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A proper choice of a proposal distribution for Markov chain Monte Carlo methods, for example for

the Metropolis±Hastings algorithm, is well known to be a crucial factor for the convergence of the

algorithm. In this paper we introduce an adaptive Metropolis (AM) algorithm, where the Gaussian

proposal distribution is updated along the process using the full information cumulated so far. Due to

the adaptive nature of the process, the AM algorithm is non-Markovian, but we establish here that it

has the correct ergodic properties. We also include the results of our numerical tests, which indicate

that the AM algorithm competes well with traditional Metropolis±Hastings algorithms, and

demonstrate that the AM algorithm is easy to use in practical computation.
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1. Introduction

It is generally acknowledged that the choice of an effective proposal distribution for the

random walk Metropolis algorithm, for example, is essential in order to obtain reasonable

results by simulation in a limited amount of time. This choice concerns both the size and the

spatial orientation of the proposal distribution, which are often very dif®cult to choose well

since the target density is unknown (see Gelman et al. 1996; Gilks et al. 1995; 1998; Haario

et al. 1999; Roberts et al. 1997). A possible remedy is provided by adaptive algorithms,

which use the history of the process in order to `tune' the proposal distribution suitably. This

has previously been done (for instance) by assuming that the state space contains an atom.

The adaptation is performed only at the times of recurrence to the atom in order to preserve

the right ergodic properties (Gilks et al. 1998). The adaptation criteria are then obtained by

monitoring the acceptance rate. A related and interesting self-regenerative version of adaptive

Markov chain Monte Carlo (MCMC), based on introducing an auxiliary chain, is contained in

the recent preprint of Sahu and Zhigljavsky (1999). For other versions of adaptive MCMC

and related work, we refer to Evans (1991), Fishman (1996), Gelfand and Sahu (1994), Gilks

and Roberts (1995) and Gilks et al. (1994), together with the references therein.

We introduce here an adaptive Metropolis (AM) algorithm which adapts continuously to

the target distribution. Signi®cantly, the adaptation affects both the size and the spatial

orientation of the proposal distribution. Moreover, the new algorithm is straightforward to

implement and use in practice. The de®nition of the AM algorithm is based on the classical
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random walk Metropolis algorithm (Metropolis et al. 1953) and its modi®cation, the AP

algorithm, introduced in Haario et al. (1999). In the AP algorithm the proposal distribution

is a Gaussian distribution centred on the current state, and the covariance is calculated from

a ®xed ®nite number of previous states. In the AM algorithm the covariance of the proposal

distribution is calculated using all of the previous states. The method is easily implemented

with no extra computational cost since one may apply a simple recursion formula for the

covariances involved.

An important advantage of the AM algorithm is that it starts using the cumulating

information right at the beginning of the simulation. The rapid start of the adaptation

ensures that the search becomes more effective at an early stage of the simulation, which

diminishes the number of function evaluations needed.

To be more exact, assume that at time t the already sampled states of the AM chain are

X 0, X 1, . . . , X t, some of which may be multiple. The new proposal distribution for the

next candidate point is then a Gaussian distribution with mean at the current point Xt and

covariance given by sdR, where R is the covariance matrix determined by the spatial

distribution of the states X 0, X 1, . . . , X t 2 Rd . The scaling parameter sd depends only on

the dimension d of the vectors. This adaptation strategy forces the proposal distribution to

approach an appropriately scaled Gaussian approximation of the target distribution, which

increases the ef®ciency of the simulation. A more detailed description of the algorithm is

given in Section 2 below.

One of the dif®culties in constructing adaptive MCMC algorithms is to ensure that the

algorithm maintains the correct ergodicity properties. We observe here (see also Haario et

al. 1999) that the AP algorithm does not possess this property. Our main result, Theorem 1

below, veri®es that the AM process does indeed have the correct ergodicity properties,

assuming that the target density is bounded from above and has a bounded support. The

AM chain is not Markovian, but we show that the asymptotic dependence between the

elements of the chain is weak enough to apply known theorems of large numbers for

mixingales ± see McLeish (1975) and (29) below for this notion. Similar results may be

proven also for variants of the algorithm, where the covariance is computed from a suitably

increasing segment of the near history.

Section 3 contains a detailed description of the AM algorithm as a stochastic process and

the theorem on the ergodicity of the AM. The proof is based on an auxiliary result that is

proven in Section 4. Finally, in Section 5 we present results from test simulations, where the

AM algorithm is compared with traditional Metropolis±Hastings algorithms (Hastings 1970)

by applying both linear and nonlinear, correlated and uncorrelated unimodal target

distributions. Our tests seem to imply that AM performs at least as well as the traditional

algorithms for which a nearly optimal proposal distribution has been given a priori.

2. Description of the algorithm

We assume that our target distribution is supported on the subset S � Rd , and that it has the

(unscaled) density ð(x) with respect to the Lebesgue measure on S. With a slight abuse of

notation, we shall also denote the target distribution by ð.
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We now explain how the AM algorithm works. Recall from Section 1 that the basic idea

is to update the proposal distribution by using the knowledge we have so far acquired about

the target distribution. Otherwise the de®nition of the algorithm is identical to the usual

Metropolis process.

Suppose, therefore, that at time t ÿ 1 we have sampled the states X 0, X1, . . . , X tÿ1,

where X 0 is the initial state. Then a candidate point Y is sampled from the (asymptotically

symmetric) proposal distribution qt(�jX 0, . . . , X tÿ1), which now may depend on the whole

history (X 0, X 1, . . . , X tÿ1). The candidate point Y is accepted with probability

á(X tÿ1, Y ) � min 1,
ð(Y )

ð(X tÿ1)

� �
,

in which case we set X t � Y , and otherwise Xt � X tÿ1. Observe that the chosen probability

for the acceptance resembles the familiar acceptance probability of the Metropolis algorithm.

However, here the choice for the acceptance probability is not based on symmetry

(reversibility) conditions since these cannot be satis®ed in our case ± the corresponding

stochastic chain is no longer Markovian. For this reason we have to study the exactness of the

simulation separately, and we do so in Section 3.

The proposal distribution qt(�jX 0, . . . , X tÿ1) employed in the AM algorithm is a

Gaussian distribution with mean at the current point X tÿ1 and covariance

Ct � Ct(X 0, . . . , X tÿ1). Note that in the simulation only jumps into S are accepted since

we assume that the target distribution vanishes outside S.

The crucial thing regarding the adaptation is how the covariance of the proposal

distribution depends on the history of the chain. In the AM algorithm this is solved by

setting Ct � sd cov(X0, . . . , X tÿ1)� sdåId after an initial period, where sd is a parameter

that depends only on dimension d and å. 0 is a constant that we may choose very small

compared to the size of S. Here Id denotes the d-dimensional identity matrix. In order to

start, we select an arbitrary, strictly positive de®nite, initial covariance C0, according to our

best prior knowledge (which may be quite poor). We select an index t0 . 0 for the length of

an initial period and de®ne

Ct � C0, t < t0,

sd cov(X 0, . . . , X tÿ1)� sdåId , t . t0:

�
(1)

The covariance Ct may be viewed as a function of t variables from Rd having values in

uniformly positive de®nite matrices.

Recall the de®nition of the empirical covariance matrix determined by points

x0, . . . , xk 2 Rd :

cov(x0, . . . , xk) � 1

k

Xk

i�0

xix
T
i ÿ (k � 1)xk xT

k

 !
, (2)

where xk � (1=(k � 1))
Pk

i�0xi and the elements xi 2 Rd are considered as column vectors.

So one obtains that in de®nition (1) for t > t0 � 1 the covariance Ct satis®es the recursion

formula
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Ct�1 � t ÿ 1

t
Ct � sd

t
(tX tÿ1 X

T

tÿ1 ÿ (t � 1)X t X
T

t � X tX
T
t � åId): (3)

This allows one to calculate Ct without too much computational cost since the mean X t also

satis®es an obvious recursion formula.

The choice for the length of the initial segment t0 . 0 is free, but the bigger it is chosen

the more slowly the effect of the adaptation is felt. In a sense the size of t0 re¯ects our

trust in the initial covariance C0. The role of the parameter å is just to ensure that Ct will

not become singular (see Remark 1 below). As a basic choice for the scaling parameter we

have adopted the value sd � (2:4)2=d from Gelman et al. (1996), where it was shown that

in a certain sense this choice optimizes the mixing properties of the Metropolis search in

the case of Gaussian targets and Gaussian proposals.

Remark 1. In our test runs the covariance Ct has not had the tendency to degenerate. This has

also been the case in our multimodal test examples. However, potential dif®culties with å � 0

(if any) are more likely to appear in the multimodal cases. In practical computations one

presumably may utilize de®nition (1) with å � 0, although the change is negligible if å has

already been chosen small enough. More importantly, we can prove the correct ergodicity

property of the algorithm only under the assumption å. 0; see Theorem 1 below.

Remark 2. In order to avoid the algorithm starting slowly it is possible to employ special

tricks. Naturally, if a priori knowledge (such as the maximum likelihood value or

approximate covariance of the target distribution) is available, it can be utilized in

choosing the initial state or the initial covariance C0. Also, in some cases it is advisable to

employ the greedy start procedure: during a short initial period one updates the proposal

using only the accepted states. Afterwards the AM is run as described above. Moreover,

during the early stage of the algorithm it is natural to require it to move at least a little. If it

has not moved enough in the course of a certain number of iterations, the proposal

distribution could be shrunk by some constant factor.

Remark 3. It is also possible to choose an integer n0 . 1 and update the covariance every

n0th step only (again using the entire history). This saves computer time when generating the

candidate points. There is again a simple recursion formula for the covariances Ct.

3. Ergodicity of the AM chain

In the AP algorithm, which was brie¯y described in Section 1, the covariance Ct was

calculated from the last H states only, where H > 2. This strategy has the undesirable

consequence of bringing non-exactness into the simulation. There are several ways to see this.

One may, for instance, study the Markov chain consisting of H-tuples of consecutive

variables of the AP chain, to obtain the limit distribution for the AP by a suitable projection

from the equilibrium distribution of this Markov chain. Simple examples in the case of ®nite

state space for an analogous model show that the limiting distribution of the AP algorithm
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differs slightly from the target distribution. Numerical calculations in the continuous case

indicate similar behaviour. An illustrating example of this phenomenon is presented in the

Appendix.

It is our aim in this section to show that the AM algorithm has the right ergodic

properties and hence provides correct simulation of the target distribution.

Let us start by recalling some basic notions of the theory of stochastic processes that are

needed later. We ®rst de®ne the set-up. Let (S, B , m) be a state space and denote by M(S)

the set of ®nite measures on (S, B ). The norm k � k on M(S) denotes the total variation

norm. Let n > 1 be a natural number. A map Kn : Sn 3 B ! [0, 1] is a generalized

transition probability on the set S if the map x 7! Kn(x; A) is B n-measurable for each

A � B , where x 2 Sn and Kn(x; �) is a probability measure on (S, B ) for each x 2 Sn. In a

natural way Kn de®nes a positive contraction from M(Sn) into M(S). A transition

probability on S corresponds to the case n � 1 in the above de®nition.

We assume that a sequence of generalized transition probabilities (Kn)1n�1 is given.

Moreover, let ì0 be a probability distribution (the initial distribution) on S. Then the

sequence (Kn) and ì0 determine uniquely the ®nite-dimensional distributions of the

discrete-time stochastic process (chain) (X n)1n�0 on S via the formula

P(X 0 2 A0, X 1 2 A1, . . . , X n 2 An) �
�

y02A0

ì0(dy0)

�
y12A1

K1(y0; dy1)

 

3

�
y22A2

K2(y0, y1; dy2) � � �
�

yn2A n

Kn(y0, y1, . . . , ynÿ1; dyn)

 !
. . .

 !!
: (4)

In fact, it is directly veri®ed that these distributions are consistent and the theorem of Ionescu

Tulcea (see Proposition V.1.1 of Neveu 1965) yields the existence of the chain (X n) on S

satisfying (4).

We shall now turn to the exact de®nition of the AM chain as a discrete-time stochastic

process. We assume that the target distribution is supported on a bounded subset S � Rd ,

so that ð(x) � 0 outside S. Thus we shall choose S to be our state space, when equipped

with the Borel ó-algebra B (S) and choosing m to be the normalized Lebesgue measure on

S. The target ð has the (unscaled) density ð(x) with respect to the Lebesgue measure on S.

We also assume that the density is bounded from above on S: for some M ,1, we have

that

ð(x) < M for x 2 S: (5)

Let C be a symmetric and strictly positive de®nite matrix on Rd and denote by NC the

density of the mean-zero Gaussian distribution on Rn with covariance C. Thus

NC(x) � 1

(2ð)n=2
�������jCjp exp ÿ 1

2
xTCÿ1x

� �
: (6)

The Gaussian proposal transition probability corresponding to the covariance C satis®es
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QC(x; A) �
�

A

NC(yÿ x) dy, (7)

where A � Rd is a Borel set and dy is the standard Lebesgue measure on Rd . It follows that

QC is m-symmetric (see Haario and Saksman 1991, De®nition 2.2): for A, B � S one has�
B

QC(x; A)m(dx) �
�

A

QC(x; B)m(dx):

We next recall the de®nition of the transition probability MC for the Metropolis process

having the target density ð(x) and the proposal distribution QC:

MC(x; A) �
�

A

NC(yÿ x) min 1,
ð(y)

ð(x)

� �
m(dy)

� ÷A(x)

�
Rd

NC(yÿ x) 1ÿmin 1,
ð(y)

ð(x)

� �� �
m(dy), (8)

for A 2 B (S), and where ÷A denotes the characteristic function of the set A. It is easily

veri®ed that MC de®nes a transition probability with state space S.

The following de®nition of the AM chain corresponds exactly to the AM algorithm

introduced in Section 2.

De®nition 1. Let S and ð be as above and let the initial covariance C0 and the constant

å. 0 be given. De®ne the functions Cn for n > 1 by formula (1). For a given initial

distribution ì0 the adaptive Metropolis (AM ) chain is a stochastic chain on S de®ned through

(4) by the sequence (Kn)1n�1 of generalized transition probabilities, where

Kn(x0, . . . , xnÿ1; A) � M C n(x0,:::,xnÿ1)(xnÿ1; A) (9)

for all n > 1, xi 2 S (0 < i < nÿ 1), and for subsets A 2 B (S).

Let us turn to the study of the ergodicity properties of the AM chain, which is more

complicated than in the case of Markov chains. In order to be able to proceed we give

some de®nitions. Recall ®rst the de®nition of the coef®cient of ergodicity (Dobrushin

1956). Let T be a transition probability on S and set

ä(T ) � supì1,ì2

kì1T ÿ ì2Tk
kì1 ÿ ì2k , (10)

where the supremum is taken over distinct probability measures ì1, ì2 on (S, B ). As usual,

ëT denotes the measure A 7! �
S T (x; A)ë(dx) and for bounded measurable functions we write

Tf (x) � � S T (x; dy) f (y) as well as ë f � � Së(dy) f (y).

Clearly 0 < ä(T ) < 1. In the case ä(T ) , 1 the mapping T is a strict contraction on

M(S) with respect to the metric de®ned by the total variation norm on M(S). From the

de®nition it easily follows that

ä(T1T2 . . . Tn) <
Yn

i�1

ä(Ti): (11)
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The condition ä(T k0 ) , 1 for some k0 > 1 is well known to be equivalent to the uniform

ergodicity (cf. Nummelin 1984, Section 6.6) of the Markov chain having transition

probability T.

For our purposes it is useful to de®ne the transition probability that is obtained from a

generalized transition probability by `freezing' the nÿ 1 ®rst variables. Hence, given a

generalized transition probability Kn (where n > 2) and a ®xed (nÿ 1)-tuple (y0, y1,

. . . , ynÿ2) 2 S nÿ1, we denote ~ynÿ2 � (y0, y1, . . . , ynÿ2) and de®ne the transition probability

K n, ~ynÿ2
by

K n, ~ynÿ2
(x; A) � Kn(y0, y1, . . . , ynÿ2, x; A) (12)

for x 2 S and A 2 B (S).

We are now ready to state and prove our main theorem. The role of the assumptions on

the target density is commented on in Remark 7 below.

Theorem 1. Let ð be the density of a target distribution supported on a bounded measurable

subset S � Rd, and assume that ð is bounded from above. Let å. 0 and let ì0 be any initial

distribution on S. De®ne the AM chain (X n) by the generalized transition probabilities (9) as

in De®nition 1. Then the AM chain simulates properly the target distribution ð: for any

bounded and measurable function f : S ! R, the equality

lim
n!1

1

n� 1
( f (X 0)� f (X1) � . . . � f (X n)) �

�
S

f (x)ð(dx):

holds almost surely.

The proof of the theorem is based on the following technical auxiliary result, whose

proof we postpone to the next section.

Theorem 2. Assume that the ®nite-dimensional distributions of the stochastic process

(Xn)1n�0 on the state space S satisfy (4), where the sequence of generalized transition

probabilities (Kn) is assumed to satisfy the following three conditions:

(i) There are a ®xed integer k0 and a constant ë 2 (0, 1) such that

ä((K n, ~ynÿ2
)k0 ) < ë, 1 for all ~ynÿ2 2 S nÿ1 and n > 2:

(ii) There are a ®xed probability measure ð on S and a constant c0 . 0 such that

kðK n, ~ynÿ2
ÿ ðk <

c0

n
for all ~ynÿ2 2 S nÿ1 and n > 2:

(iii) We have the following estimate for the operator norm

kK n, ~ynÿ2
ÿ K n�k, ~yn� kÿ2

kM(S)!M(S) < c1

k

n
,

where c1 is a ®xed positive constant, n,k > 1 and one assumes that the (n� k ÿ 1)-

tuple ~yn�kÿ2 is a direct continuation of the (nÿ 1)-tuple ~ynÿ2.

Then, if f : S ! R is bounded and measurable, then the equality
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lim
n!1

1

n� 1
( f (X0)� f (X 1) � . . . � f (Xn)) �

�
S

f (x)ð(dx): (13)

holds almost surely.

In what follows the auxiliary constants ci, i � 2, 3, . . . , depend on S, å or C0, and their

actual value is irrelevant for our purposes here.

Proof of Theorem 1. According to Theorem 2 it suf®ces to prove that the AM chain satis®es

conditions (i)±(iii). In order to check condition (i) we observe that, directly from de®nition

(1) and by the fact that S is bounded, all the covariances C � Cn(y0, . . . , ynÿ1) satisfy the

matrix inequality

0 , c2 Id < C < c3 Id : (14)

Hence the corresponding normal densities NC(� ÿ x) are uniformly bounded from below on S

for all x 2 S, and (5) and (8) together trivially yield the bound

K n, ~ynÿ2
(x; A) > c4ð(A) for all x 2 S and A � S,

with c4 . 0. This easily yields (cf. Nummelin 1984, pp. 122±123) that ä(K n, ~ynÿ2
) < 1ÿ c4,

which proves (i) with k0 � 1.

We next verify condition (iii). To that end we assume that n > 2 and observe that, for

given ~yn�kÿ2 2 S n�kÿ1, one has

kK n, ~ynÿ2
ÿ K n�k, ~yn� kÿ2

kM(S)!M(S) < 2 sup y2S,A2B (S)jK n, ~ynÿ2
(y; A)ÿ K n�k, ~yn� kÿ2

(y; A)j:
(15)

Fix y 2 S and A 2 B (S) and introduce R1 � Cn(y0, . . . , ynÿ2, y) together with R2 �
Cn�k(y0, . . . , yn�kÿ2, y). According to De®nition 1 and formula (8), we see that

jK n, ~ynÿ2
(y; A)ÿ K n�k, ~yn� kÿ2

(y; A)j � jM R1
(y; A)ÿ M R2

(y; A)j

<

�����
x2A

(NR1
ÿ NR2

)(xÿ y) min 1,
ð(x)

ð(y)

� �
m(dx)

� ÷A(x)

�
x2Rd

(N R1
ÿ NR2

)(xÿ y)

3 1ÿmin 1,
ð(x)

ð(y)

� �� �
m(dx)

����
< 2

�
Rd

jNR1
(z)ÿ NR2

(z)j dz

< 2

�
Rd

dz

�1

0

ds

���� d

ds
NR1�s(R2ÿR1)(z)

����
< c5kR1 ÿ R2k, (16)
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where at the last stage we apply (14), in order to deduce that the partial derivatives of the

density NR1�s(R2ÿR1) with respect to the components of the covariance are integrable over Rd

with bounds that depend only on å, C0 and S. Finally, it is clear from recursion formula (3)

that in general kCt ÿ Ct�1k < c6=t for t . 1. By applying this inductively and using the

uniform boundedness from above of the covariances Ct, we easily see that

kR1 ÿ R2k < c7(S, C0, å)
k

n
,

and hence the previous estimates yield (iii).

In order to check condition (ii), ®x ~ynÿ2 2 S nÿ1 and denote C� � Cnÿ1(y0, . . . ynÿ2). It

follows that kC� ÿ Cn(y0, . . . , ynÿ2, y)k < c8=n, where c8 does not depend on y 2 S. We

may therefore proceed exactly as in (15) and (16) to deduce that

kK n, ~ynÿ2
ÿ M C�kM(S)!M(S) <

c9

n
:

Since M C� is a Metropolis transition probability we have that ðM C� � ð (see e.g. Tierney

1994, p. 1705), and we obtain

kðÿ ðK n, ~ynÿ2
k � kð(M C� ÿ K n, ~ynÿ2

)k <
c9

n
,

which completes the proof of Theorem 1. h

Let us record an expected result on the behaviour of the AM chain.

Corollory 3. Under the assumptions of Theorem 1 the covariance Ct almost surely stabilizes

during the algorithm. In fact, as t!1 the covariance Ct converges to sd cov(ð)� åId,

where cov(ð) denotes the covariance of the target distribution ð.

Proof. The claim follows directly from the de®nition (1) of the covariance Ct by applying

Theorem 1 with the choices f (x) � xi and f (x) � xixj, where 1 < i, j < d. h

We conclude this section with a number of comments on the theory presented above.

Remark 4. Our decision to use Gaussian proposal distributions is based on their tested

practical applicability, even in the case of non-Gaussian targets. Gaussian proposals yield a

family of proposal distributions with a natural parametrization for size and orientation and

which are easy to compute with. However, in the de®nition of the AM chain one can easily

replace the Gaussian proposals by, for example, uniform distributions in a parallelepiped. In

this case the size and the orientation of the parallelepiped are guided in a natural manner by

the covariance Ct that is determined by (1) as above. Our proof of Theorem 1 remains

unchanged and we again obtain that the simulation is exact. The only difference is that the

constant k0 in condition (i) of Theorem 2 may now exceed 1. Naturally, here one has to add

suitable assumptions on the set A � fx : ð(x) . 0g. It is, for example, enough to assume that

A is open and connected. In this connection the estimates provided by Haario and Saksman

(1991, Theorem 6.5.(b)) are relevant.
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Similar remarks apply to modi®cations where one adapts only certain parameters or some

of the parameters are discrete.

Remark 5. It is clear that in the course of the AM algorithm one may also determine the

covariance by using only an increasing part of the near history. For example, one may

determine Cn by using only the samples X [n=2], X [n=2]�1, . . . , X n. This is easily implemented

in practice and in this case Theorem 1 yields that the simulation is exact with only minor

changes in the proof. Similar remarks apply also to the case where one updates the

covariance only every n0th step (see Remarks 3 and 8).

Remark 6. Theorem 2 can also be used to prove the correct ergodicity for certain other

variants of adaptation, as for algorithms where one suitably tunes the proposal distribution

according to the acceptance rate. However, in our speci®c practical applications it has turned

out that the tuning of the acceptance rate has yielded inferior results when compared with the

AM algorithm. A similar phenomenon is demonstrated in Figure 2 below. Moreover, in high-

dimensional cases with possible correlations between the parameters, it may be dif®cult to

tune the proposal distribution effectively basing the decision on one parameter only. This is

the case even if one uses the single-component Metropolis algorithm.

Remark 7. The proof of Theorem 1 requires that the target density has compact support and

is bounded from above. Otherwise the uniform ergodicity (condition (i) of Theorem 2) may

fail, which is important if we are to be able to control the effects of the adaptation. In the

Markovian case (for example, standard Metropolis±Hastings) uniform ergodicity is, of

course, not needed to ensure that the simulation is correct, although without it the theoretical

convergence rate may be very slow. However, the requirements above on the target density

correspond reasonably well to practical situations. We believe that one may weaken the

assumptions at the cost of more elaborate proofs. We prefer to leave this topic for future

research, since our main aim here is to introduce a new method and to demonstrate its

usefulness. In our test runs the AM algorithm has also worked successfully with (unrestricted)

Gaussian targets.

4. Proof of Theorem 2

In this section we will prove Theorem 2 by showing that a related process is a mixingale (in

the sense of McLeish 1975) that satis®es an appropriate law of large numbers. The conditions

of the theorem were tailored to apply to the AM chain on bounded subsets of Rn, but they

are stated in the language of a general state space. This is advantageous since one may apply

them in a more general situation, especially for variants of the AM where the state space

contains both discrete and continuous parts. Our proof is based on the following basic

proposition.

Proposition 4. Let the chain (X n) on the state space S and the generalized transitition

probabilities (Kn) ful®l the conditions of Theorem 2. Denote by F n � ó (X 0, X1, . . . , X n)
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the ó-algebra generated by the chain up to time n and write ë9 � ë1=k0 . Let n > 1 and

k > 2. Then for all initial distributions and for any bounded measurable function f on S, the

inequality



E( f (X n�k)jF n)ÿ
�

S

f (y)ð(dy)






1

< c(c0, c1, ë) inf
1< j<k

j2

n� k ÿ j
� ë9 j

 !
k f k1 (17)

holds.

Proof. We may clearly assume that ð f � � S f (y)ð(dy) � 0 since the general case is then

obtained by applying the proposition to the function f ÿ ð f . Let n > 1, k > 2 and note that

from the de®nition of the conditional expectation and (4) it follows that (almost surely)

E( f (X n�k)jF n)

�
�

yn�12S

K n�1(X 0, X 2, . . . , X n; dyn�1)

�
yn�22S

K n�2(X0, X 2, . . . , X n, yn�1; dyn�2)

 

� � �
�

yn� k2S

K n�k(X0, X 2, . . . , X n, yn�1, . . . , yn�kÿ1; dyn�k) f (yn�k)

 !
. . .

!
: (18)

Let us denote (X0, . . . , Xn) � ~X n. In what follows ~X n does not interfere with the

integrations and hence it may be thought as a free variable (or constant). We also introduce

the transition probability Q, where Q(y; dz) � K n�2( ~X n, y; dz). Condition (iii) yields for

arbitrary values of ~X n and yn�1, . . . , yn�kÿ1 that�����
yn� k2S

(K n�k( ~X n, yn�1, . . . , yn�kÿ1; dyn�k)ÿ K n�2( ~X n, yn�k�1; dyn�k)) f (yn�k)

����
< c1k f k1 k ÿ 2

n� 2
: (19)

This estimate enables us to write (18) in the form

E( f (X n�k)jF n) � gk( ~X n)�
�

yn�12S

K n�1( ~X n; dyn�1)

�
yn�22S

K n�2( ~X n, yn�1; dyn�2)

 

� � �
�

yn� kÿ12S

K n�kÿ1( ~X n, yn�1, . . . , yn�kÿ2; dyn�kÿ1)

 

� � �
�

yn� k2S

K n�2( ~X n, yn�kÿ1; dyn�k) f (yn�k)

 !
� � �
!!

, (20)

where gk � gk( ~X n) satis®es
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jgk( ~X n)j <
�

yn�12S

K n�1( ~X n; dyn�1)

�
yn�22S

K n�2( ~X n, yn�1; dyn�2)

 

� � �
�

yn� kÿ12S

K n�kÿ1( ~X n, yn�1, . . . , yn�kÿ2; dyn�kÿ1) f (yn�k)c1k f k1 k ÿ 2

n� 2

 !
� � �
!

< c1k f k1 k ÿ 2

n� 2
:

In the next step we iterate the procedure by replacing the generalized transition

probability K n�kÿ1( ~X n, yn�1, . . . , yn�kÿ2; dyn�kÿ1) by the transition probability Q in

formula (20). By continuing in this manner we obtain

E( f (X n�k)jF n) �
�

yn�12S

K n�1( ~X n; dyn�1)

�
yn�22S

Q(yn�1; dyn�2)

 

� � �
�

yn� k2S

Q(yn�kÿ1; dyn�k) f (yn�k)

 !
� � �
!

� g2( ~X n)� g3( ~X n) � � � � � gk( ~X n),

where

gj( ~X n) �
�

yn�12S

K n�1( ~X n; dyn�1)

�
yn�22S

K n�2( ~X n, yn�1; dyn�2)

 

� � �
�

yn� j2S

(K n� j( ~X n, yn�1, . . . , yn� jÿ1; dyn� j)

 

ÿ K n�2( ~X n, yn� jÿ1; dyn� j))Q
kÿ j f (yn� j)

!
� � �
!
: (21)

Recall here that Qkÿ j denotes the (k ÿ j)th iterate of the transition probability Q and we

apply the standard notation (Qkÿ j f )(x) � � S Qkÿ j(x; dy) f (y).

Since kQkÿ j f k1 < k f k1 we obtain as before from condition (iii) that

jgjj < c1

jÿ 2

n� 2
k f k1:

Summing up, we have shown that

E( f (X n�k)jF n) � ån,k �
�

yn�12S

K n�1(X 0, . . . , X n, dyn�1)Qkÿ1 f (yn�k), (22)

where ån,k � ån,k(X0, . . . , Xn) satis®es
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jån,k j <
Xk

j�2

c1

jÿ 2

n� 2
k f k1 <

c1 k2

n
k f k1: (23)

Next write [(k ÿ 1)=k0] � k9 and notice that ä(Qkÿ1) < ëk9 according to (i). By (ii) and

the de®nition of Q, we have

kðQkÿ1 ÿ ðk <
Xkÿ2

j�0

kðQ j�1 ÿ ðQ jk <
Xkÿ2

j�0

c0

n� 2
<

c0(k ÿ 1)

n� 2
,

and hence, using the assumption ð f � 0, we may estimate

kQkÿ1 f k1 � supx2S jäxQkÿ1 f j < supx2S j(äx ÿ ð)Qkÿ1 f j � jðQkÿ1 f j

< 2ëk9k f k1 � j(ðQkÿ1 ÿ ð) f j < c0(k ÿ 1)

n� 2
� 2ëk9

� �
k f k1: (24)

Combining this with (22) and (23), it follows that

kE( f (X n�k)jF n)k1 < ~c(c0, c1, ë)
k2

n
� ë[(kÿ1)=k0]

� �
k f k1, (25)

which is valid for all n, k > 2.

In order to deduce the proposition, we ®rst observe that for any index j between 1 and k

the standard properties of the conditional expectation yield that

kE( f (X n�k)jF n)k1 < kE( f (X n�k)jF n�kÿ j)k1:
Hence, by replacing n by n� k ÿ j and k by j in the estimate (25), we ®nally deduce that

kE( f (X n�k)jF n)k1 < inf
1< j<k

~c(c0, c1, ë)
j2

n� k ÿ j
� ë[( jÿ1)=k0]

 !
k f k1: (26)

The claim of the proposition follows immediately from this estimate. h

Proof of Theorem 2. From Proposition 4 we obtain, for n > 1 and k > 0, that

kE( f (X n�k)ÿ
�

S

f (y)ð(dy)jF n)k1 < ø(k), (27)

where ø(0) � ø(1) � 2k f k1, and for k > 2 we have

ø(k) � c(c0, c1, ë) inf
1< j<k

j2

k ÿ j
� ë9 j

 !
k f k1 < c9(c0, c1, f , ë)

log2 k

k
, (28)

where the last estimate is obtained by choosing j � log k=log(1=ë9) for k > k1(ë9).
At this stage the estimate (28) for the asymptotic independence, together with the

de®nition of the ó-algebra F n, makes it clear that f (Xn)ÿ E f (X n) is a mixingale in the

sense of McLeish ± see McLeish (1975) or Hall and Heyde (1980, p. 19). For the

convenience of the reader, let us recall here the de®nition of mixingales. Let (F n)1n�ÿ1 be

An adaptive Metropolis algorithm 235



an increasing sequence of sub-ó-algebras on a probability space. A sequence (Yn)1n�1 of

square-integrable random variables is a mixingale (difference) sequence if there are real

sequences (rm)1m�0 and (an)1n�1 such that rm ! 0 as m!1, and

kE(YnjF nÿm)k2 < rman and kYn ÿ E(YnjF n�m)k2 < rm�1an (29)

for all n > 1 and m > 0. In our case, where Yn � f (X n)ÿ E f (X n), we take (an) to be a

constant sequence and let F n be the trivial ó-algebra for n , 0. The right-hand side condition

in (29) is automatically satis®ed. Moreover, we may choose rk � ø(k), and it follows that

rk < C(å)kåÿ1 for every å. 0. Hence we may apply directly the well-known laws of large

numbers for mixingales in the form of Hall and Heyde (1980, Theorem 2.21, p. 41) to the

sequence f (X n)ÿ E f (Xn). The desired conclusion is obtained by observing that (27) yields

limn!1 E f (Xn) � � S f (y)ð(dy). h

Remark 8. We refer to the original article (McLeish 1975) or to the recent review article

(Davidson and de Jong 1997) for basic properties of mixingales. However, we point out that

the proof of Theorem 2 could be concluded by elementary means, without referring to the

theory of mixingales, by applying Proposition 4 to estimate the variance of the sum

Sn � (1=n)
Pn

k�1 f (Xn)ÿ � S f (y)ð(dy) and utilizing the boundedness of the function f.

Nevertheless, the reference to mixingales is useful since it is possible to weaken condition

(iii) and still obtain Theorem 2. In this manner one obtains Theorem 1 also in the case where

the covariance is calculated from a relatively slowly increasing segment of the near history

only (cf. Remark 5). For instance, this is the case if at time t this segment has length � tá,

where á 2 (1
2
, 1).

Finally, we note that in this paper we have left open the question whether the

convergence of the algorithm (as established in Theorem 1) satis®es a central limit theorem.

5. Testing AM in practice and comparison with traditional
methods

In this section we present results obtained from testing the AM algorithm numerically. From the

practical point of view, it is important to know how accurate the simulations of the target

distribution will be that one can expect to get from ®nite MCMC runs. In Haario et al. (1999) we

compared three different methods: the random walk Metropolis algorithm (M), the single-

component Metropolis algorithm (SC), and the adaptive proposal algorithm (AP) ± see Section 1

or Haario et al. (1999) for the exact de®nition and more details. Recall again that the difference

between the AP and AM algorithms was simply that in AP the covariance for the proposal

distribution was computed only from a ®xed number of previous states. Here we have done

similar tests to those in Haario et al. (1999) and included the AM algorithm in the comparison.

We have tested the AM algorithm for various dimensions up to d � 200. The algorithm

appears to work successfully. Naturally the adaptation becomes slower as the dimension

increases and becomes more sensitive to a very bad choice of the initial covariance. Here

we present the results of extensive tests in dimension d � 8. We used two restricted
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Gaussian distributions as the target distributions ± uncorrelated (ð1) and correlated (ð2) ±

and two nonlinear `banana'-shaped distributions with compact supports ± moderately

`twisted' (ð3) and strongly `twisted' (ð4). The supports of the test distributions are compact

in order to satisfy the assumptions of our theoretical result (Theorem 1).

Our test distributions are obtained by those used in Haario et al. (1999) by setting the

densities to zero outside a compact set. Hence, the density of our ®rst test distribution ð1 is

an uncorrelated Gaussian density, which is centred and has covariance diag(100, 1, . . . , 1)

and is restricted to a parallelpiped with corners at points (�35, �3:5, . . . , �3:5). In this

set-up about 99.6% of the probability mass of the unrestricted Gaussian is contained in the

parallelpiped. The correlated restricted Gaussian distribution ð2 is obtained from ð1 simply

by rotating the distribution so that the main axis corresponds to the direction (1, . . . , 1).

The twisted (and restricted) Gaussian test distributions ð3 and ð4 are similarly obtained

from ð1 by applying the same measure-preserving transformations as are used in Haario et

al. (1999, p. 381). We refer to Haario et al. (1999) for a more detailed explanation of the

test procedure ± see especially p. 382 for pictures of the corresponding unrestricted target

distributions.

The number of function evaluations varied depending on the target distribution: 20 000

for ð1 and ð2, 40 000 for ð3 and 80 000 for ð4. The starting values were sampled relatively

close to the peak values of the target densities. The burn-in period was chosen to be half of

the chain length. Each test case was run 100 times in order to retrieve statistically relevant

information. Hence, each accuracy criterion number is an average value over 100

repetitions.

We have tried to be fair in choosing the proposal distributions for the random walk

Metropolis and the single-component Metropolis algorithms. For example, in the case of the

restricted Gaussian target distributions we used for the Metropolis algorithm covariances

corresponding to the unrestricted targets and normalized them with the heuristic optimal

scaling from Gelman et al. (1996).

In Figure 1 the test results in dimension 8 are summarized in graphical form. We present

the mean and the error bars giving the standard deviations corresponding to the 68.3%

probability region. The results expressed in the ®gure indicate that the AM algorithm

simulates the target distribution most accurately in these tests. With the restricted Gaussian

target distributions the results obtained using the AM algorithm are equally as good as

those using the Metropolis algorithm with an optimal proposal distribution. Moreover, in the

case of nonlinear distributions the AM algorithm seems to be superior.

In Figure 2 we compare the performance of the AM algorithm with the Metropolis

algorithm. The proposal distribution for the Metropolis algorithm was symmetric and the

size was selected so that the acceptance rate becomes quite optimal. We used ð1 as the

target distribution. In Figure 2 the autocorrelation functions of the AM and the Metropolis

algorithm are drawn for two projections. In the direction of the largest width of the target

distribution the autocorrelation of the Metropolis algorithm indicates weaker convergence.

This example demonstrates how the tuning of the proposal distribution according to the

acceptance rate only may lead to dif®culties.

Finally, we point out that according to our tests there was no essential difference in the

performance of the AM algorithm between the restricted and unrestricted target
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distributions. Thus, it is reasonable to expect that an analogue of Theorem 1 also holds for

non-compactly supported distributions whose densities decay rapidly enough.

Appendix

We present here an illustrative two-dimensional example also considered in Haario et al.

(1999). There the target distribution was tested with the AP algorithm, where the covariance

Ct was calculated from the last 200 states ± see Section 1 or Haario et al. (1999) for the

de®nition of the AP algorithm. In the example the AP algorithm produced considerable error

in the simulation. This phenomenon underlines the importance of calculating the covariance

from an increasing segment of the history, as is done in the AM algorithm. When the AM

algorithm was applied to the same example it produced, as expected, simulation that was free

of bias. For many practical applications the error produced by the AP algorithm is, however,

ignorable (see Haario et al. 1999).

Example 1. Let us de®ne the density ð on the rectangle R � [ÿ18, 18] 3 [ÿ3, 3] � R2. Let

S � [ÿ0:5, 0:5] 3 [ÿ3, 3] and set

ð(x) � 36 if x 2 S,

1 if x 2 RnS:
�

80

75

70

65

60

55

68
.3

%
 p

ro
ba

bi
lit

y 
re

gi
on

SC
M
AP
AM
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Figure 1. Comparison of the performance of the single-component Metropolis algorithm (SC),

Metropolis algorithm (M), adaptive proposal algorithm (AP) and adaptive Metropolis algorithm (AM)

with different eight-dimensional target distributions ð1 ÿ ð4. The symbols correspond to the mean

frequency of hits in the 68.3% probability region of 100 simulations and the error bar around the

symbol corresponds to the standard deviation of the hits. The true value (68.3%) is indicated by a

horizontal line.
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(See Figure 3 for the one-dimensional projection of the density function.)

With this choice ð(S) : ð(RnS) � 36 : 35 and hence about half of the mass is

concentrated on the middle strip S. Thus an ergodic MCMC algorithm should stay for

about the same amount of time on S and on R. However, S and R are thin rectangles with

opposite orientations. This forces the AP algorithm to regularly turn the direction of the

proposal distribution. This causes notable bias in the simulation on S (see Figure 4(a),

Figure 2. Comparison of the performance of the AM algorithm (left column) and the Metropolis

algorithm with a fairly optimal acceptance rate (right column). The target distribution was ð1. On the

top line the autocorrelation function in the direction of the largest eigenvalue of target's covariance

matrix is shown. The bottom line corresponds to an orthogonal direction. The acceptance rate with the

AM algorithm was 27% and with the Metropolis algorithm 26%.
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where the difference between the true target distribution and the one simulated by AP is

presented). In fact, the relative error in the simulation on S is about 10%. There is also a

slight error in the simulation near the far ends of the rectangle R. The corresponding

unbiased results of the AM algorithm are presented in Figure 4(b).

40

30

20

10

0

D
en

si
ty

220 210 0 10 20

Figure 3. The (unscaled) one-dimensional projection of true target distribution of Example

1.

Figure 4. The difference between the real target distribution of Example 1 and the sampled

distributions. In (a) the sampling was done using the AP algorithm. The curve represents the mean

values of 100 runs with 100 000 states. In (b) the sampling method was the AM algorithm.
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