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The notion of ranked-set sampling (RSS) proposed by McIntyre provides an effective means of

achieving observational economy in certain particular situations. The use of concomitant variables

broadens the range of application of RSS. In this paper, we deal with RSS with multiple concomitant

variables and develop an adaptive RSS procedure in a general context. The particular case of multiple

linear regression estimates with RSS is treated in detail. The procedure is illustrated with a real data

set. Some simulation results are also given.
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1. Introduction

The notion of ranked-set sampling (RSS) proposed by McIntyre (1952) has in recent years

sparked an explosion of interest among statisticians; see Ross and Stokes (1999). One of the

reasons for this is the cost-effective nature of the RSS procedure and its applicability in

environmental and ecological sampling where methods providing observational economy are

especially needed. The RSS scheme can be briefly described as follows. First, n sets of

individual units, each of size k, are drawn at random from a population. Next, for each set,

the units in the set are ranked according to some criterion, without measurement of the

variable of interest, and then one and only one unit from the set with a specified rank is

measured for the variable of interest. RSS is used in situations where measurement of the

variable of interest for a sampled unit is costly or time-consuming, but the ranking of a set of

units can be easily done by some means other than measurement of the variable of interest.

The method, when applicable, reduces cost and improves efficiency.

In the original form of RSS, ranking is done by judgement with respect to the variable of

interest itself. However, the variable according to which the ranking is done does not need

to be the variable of interest. In particular, the ranking can be done according to some

easily obtainable concomitant variable or function of concomitant variables. Situations

where there are easily obtainable concomitant variables available often occur in areas such

as medical studies, quantitative genetics, social sciences and environmental studies. For

instance, as pointed out by Ross and Stokes (1999), in assessing the status of hazard waste
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sites a great deal of knowledge about the sites can often be obtained from records, photos

and physical characteristics. Or, to take another example, consider assessing the association

of certain bio-markers with smoking in lung cancer studies; many more case or control

individuals can be archived with their smoking records such as smoking history and daily

consumption than can be taken for an expensive laboratory investigation on the bio-markers.

Concomitant variables, when available, can be used for the ranking in RSS as well as for

the estimation of features of the variable of interest, especially when the variable of interest

has a linear regression relationship with the concomitant variables. Several authors have

considered the case of the existence of a single concomitant variable; see, for example,

Patil et al. (1993), Yu and Lam (1997) and Chen (2001). In practical problems, however,

the variable of interest is usually correlated with several concomitant variables. In this

paper, we develop an adaptive RSS procedure to cope with multiple concomitant variables.

The procedure can be applied whether or not the relationship between the variable of

interest and the concomitant variables is linear. In the next section, we discuss ranking

criteria and describe the adaptive RSS procedure. Some simulation results are also presented

in the section. In Section 3, we present the adaptive RSS procedure combined with

regression-type estimates. In Section 4, we illustrate the adaptive RSS procedure with a

retrospective study of a data set obtained in the 1988 Test Population Census of Limeira in

the state of São Paulo, Brazil.

2. The best ranking criterion and the adaptive RSS procedure

Let Y denote the variable of interest and X ¼ (X1, . . . , Xp)T denote the vector of

concomitant variables. When ranking is perfect, we denote the ranked statistic with rank r by

Y(r), and otherwise by Y[r]. This convention also applies to the concomitant variables and the

related parameters.

It can be shown that, among all ranking mechanisms, the perfect ranking with respect to

Y itself is the best ranking mechanism. In practice, however, the best ranking mechanism

cannot be realized without actual measurements of Y . Since the concomitant variables are

our only resort for the ranking, it is then sensible to take a function of the concomitant

variables which has the highest correlation with Y as the ranking criterion. It is well known

that the conditional expectation E[Y jX] has the highest correlation with Y among all

functions of X and hence is the best ranking function. Henceforth, we write g(X) ¼
E[Y jX].

The conditional expectation g(X) cannot yet be readily used for ranking, since it is an

unknown function. To overcome this difficulty, we propose an adaptive RSS procedure. The

procedure is a cyclical process described as follows. At an initial cycle, the RSS is

conducted using any reasonable ranking criterion, say, a single concomitant variable.

Subsequent cycles consist of an estimation step and a sampling step. In the estimation step,

the available data are used to estimate (or update the estimate of ) g(X). In the sampling

step, the updated estimate of g(X) is used as a tentative ranking criterion and more ranked-

set samples are collected. The procedure is described in more detail in the following

algorithm:
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Initial cycle. Choose a single concomitant variable with the highest possible correlation with

Y . Denote this concomitant variable by X INI. For r ¼ 1, . . . , k, draw a random sample of k

units from the population, measure the value of X INI for each unit and rank the units

according to the orders of the X INI values, and then measure the Y value for the unit ranked

r. Denote the ranked-set sample obtained in this cycle by DATA1.

Recursive cycles. For j ¼ 2, . . . , m:

(i) Compute the estimator ĝg( j�1) of g using DATA j�1.

(ii) For r ¼ 1, . . . , k, draw a random sample of k units from the population, measure

the value of X, and compute ĝg( j�1)(X) for each unit, rank the units according to

the orders of the ĝg( j�1)(X) values, and then measure the Y value for the unit

ranked r.

(iii) Augment DATA j�1 to DATA j.

The adaptive procedure described above is especially useful and can be easily

implemented when sampling units can be archived for later investigations. Consider the

following fishery study as an example. A good understanding of the age distribution of the

fish in a fishing region is important in fishery studies. However, the process of determining

the age of a fish is quite complicated and expensive. First, one of the otoliths of the fish is

removed and cleaned; then the otolith is embedded onto a microscope slide with

thermoplastic cement and polished with wet and dry sandpaper until the mid-plane is

reached; finally, the otolith is viewed under immersion oil on a video screen attached to a

microscope and the daily rings are counted along the longitudinal axis towards the posterior

of the otolith to determine the age. The adaptive RSS procedure is particularly applicable in

this case. First, since the age of a fish is closely associated with the fish’s length and

weight, which can be easily measured, the length and weight can be taken as concomitant

variables. Second, the collected otoliths can be put into labelled plastic bags together with

the records of the measurements on length and weight for the later laboratory investigation.

For the estimation of such features of Y as the mean, variance and quantiles, the adaptive

RSS procedure is more efficient than any other RSS procedures using other ranking

functions when the sample size is large. Although there is no theoretical guarantee that this

should be true in the small-sample case, we have from simulation some evidence in favour

of the adaptive procedure even if the sample size is small.

We present some simulation results for the estimation of the population mean of Y . The

model Y ¼ g(X)þ E is considered in three examples in our simulation study, where E is a

random error with distribution N (0, � 2) and X is a random vector independent of E; g(X)

is taken as a linear function of X in the first two examples and as nonlinear in the third

example. The simulation study compares the adaptive RSS procedure with two ordinary

RSS procedures: one using g(X) as the ranking criterion and the other using a single

concomitant variable. The ranking criterion g is used to illustrate the effectiveness of the

adaptive procedure. In each of the three examples, k ¼ 5 and the three sampling procedures

are simulated 2000 times. The mean square errors of the estimates over the 2000

simulations are presented in Tables 1–3. In the tables, MSE g, MSEx and MSE ĝg denote the

mean square errors of the RSS estimates with ranking criteria g, X and ĝg, respectively.
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RE ĝg�g and RE ĝg�x are defined as MSE g=MSE ĝg and MSEx=MSE ĝg respectively, the relative

efficiencies of the adaptive RSS with respect to the other two RSS procedures. Also given

in the tables are the mean square errors of the regression estimator to be discussed in the

next section.

3. Ranked-set sampling regression estimator with multiple
concomitant variables

In this section, we consider the case where Y and X follow a linear regression model. In this

case, the concomitant variables not only can be used for ranking in RSS but also can be

incorporated into the estimation of the mean of Y . Suppose that

Table 1. Simulated mean square errors and relative efficiencies of Example 1: g(X) ¼ �2X 1

þ 2X 2 þ 2X 3 and X # N3(0, 0:75I þ 0:3511T). See text for definitions of MSE and RE terms

� m MSE g MSEX3
MSE ĝg RE ĝg� g RE ĝg�X3

MSEREG

4 0.218 0.395 0.289 0.755 1.368 0.154

1 8 0.110 0.195 0.130 0.849 1.500 0.073

16 0.055 0.089 0.057 0.963 1.574 0.036

4 0.576 0.715 0.652 0.883 1.096 0.524

2.82 8 0.289 0.374 0.320 0.903 1.170 0.264

16 0.141 0.188 0.149 0.943 1.257 0.121

4 3.491 3.536 3.480 1.003 1.016 3.522

8 8 1.600 1.734 1.645 0.973 1.054 1.636

16 0.824 0.896 0.836 0.986 1.072 0.809

Table 2. Simulated mean square errors and relative efficiencies of Example 2: g(X) ¼
�2X1 þ 2X 2 þ 2X 3 and X 1, X2, X 3 are independently and identically uniform on [�2, 2]. See

text for definitions of MSE and RE terms

� m MSE g MSEX3
MSE ĝg RE ĝg� g RE ĝg�X3

MSEREG

4 0.332 0.663 0.451 0.737 1.469 0.225

1 8 0.153 0.326 0.180 0.853 1.813 0.103

16 0.080 0.173 0.089 0.902 1.949 0.054

4 0.640 1.002 0.825 0.776 1.214 0.590

2.82 8 0.341 0.517 0.377 0.903 1.370 0.292

16 0.168 0.251 0.184 0.911 1.359 0.145

4 3.458 3.953 3.644 0.949 1.085 3.576

8 8 1.790 1.858 1.805 0.992 1.029 1.728

16 0.886 1.012 0.952 0.931 1.063 0.902
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Y ¼ Æþ �T Xþ E, (1)

where � is a vector of unknown constant coefficients, and E is a random variable with mean

zero and is independent of X. Let � denote the variance–covariance matrix of X and �Xy

denote the vector of covariances between the components of X and Y . Let � 2
E and � 2

Y denote

the variances of E and Y, respectively. It can be verified that

� ¼ ��1�Xy, (2)

� 2
E ¼ � 2

Y � �T
Xy�

�1�Xy: (3)

Suppose that the sampling is implemented in m cycles. In a typical cycle i, for r ¼ 1, . . . , k,

a simple random sample of size k with latent values (Y1ri, X1ri), . . . , (Ykri, Xkri) is drawn

from the population. The values of the Xs are all measured. The k sampled units are ranked

according to some function of X. Then the Y value of the unit with rank r is measured. The

X and Y values of the unit with rank r are denoted by X[r]i and Y[r]i, respectively. At the

completion of the sampling, we have a data set which is represented as

(Y[1]i, X[1]i, X11i, . . . , Xk1i), . . . , (Y[k]i, X[k]i, X1ki, . . . , Xkki), i ¼ 1, . . . , m: (4)

(i) The regression estimator. Let

XRSS ¼
1

mk

Xk

r¼1

Xm

i¼1

X [r]i, YRSS ¼
1

mk

Xk

r¼1

Xm

i¼1

Y[r]i,

X T ¼
1

mk2

Xk

r¼1

Xk

s¼1

Xm

i¼1

X sri:

Let Æ̂ÆRSS and �̂�RSS denote, respectively, the least-squares estimates of Æ and � based on the

ranked-set data, i.e.,

Table 3. Simulated mean square errors and relative efficiencies of Example 3: g(X ) ¼ 2 sin(X )þ
3 cos(X ), X is uniform on [0, 2�]. See text for definitions of MSE and RE terms

� m MSE g MSEX MSE ĝg RE ĝg� g RE ĝg�x

4 0.152 0.316 0.197 0.774 1.607

1 8 0.095 0.222 0.117 0.812 1.905

16 0.075 0.160 0.088 0.858 1.817

4 0.339 0.504 0.396 0.856 1.273

2.82 8 0.213 0.325 0.233 0.917 1.395

16 0.167 0.250 0.185 0.906 1.355

4 1.734 1.945 1.887 0.919 1.031

8 8 1.211 1.283 1.172 1.033 1.095

16 0.777 0.931 0.890 0.873 1.046
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Æ̂ÆRSS ¼ YRSS � �̂�T
RSS X RSS, (5)

�̂�RSS ¼ XT
RSS I � 11T

mk

� �
XRSS

� ��1

XT
RSS I � 11T

mk

� �
YRSS, (6)

where

XRSS ¼ (X[1]1, . . . , X[k]1, . . . , X[1]m, . . . , X[k]m)T

YRSS ¼ (y[1]1, . . . , y[k]1, . . . , y[1]m, . . . , y[k]m)T:

The RSS regression estimator of the mean of Y is defined as

�̂�RSS�REG ¼ YRSS þ �̂�T
RSS(X T � X RSS): (7)

The variance of the RSS regression estimator can be obtained as

var( �̂�RSS�REG) ¼ � 2
E

mk
f1þ ˜RSSg þ

1

mk2
�T��, (8)

where

˜RSS ¼ E mk(XT � X RSS)T XT
RSS I � 11T

mk

� �
XRSS

� ��1

(XT � XRSS)

" #
:

If, in place of the ranked-set sample, we have a simple random sample (SRS), we will

get an SRS regression estimator. The variance of the SRS regression estimator is also given

by (8) but with ˜RSS replaced by ˜SRS, defined on the simple random sample instead of the

ranked-set sample. It can be proved that, no matter which ranking criterion is used, we

always have

˜RSS , ˜SRS:

In other words, as in the case of a single concomitant variable, the RSS regression estimator

is always more efficient than the SRS regression estimator.

(ii) The ordinary RSS estimator or the RSS regression estimator? In the case where Y

and X follow a linear regression model, one faces a choice between an ordinary RSS

estimator and an RSS regression estimator. In order to make the choice, we have to

compare their respective variances. It can be shown that

var(�̂�RSS�REG) $ � 2
�

mk
1þ 1

mk
tr��1�RSS �

p

mk2

� �
þ 1

N
�T��,

where �RSS ¼ (1=k)
Pk

r¼1�[r], �[r] denotes the covariance matrix of X[r]. Suppose that �T X

is used as the ranking criterion. Then the variance of the ordinary RSS estimator YRSS can be

obtained as

var(YRSS) ¼ 1

mk
�T�RSS�þ

1

mk
� 2
� :

If we further assume the normality of X, we have
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�RSS ¼ �� ���T�
�T��

Dk ,

where

Dk ¼ 1� 1

k

Xk

r¼1

� 2
(r),

� 2
(r) being the variance of the rth order statistic of a standard normal sample of size k.

Define R2 ¼ �T��=� 2
Y . Recall that � 2

� ¼ � 2
Y � �T

Xy�
�1�Xy ¼ � 2

Y � �T��. We then have

var(YRSS) ¼ � 2
Y

mk
R2(1� Dk)þ 1

mk
� 2
� , (9)

var( �̂�RSS�REG) ¼ � 2
Y

mk

1� R2

mk

k � 1

k
p� Dk

� �
þ 1

k
R2

� �
þ 1

mk
� 2
� :

Therefore,

var( �̂�RSS�REG) < var(YRSS), 1� R2

mk

k � 1

k
p� Dk

� �
þ 1

k
R2 < R2(1� Dk)

, R2 >
p� k=(k � 1)Dk

pþ mk � k(mk þ 1)=(k � 1)Dk

: (11)

As long as inequality (11) holds, the RSS regression estimator is more efficient than the

ordinary RSS estimator. In fact, the quantity on the right-hand side of (11) is usually small.

For example, under the normality assumption, when k ¼ 5, m ¼ 10 and p ¼ 2 the quantity is

only 0.1067. Notice that the R2 is the proportion of the variation in Y explained by X.

Therefore, generally speaking, the RSS regression estimator is more efficient than the

ordinary RSS estimator as long as the concomitant variables are reasonably related to the

variable of interest. The mean square errors of the regression estimates in the first two

examples of the previous section, denoted by MSEREG, are given in the last column of Tables

1 and 2, which can be compared with the mean square errors of the ordinary RSS estimates.

4. A retrospective application to Brazil census data

In this section, we illustrate the adaptive RSS procedure with a retrospective study of a data

set obtained in the 1988 Test Population Census of Limeira, São Paulo, Brazil. The test

census was carried out in two stages. At the first stage, a population of about 44 000

households is administered a ‘short form’ questionnaire. At the second stage, a systematic

sample of about 10% of the population size is surveyed with a ‘long form’ questionnaire. The

‘short form’ contains variables such as sex, age and education of the head of household,

ownership of house, car and colour television, the number of rooms and bathrooms, a proxy

to the monthly income of the head of household, etc. The ‘long form’ contains, in addition to

the variables in the ‘short form’, the actual monthly income of the head of household and
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other variables. The data set which is used for our illustration consists of the sample records

of the ‘long form’ for 426 heads of household. Details of the data set are described in Silva

and Skinner (1997). Here, we take these 426 records as our population and consider the

actual monthly income as the variable of interest. The following variables from among the

variables in the ‘short form’ are taken as concomitant variables: total number of bathrooms in

household, x1; years of study of head of household, x2; indicator of sex of head of household,

x3 (1 if male, 0 otherwise); an indicator variable, x4, for age of head of household whether

less than or equal to 35.

We simulated the adaptive RSS procedure 1000 times. We set k ¼ 5 and m ¼ 10, i.e., in

the adaptive procedure, the set size is 5 and the number of cycles is 10. Each simulation is

done as follows. At each cycle, five independent simple random samples of size 5 are taken

from the 426 records with replacement. Except in the initial cycle, each of these simple

random samples is ranked according to the first concomitant variables, the linear regression

function of the first and second concomitant variables, the linear regression function of the

first, second and third concomitant variables, and so on, thus generating four different

ranked-set subsamples. The coefficients of the regression functions are estimated by using

the data from previous cycles. In the initial cycle, the simple random samples are ranked

according to the first concomitant variable and all four ranked-set subsamples are taken

from the same units, differing only by the number of concomitant variables. A simple

random subsample is generated in each cycle by taking the first record from the first simple

random sample, the second record from the second simple random sample, and so on. At

the completion of the data generation, the following 13 estimators of the population mean,

whose actual value is 194.34, are computed: the mean monthly income of the simple

random sample, �̂�1; the mean monthly income of the ranked-set sample when ranking is

done using the first concomitant variable, �̂�2; the mean monthly income of the ranked-set

sample when ranking is done using the first two concomitant variables, �̂�3; the mean

monthly income of the ranked-set sample when ranking is done using the first three

concomitant variables, �̂�4; the mean monthly income of the ranked-set sample when ranking

is done using all the four concomitant variables, �̂�5; the regression estimate based on the

simple random sample using only the first concomitant variable, �̂�6; the regression estimate

based on the simple random sample using the first two concomitant variables, �̂�7; the

regression estimate based on the simple random sample using the first three concomitant

variables, �̂�8; the regression estimate based on the simple random sample using all the four

concomitant variables, �̂�9; the regression estimate based on the first ranked-set sample with

the first concomitant variable, �̂�10; the regression estimate based on the second ranked-set

sample with the first two concomitant variables, �̂�11; the regression estimate based on the

third ranked-set sample with the first three concomitant variables, �̂�12; the regression

estimate based on the fourth ranked-set sample with all the four concomitant variables, �̂�13.

The mean square error of each of these estimators is approximated by

MSEi ¼
X1000

s¼1

[�̂�i(s)� � y]2=1000:

These approximated mean square errors are given in Table 4.
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The properties of the adaptive RSS procedure discussed previously are evident in the

table. First, all the original RSS estimators are more efficient than the SRS sample mean,

and the original RSS estimators with multiple concomitant variables are more efficient than

the original RSS estimator with a single concomitant variable. Second, the regression

estimators improve the sample means, and the RSS regression estimators improve their SRS

counterparts. Third, the RSS regression estimators with multiple concomitant variables

improve the RSS regression estimator with a single concomitant variable.

An interactive programme for the implementation of the adaptive RSS procedure is

available from the author upon request.
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