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Variational methods reduce the problem of solving linear or 
nonlinear operator equations to an equivalent problem of deter­
mining the stationary values of a suitable functional. If a func­
tional can be found such that its derivative, in some sense, is the 
operator whose equation is to be solved, then the points at which 
the functional achieves its extreme values coincide with the solu­
tions of the given operator equation. The usefulness of variational 
methods is based on the fact that in general it is easier to obtain 
existence and approximation results for the stationary values of a 
functional than for the solution of operator equations. 

Following the publication of Hubert's fundamental paper Über 
das Dirichletsche Prinzip [5] and the work of Friedrichs [3], Levi 
[6], Zaremba [12], and others, the development of variational prin­
ciples and methods for partial differential and abstract equations 
became widespread and received theoretical justification in math­
ematical literature. Today there are a number of excellent books 
and monographs devoted to variational methods for solving ab­
stract and differential equations (i) A(x) = f in suitable Hilbert 
spaces when A is a densely defined symmetric operator if (i) is 
a linear equation, or A is a potential operator (i.e. its Gateaux 
derivative is symmetric) if (i) is a nonlinear equation. However, 
there does not appear to be a single book devoted exclusively to 
the variational principle concerning the solvability of equations (i) 
when A is nonsymmetric (if linear) or nonpotential (if nonlinear), 
although there is a large number of research papers dealing with 
variational approach to specific equations, scattered over various 
mathematics and physics journals and university reports, some of 
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which are not easily (if at all) accessible. The aim of Fillipov's 
book is to fill this gap and, as will be indicated below, he has ac­
complished this useful and important task very well. In fact, his 
book not only includes a very comprehensive survey of the above 
results, but it is essentially devoted to the study of a general and 
unified variational method in the solvability of abstract and differ­
ential equations (i), involving a general class of linear 5-symmetric 
and 5-positive operators A (i.e. A is symmetrizable by means 
of some auxiliary operator B ) and the corresponding class of non-
potential nonlinear operators whose Gateaux derivative A'x (with 
A'x = A if A is linear) is /^-symmetric and 5-positive. The 
study of approximate solvability of such a class of linear differen­
tial equations was initiated by Kravchuk and Krylov in the 1920s 
and the study of specific symmetrizable differential equations and 
linear transformations was later continued by many authors, in­
cluding Friedrichs, Kharazov, Lax, Lions, Marchuk, Silberstein, 
Vladimorov, and others (see the monograph for exhaustive bib­
liography in this field). The systematic study of the solvability 
of equations involving linear /^-symmetric and J?-positive oper­
ators was carried out by Martyniuk, Petryshyn, and Shalov in the 
1960s and, later on, the nonlinear case by Petryshyn [7], whose 
theory of Friedrich's type solvable extensions of densely defined 
nonlinear operators allowed the extension of the linear theory of 
5-positive definite operators to the nonlinear case. The approxi­
mate solvability of nonlinear equations involving nonpotential op­
erators A, whose Gateaux derivative A!x is /^-symmetric and 
5-positive for some suitable linear operator B, was investigated 
by Lyashko, Nashed, Petryshyn, and others. In addition to Shalov 
[9], important applications of the variational principle to the solv­
ability of linear PDE's of elliptic, hyperbolic, and parabolic type 
which are 5-symmetric and J?-positive for a suitable operator 
B were obtained in a series of papers in the 1970s by Filippov, 
Filippov-Skorokhodov, Didenko, and Tonti. 

Before giving a more precise outline of the results contained in 
this monograph, it is important to point out that besides unifying 
many methods, the monograph contains also a number of new 
results, particularly the application of a general variational method 
developed in this book to linear PDE's of elliptic, hyperbolic, and 
parabolic type for which the classical variational principle is not 
applicable. 
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Chapter I is devoted to the theoretical study of the variational 
principles in the solvability of linear equations 

(1) Au = f, 

involving linear 5-symmetric ( 2?-sym.) and 5-positive (5-p.) 
operators defined on some dense linear manifold D(A) c H, 
where H is a real Hubert space with inner product (•, •) and 
norm || • || = (•, - ) 1 / 2 . We recall that A : D(A) -> H is said to 
be i?-sym. if there exists a linear operator B with D{B) 2 D(A) 
and B(D(A)) = H such that 

(2) (Au,Bv) = (Bu,Av) Vu,veD(A); 

A is said to be i?-p. if 

(3) {Au, Bu)>c\\u\\2 VueD(A) 

and some constant c > 0. Among other results, the author uni­
fied the results of Shalov [10] and Petryshyn [8] concerning the 
Friedrichs type extension (see [4]) of the operator A in the case 
when A is, in addition, weakly closable w.r.t. B, i.e. 

(4) un-^0inH=> (Aun , 5v) -• 0 Vv € D(A) 

or A is also 5-positive definite (5-p.d.) ; i.e. 

(5) (Au,Bu)>P\\Bu\\2 VueD(A) 

and some constant /? > 0. It is shown that \(f,Bu)\ < 
Cj-(Au, Bu) Vu e D(A) iff A is 5-p.d. Moreover, if A is JS-p.d. 
and 5-sym., then A has a unique Friedrichs' extension A0 D A 
which is continuously invertible and D(AQ) consists of all elements 
in HAB realizing the minimum of the functional 

(6) Df(u) = \\u\\2
AB-2(f,B0u)9 

where B0 is the extension of B to HAB , ƒ ranges through all of 
H, and HAB is the completion of D(A) in the metric [u, v] = 
(Au, Bv), \\u\\AB = [u, u]l/2 Vw, v e D(A). Finally, the rela­
tion between the critical points of Df(u) and the weak solutions 
of (1) is investigated and a dual variational principle for (1) is 
constructed, which contains the results of Slobodyanskii [11] and 
which, among other things, could be used to provide an a posteri­
ori estimate for the error \\un - w0||, where uQ is a weak solution 
of (1) and un is its nth order approximation obtained by some 
(say, Galerkin) method. In the Comments to Chapter I the author 
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provides an excellent survey of related recent results obtained by 
various researchers. 

In Chapter II the author considers various classes of functionals 
that are not of the classical Euler-Lagrange type and studies the 
corresponding functional spaces which are determined by these 
new functionals, and which are more general than the Sobolev 
spaces. 

In 1960 it was shown by Belatoni [1] that if the quasilinear PDE 

(8) Lu = auxx + 2buxy + cuyy = G(x9u9ux9uy)9 (x,y)eQ 

(where a, b9 c9 and G are smooth functions on compact Q c 
R2) is of elliptic or hyperbolic type in Q, then there exists a 

0 2 "variational factor" /u = /u(x, y, u, ux, uy) / 0, u € C (Q), and 
a functional F0(u) in the class of Euler functionals 

(9) F(u) = / F(x ,y,u,ux, u )dxdy 
JQ 

such that the condition SF0(u) = 0 yields (8) or its equivalent 

( 8' ) fi(Lu - G) = 0. 

If the quasilinear equation (8) is of parabolic type on Q, then 
one cannot find an integration factor /i(x,y9u9ux9u) and a 
functional F of type (9) so that the vanishing of its first variation 
would yield (8) or (8 ;). Earlier, a similar result was proved by 
Copson [2] for a more general class of linear second order PDE's 
and systems of PDE's. It is shown by Filippov that this negative 
aspect could be overcome if one uses the theory of B-sym. and 
2?-p. operators studied in Chapter I. Indeed, if we want to solve 
the inverse problem of the calculus of variation for the (1), Au = 
ƒ , where A : D(A) c H —• H is 5-sym. and 5-p., then the 
functional 

(10) D[u] = (Au, Bu) - 2 ( / , Bü)9 ue D(A), 

is such that 

(11) ÔD[û] = 0&Aü = f9 ûe D{A). 

It is shown that if, for example, ( 1 ) is a linear PDE of order 2, then 
the functional (10) constructed for concrete equations of elliptic, 
hyperbolic and parabolic type will have the following form for the 
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case n-2\ 

*(u) = <&\x,y,u(x,y),ux,uy, w(£, y)dÇ, 

çy rx ry 
(12) / u(x,ri)dr], d^\ u(Ç,r])dri, 

lb la lb 

I u(£,y)dÇ9 ux{x,r\)dr\\dxdy 
la lb i 

If O = 4>(x, y, u, ux, u ) , then such Euler functional gener­
ate norms and functional Sobolev spaces. If, for example, 4> = 
4>(JC, y 9 f*udÇ, f£ udrj), then the functional (12) generate 
norms and functional spaces which are more general than Sobolev 
spaces and which require further study. This is particularly the 
case if D[u] is of the form 

(13) D[u] = ƒ F(x, u{x), Lxu, ..., LNu)dx 
JQ 

defined on some dense linear manifold in L2(Q), where L{, . . . , 
LN are suitable linear operators. The details of the study of these 
functional, the corresponding functional spaces, and their relation 
to PDE's are considered by the author. The work of Nikolskii, 
Besov and Lasorkin appears to be particularly useful in this study. 

Chapter III contains a survey of various approaches to the solv­
ability of the inverse problems of variational calculus, which do not 
admit classical solutions. Sections 12-16 are devoted to the con­
struction of "quasilinear" solutions of the inverse problems of the 
variational calculus for various classes of linear PDE's for which 
the classical variational principle fails, since the equations are not 
symmetric. Thus, given a linear PDE (l), Au = ƒ , in which the 
operator A is "nonvariational" of elliptic, hyperbolic, or parabolic 
type, the author constructs a suitable functional space and the aux­
iliary operator B (in explicit form—this is the most difficult part 
of the problem in nontrivial applications) such that A becomes 
5-sym. and J5-p. or 5-p.d. This allows the abstract theory devel­
oped in Chapter I to be applicable to (1). As an example of the 
above approach, consider the following 

Problem 1. Construct the quasiclassical solution of the inverse 
problem of variational calculus for the following boundary value 
problem for parabolic equation with the condition of periodicity 
in the time variable: 

(14) c(x, t)ut - (k(x, t)ux)x = g{x, t), (x,t)eR2, 
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(15) u(x,0) = u(x, T)9 a<x<y(0) = y(T), 

(16) kun = i//(t), (x91) e r 0 = {jc, t: x = a, 0 < t< T}, 

u(x, t) = 0, 
(17) 

(JC , 0 € Tn = {x 9t : a < x < y(t) ,0<t<T}, 
where the bounded domain Q = {x, t : a < x < y(t), 0 < t < T} 
is such that the boundary dQ is piecewise smooth. 

To apply the scheme developed in Chapter I, let A be defined 

onZ)(^) = C 2 ' 1 ( ê , r î l , r ) by 

(18) Au = {cut - (kux)x ; kun} 

and construct the auxiliary operator B in the form 

(19) 

Bv = {Rv;Rv}, 

where Rv =v{x,t)~ ƒ l/k(0, t)dO \ c(Ç, t)vA£, t)d£. 
Jy(t) JO 

It follows that (Au, Bv) = fQ(kuxvx + 1/fc /^ cwrrf̂  /^ cvtdÇ)dQ, 
where (•, •) is the inner product in L2(Q, T0) = L2(ö) x ^2(^0) 
for functions of the form f(x, t) = {g(x9 t); yt(t)}. It is shown 
that A is 2?-sym. and J?-p. and thus the weak solution of (14)-
(17) is found as the minimum of the functional 

Dm = INI^ ( f i > r i | > r ) - 2 ( / , Bu), ue Viî(Q, YnT). 

Problem 2. The author also constructs the auxiliary operator B 
for the hyperbolic equation 

(20) (k(^r,)u^ = g(^t,) 

under certain boundary conditions, and shows that the operator 
A, defined by the left-hand side of (20), is 5-sym. and B-p. The 
above problem contains, as a special case, the problems of Cauchy, 
Goursat, and Darboux. 

Problem 3. The nonclassical elliptic BVP's as well as other 
problems are also treated by the author using the method of 
Chapter I. 

Remark 1. The problem of constructing the operator B so that 
A is 5-sym. and 2?-p.d. is quite difficult, however the author 
succeeds in constructing it for general classes of PD operators A. 
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In Chapter IV, using the results of Petryshyn [7], the author 
extends the results of Chapter I to nonlinear equations 

(21) N(u) = f, 

where N : D(N) c H —• H is assumed to be nonpotential with 
D(N) = H and the Gateaux derivative N'u is continuous Vw G 
D(N). Again, the problem is to solve the inverse problem of vari­
ational calculus, i.e., find a functional F(u) defined on D(N) 
such that F(u) has derivatives of lower order than TV, F(u) 
is bounded from below on D(N), and SF(u) = 0 iff N(u) = 
0. The author solves this problem under the assumption that 
TV has a Gateaux derivative N^ for u G D(N) which is regu­
lar and there exists a linear closable operator B, with D(B) D 
D(N), B(D(N)) = H, such that 

(N'uw , Bv) = (Bw , N'uv) Vu,v,we D(N) 

and the following conditions hold: 
(i) (N'0u,Bu)>c\\u\\2 VweD(iV), 

(ii) (N'uw, Bw) > C(NQW , Bw) Vw, w e D(N), 
(iii) | ( / , Bu)\ < cf{N'0u9 Bu)l/2 Vw G D(N), ƒ e H. 
Among a number of results concerning the weak solvability of 

(21) in the space HAB, where A = JVjJ, it is shown (following 
the arguments in [7]) that under some additional conditions the 
operator N has a solvable extension NQD N such that, for each 
ƒ G H, there exists a unique strong solution w G D(N0) c i / ^ of 
N0u = f iff w0 realizes the minimum of the functional O0(w) = 
JiMM.B^dt-if.BoU). 

To summarize, the monograph by Filippov on the variational 
principles for nonpotential operators is an important contribution 
to the theory and application of variational methods in the solv­
ability of abstract and differential boundary value problems. It 
presents in a coherent manner a vast amount of technical material 
on the above subject, which thus far was scattered in periodical 
literature or technical reports. Of particular interest are the com­
mentaries, included after each chapter, which contain a discussion 
of the subject from a historical perspective. Another positive as­
pect of the book is that a number of the articles cited in the exten­
sive bibliography are not accessible in English. Hence, Filippov's 
book should be of great interest to the English speaking pure and 
applied mathematics community. 
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