�
� t

0

ó (1ÿ s, X̂ (s))dâ(s)�
� t

0

~b(1ÿ s, X̂ (s))ds, 0 < t < 1,
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where â is some Brownian motion on a possibly enlarged probability space and ~b(s, x) �
ÿb(s, x)� (@=@x(ó 2 p)=p)(s, x), where we set (1=p)(s, x) :� 0 if p(s, x) � 0.

In view of the applications below, we have chosen to base this theorem on the

assumption that the law of X (t) admits a density. Comparing with known results due to

Pardoux (1986) and Millet et al. (1989), we remark that we do not need a Lipschitz

condition on ó. In fact, the proof which uses methods of Pardoux (1986) suggests imposing

regularity conditions on ó 2 instead of ó. This will turn out to be important for studying

Bessel processes.

Lemma 5.2. Under the hypotheses of Theorem 5.1, we have the representation

X (t) � X (1)� M(t)�
�1

t

~b(s, X (s))ds,

where M̂ is a local martingale.

By changing t into 1ÿ t and observing

[M̂](t) � [X̂ ](t) � [X ](1)ÿ [X ](1ÿ t) �
� t

0

ó 2(1ÿ s, X̂ (s))ds,

Theorem 5.1 follows easily from Lemma 5.2 and Theorem II.7.19 of Ikeda and Watanabe

(1989).

Proof of Lemma 5.2. By a stopping argument, we may assume that X, ó and b are bounded.

Let Hs :� ó (X r; s < r < 1), 0 < s < 1. Fix 0 , u , 1. We have to show that for any t , u,

E X (t)ÿ X (u)ÿ
�u

t

~b(s, X (s))dsjH1ÿu

� �
� 0,

or equivalently, by the Markov property of X̂ ,

E X (t)ÿ X (u)ÿ
�u

t

~b(s, X (s))dsjX (u)

� �
� 0: (5:1)

This amounts to proving

E(g(X (u))(X (t)ÿ X (u))) � E g(X (u))

�u

t

~b(s, X (s))ds

� �
(5:2)

for every g 2 C1c . We observe that E(g(X (u))X (t)) � E(v(t, X (t))X (t)), where v(t, x) �
E(g(X (u))jX (t) � x).

We now choose sequences (ó n)n2N and (bn)n2N of jointly continuous functions on

R� 3 R converging pointwise to ó and b, respectively, such that, for almost every t, ó n(t, :)
and bn(t, :) belong to C1 and converge to ó (t, :) in W 2,1

loc and b(t, :) in W 1,1
loc, respectively.

By Gihman and Skorohod (1979, p. 303, Corollary 4), we then ®nd a sequence of C1,2-

functions vn(t, x) solving the Cauchy problem
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@

@ t
vn(t, x)� bn(t, x)

@

@x
vn(t, x)� 1

2
ó 2

n(t, x)
@2

@x2
vn(t, x) � 0

vn(u, x) � g(x), x 2 R, (5:3)

and satisfying vn(t, :)! v(t, :) uniformly on compacts for every t. Integrating by parts and

using the ItoÃ formula, we calculate

vn(t, X (t))X (t) � vn(u, X (u))X (u)ÿ
�u

t

vn(s, X (s))dX (s)ÿ
�u

t

X (s)dvn(s, X (s)):

ÿ
�u

t

@vn

@x
(s, X (s))ó 2(s, X (s))ds

� vn(u, X (u))X (u)ÿ
�u

t

vn(s, X (s))� X (s)
@vn

@x
(s, X (s))

� �
ó (s, X (s))dB(s)

ÿ
�u

t

vn(s, X (s))b(s, X (s))ds

ÿ
�u

t

ds X (s)
@vn

@s
(s, X (s))� X (s)

@vn

@x
(s, X (s))b(s, X (s))

�

� 1

2
X (s)

@2vn

@x2
(s, X (s))ó 2(s, X (s))

�
ÿ
�u

t

@vn

@x
(s, X (s))ó 2(s, X (s))ds:

Taking expectations and using (5.3), we obtain

E(vn(t, X (t))X (t)) � E(g(X (u))X (u))ÿ E

�u

t

vn(s, X (s))b(s, X (s))ds

� �

ÿ
�u

t

ds

�
R

dx p(s, x)x
@vn

@x
(s, x)(b(s, x)ÿ bn(s, x))� 1

2

@2vn

@x2
(s, x)(ó 2(s, x)ÿ ó 2

n(s, x))

� �

ÿ
�u

t

ds

�
R

@vn

@x
(s, x)ó 2(s, x) p(s, x)dx

E(g(X (u))X (u))ÿ E

�u

t

vn(s, X (s))b(s, X (s))ds

� �

�
�u

t

ds

�
R

dx vn(s, x)
@

@x
(xp(s, x)(b(s, x)ÿ bn(s, x)))

�

ÿ 1

2
vn(s, x)

@2

@x2
(xp(s, x)(ó 2(s, x)ÿ ó 2

n(s, x)))

�

�
�u

t

ds

�
R

dx vn(s, x)
@

@x
( p(s, x)ó 2(s, x)):
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In the limit as n!1, by hypothesis, we obtain

E(g(X (u))X (t)) � E(g(X (u))X (u))ÿ E g(X (u))

�u

t

b(s, X (s))ds

� �

� E g(X (u))

�u

t

@

@x
( pó 2)=p

� �
(s, X (s))ds

 !
:

h

We now present a technique for calculating the drift coef®cient of the time reversal of a

diffusion. This works in the following setting: let

X (t) � X (0)�
� t

0

ó (s, X (s))dB(s)�
� t

0

b(s, X (s))ds

be a diffusion with locally bounded coef®cients ó, b such that the law of X (t) admits a

density p(t, x) for every t . 0. We suppose that the time-reversed process X̂ is again a

diffusion. It then takes the form

X̂ (t) � X (1)�
� t

0

ó (1ÿ s, X̂ (s))dâ(s)�
� t

0

~b(1ÿ s, X̂ (s))ds:

By a localization argument, we may suppose b and ó to be bounded. The technique for

calculating b basically consists of evaluating the backward integral
� t

0
f (X )d�X for f 2 C1

with compact support in two different ways. First, we calculate� t

0

f (X (s))d�X (s) �
� t

0

f (X (s))dÿX (s)� [ f (X ), X ](t)

�
� t

0

f (X (s))ó (s, X (s))dB(s)

�
� t

0

f (X (s))b(s, X (s))ds�
� t

0

f 9(X (s))ó 2(s, X (s))ds: (5:4)

Then we compute� t

0

f (X (s))d�X (s) � ÿ
�1

1ÿ t

f (X̂ (s))dÿ X̂ (s)

� ÿ
�1

1ÿ t

f (X̂ (s))ó (1ÿ s, X̂ (s))dâ(s)ÿ
�1

1ÿ t

f (X̂ (s))~b(1ÿ s, X̂ (s))ds: (5:5)

Identifying the expectations of (5.4) and (5.5) yields� t

0

ds

�
R

dx p(s, x)[ f (x)b(s, x)� f 9(x)ó 2(s, x)� f (x)~b(s, x)] � 0:

Integrating by parts, we obtain
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� t

0

ds

�
R

dx f (x) p(s, x)(b� ~b)(s, x)ÿ @

@x
( pó 2)(s, x)

� �
� 0,

provided that pó 2 is absolutely continuous and its density @=@x( pó 2) is locally integrable on

[0, 1) 3 R. By a density argument, we conclude

~b(s, x) � @

@x
( pó 2)=p

� �
(s, x)ÿ b(s, x), (5:6)

where we set (1=p)(s, x) :� 0 if p(s, x) � 0.

Finally, we consider the example of square Bessel processes. Let us recall that a square

Bessel process of dimension ä > 0 starting at 0 is characterized as the unique solution to

the stochastic differential equation

X (t) � 2

� t

0

(X (s))1=2 dB(s)� ät, (5:7)

where B is a Brownian motion. Since the law of X (t) has the density

p(t, x) � (2t)ÿä=2Ã(ä=2)ÿ1xä=2ÿ1 exp(ÿx=2t)

(see Revuz and Yor 1994, Section XI.1), we obtain by the above arguments that the time-

reversed process X̂ is a solution to the stochastic differential equation

X̂ (t) � X (1)� 2

� t

0

(X̂ (s))1=2 dâ(s)ÿ 8

� t

0

X̂ (s)

1ÿ s
ds� ät: (5:8)

6. Example: Bessel processes of arbitrary dimension

For ä > 1, the Bessel process is a semimartingale and can be characterized as a solution to

some stochastic differential equation. For ä, 1 it does not enjoy the semimartingale property

but remains a Dirichlet process (see, for example, Yor 1997). We prove that, for arbitrary

dimension ä. 0, a Bessel process is in fact a Lyons±Zheng process.

We ®rst aim to understand the impact of the dimension ä on the structure of the Bessel

process. We ®x Ä. 0. Using equation (5.7) and applying the ItoÃ formula, we obtain�������������������
X (t)� Ä

p
�

����
Ä
p
�
� t

0

X (s)

X (s)� Ä

� �1=2

dB(s)� ä

2

� t

0

ds

(X (s)� Ä)1=2
ÿ 1

2

� t

0

X (s)

(X (s)� Ä)3=2
ds:

(6:1)

If ä. 1, letting Ä! 0, we arrive at the stochastic differential equation describing the Bessel

process Y :� ����
X
p

:

Y (t) � B(t)� äÿ 1

2

� t

0

(Y (s))ÿ1 ds: (6:2)

The convergence is basically justi®ed by E(
� t

0
(X (s))ÿ1=2 ds) ,1.
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If ä < 1, however, we have E(
� t

0
(X (s))ÿ1=2 ds) � 1. Consequently, (6.2) no longer holds

because E(Y (t)) ,1 and E(jB(t)j) ,1. We cannot even apply the ItoÃ formula in the

general setting of Russo and Vallois (1996) to describe
����
X
p

if ä < 1 since then [Xÿ1=2, X ]

does not exist. To see this, we show that the de®ning approximations Cå(Xÿ1=2, X ) do not

exist as integrable random variables. We have

Cå(X ÿ1=2, X )(t) � 1

å

� t

0

X (s� å)ÿ1=2 X (s� å)ds

� 1

å

� t

0

X (s)ÿ1=2 X (s)dsÿ 1

å

� t

0

X (s� å)ÿ1=2 X (s)dsÿ 1

å

� t

0

X (s)ÿ1=2 X (s� å)ds:

Since the law of X (s) is absolutely continuous with respect to Lebesgue measure we have� t

0
1fX (s)�0g ds � 0 almost surely. Therefore, the ®rst two terms are ®nite. Hence, it is suf®cient

to show

E(X (s)ÿ1=2 X (s� å)) � �1: (6:3)

Using the Markov property of the square Bessel process, we calculate

E(X (s)ÿ1=2 X (s� å)) � E(X (s)ÿ1=2 X (s� å)jF s) � E(X (s)ÿ1=2E(X (s� å)jX (s)))

� E(X (s)ÿ1=2(X (s)� äå)) � E(X (s)1=2)� äåE(X (s)ÿ1=2):

The ®rst term is ®nite, the second in®nite. This establishes (6.3).

The basic dif®culty that, for ä < 1, (6.1) contains a difference of two terms converging

to �1 can be eliminated by using Stratonovich calculus:

�������������������
X (t)� Ä

p
�

����
Ä
p
� 1

2

� t

0

(X (s)� Ä)ÿ1=2 d0 X (s)

�
����
Ä
p
� 1

4

� t

0

(X (s)� Ä)ÿ1=2 dÿX (s)� 1
4

� t

0

(X (s)� Ä)ÿ1=2 d�X (s):

Using Remark 2.2 and equations (5.7) and (5.8), we obtain
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�������������������
X (t)� Ä

p
�

����
Ä
p
� 1

4

� t

0

(X (s)� Ä)ÿ1=2 dX (s)ÿ 1

4

�1

1ÿ t

(X̂ (s)� Ä)ÿ1=2 dÿ X̂ (s)

�
����
Ä
p
� 1

2

� t

0

X (s)

X (s)� Ä

� �1=2

dB(s)� ä

4

� t

0

ds

(X (s)� Ä)1=2

ÿ 1

2

�1

1ÿ t

X̂ (s)

X̂ (s)� Ä

 !1=2

dâ(s)� 2

�1

1ÿ t

X̂ (s)

(X̂ (s)� Ä)1=2(1ÿ s)
ds

ÿ ä

4

�1

1ÿ t

ds

(X̂ (s)� Ä)1=2

�
����
Ä
p
� 1

2

� t

0

X (s)

X (s)� Ä

� �1=2

dB(s)

ÿ 1

2

�1

1ÿ t

X̂ (s)

X̂ (s)� Ä

 !1=2

dâ(s)� 2

� t

0

X (s)

s(X (s)� Ä)1=2
ds,

where B and â are the driving Brownian motions in the stochastic differential equations (5.7)

and (5.8). In the limit as Ä! 0, we see that Y is the sum of a forward and backward

martingale plus a bounded variation process. In fact it is truly its Lyons±Zheng

decomposition.

Proposition 6.1. A Bessel process Y of arbitrary dimension is a Lyons±Zheng process with

LZ decomposition

Y (t) �
���������
X (t)

p
� 1

2
B(t)ÿ 1

2
(â(1)ÿ â(1ÿ t))� 2

� t

0

Y (s)

s
ds: (6:4)

Proof. Since (6.4) has already been established it only remains to verify that [B� (â(1) ÿ
â(1ÿ :))] � 0. We restrict ourselves to ä, 1, the semimartingale case being easier. By Yor

(1997, Section 10.1), we know that the canonical decomposition of Y as a Dirichlet process is

given by

Yt � Bt � äÿ 1

2
p:v:

� t

0

1

Ys

ds: (6:5)

In the part of zero quadratic variation, the principal value

p:v:

� t

0

1

Ys

ds �
�

R

xÿ11(0,1)(x)(Ls(Y )(t, s(x))ÿ Ls(Y )(t, 0))m(dx)

is de®ned using scale function s and speed measure m of Y and the local time Ls(Y ) of s(Y )

(see also Engelbert and Wolf 1998, Section 4.1 ± to make sure that we may deal with the

same B in (5.7), (6.4) and (6.5). Combining (6.4) and (6.5)), we conclude that
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Bt � â(1)ÿ â(1ÿ t) � (1ÿ ä)p:v:

� t

0

1

Ys

ds� 4

� t

0

Ys

s
ds (6:6)

has zero quadratic variation. h

Remark 6.2. Relation (6.6) sheds some light on the striking fact that the dimension ä does

not appear in the LZ decomposition (6.4). Actually, we deduce from (6.6) that

â t � B1ÿ t ÿ B1 � (1ÿ ä)p:v:

�1

1ÿ t

1

Ys

ds� 4

�1

1ÿ t

Ys

s
ds

depends on ä. Thus, the in¯uence of the dimension ä on the LZ decomposition (6.4) is

implicitly included in the Brownian motion â.
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