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1. INTRODUCTION 

Central to Banach Space theory is the study of the classical Ba­
nach spaces c0, £p, Lp (1 < p < oo), C(K), and of their rela­
tionship with general Banach spaces. 

The space £l is of special importance in the theory of general 
Banach spaces. This is due to a phenomenon of considerable in­
terest, namely that many pathological properties of Banach spaces 
are closely related to the fact that they have subspaces close to 
£1. This is true in the "local" theory of Banach spaces (see e.g. 
Pisier's work [P] for a celebrated example) as well as in infinite 
dimensional theory, the subject of our present interest. 

Among the "elementary" spaces c0, £p, p < oo, £l is the only 
one that has a nonseparable dual. If a Banach space contains £l, 
its dual is nonseparable. (For simplicity, we say that a Banach 
space contains £ if it contains a subspace isomorphic to £l.) It 
was conjectured for a long time that the converse holds. This con­
jecture was disproved in 1974 by a deep example of R. C. James, 
the so called James tree space JT. (This space and its variations 
remain of considerable interest.) Thus it came as a surprise that 
simple criteria allow one to decide whether or not a Banach space 
contains a copy of £l. The main results in that direction were 
proven in 1974 by H. P. Rosenthal, and surely constitute one of 
the most beautiful achievements of Banach space theory. One of 
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the most important results is 

Rosenthal's £l theorem. A bounded sequence in a Banach space 
has a subsequence equivalent to the £{ basis or has a weak Cauchy 
subsequence. 

(A sequence (xn) is weak Cauchy if for all x* in X*, the 
sequence x*(xn) converges; it is equivalent to the £l basis if 
J^HZa^xJI > Z|aJ for all finite sequences an and some number 
K.) The importance of Rosenthal's results is that they provide 
very useful information on the structure of Banach spaces, accord­
ing to whether or not they contain £l. Those which do are wildly 
non reflexive; those which do not are much less so. Another ap­
peal of Rosenthal's results is that the methods behind their proofs 
make connection with questions of topology and measure theory 
that deserve to be studied in their own right; the various section of 
this review attempt to give some of the highlights of these related 
topics. Many important results (in particular in §2) have a rather 
complicated history, since various critical steps have been proved 
by different authors. A detailed account of this history would (at 
best) be of interest only to the specialist, and does not have its 
place in this review. The results will hence be mentioned only in 
what appears at present to be their final form. Also, we will give 
only the references not mentioned in van Dulst's book. 

2. FUNCTIONS OF FIRST BAIRE CLASS 

Rosenthal's original proof of his results was essentially combi­
natorial. Later on, he initiated a more topological approach, that 
turned out to be more fruitful. A basic elementary observation is 
as follows. Consider a Banach space X, and the unit ball T of its 
dual. Provided with the weak* topology, T is a compact set, and 
it is metrizable if (and only if) X is separable. The unit ball Z 
of X can be seen as a set of continuous functions on T. The unit 
ball of X** can then be seen as the pointwise closure of Z in the 
set of all functions on T. (The pointwise convergence topology is 
the coarsest that makes the evaluation ƒ —• f{t) continuous for 
each t £T.) The remarkable fact is that the linear structure plays 
no role in Rosenthal's theorem, and that this theorem boils down 
to results about sets of continuous functions. 

A sequence of functions (fn) on T is called independent if 
there exists a < P, such that, given any two disjoint finite sets 
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I, J, the set 
f]{fn<a}nf]{fn>p} 
neJ nel 

is not empty. The relevance of this notion is the fact that an in­
dependent sequence is an Il basis for the supremum norm. The 
archetype of an independent sequence is the sequence of coordi­
nate functions on T = {0, 1}N . The key property of this sequence 
is that all its cluster points for the pointwise convergence topology 
(these can be identified to ultrafilters on N ) are extremely non-
measurable, either in the topological sense, or with respect to the 
canonical measure on T (a fact going back to W. Sierpinski). The 
importance of this seemingly specific example is that it is essen­
tially generic, in the sense that any independent sequence of con­
tinuous functions on a (metrizable) compact space will mimiek its 
behavior on a certain compact subset. 

Consider the class Br(T) of functions on T, that have the 
property that for each closed subset U of T, the restriction of ƒ 
to U has at least one point of continuity. When T is metrizable, 
Br(T) coincides with the set BX(T) of first Baire class functions 
on T i.e., the pointwise limits of sequences of continuous func­
tions. The central part of Rosenthal's result is the equivalence of 
(i) to (iv) in the following result. (Part of which were obtained in 
collaboration with T. Odell.) 

Theorem 1. Consider a bounded set Z of continuous functions on 
a compact space T', and denote by Z its pointwise closure (in the 
set of all functions on T). The following are then equivalent 

(i) Z does not contain a subsequence equivalent to the unit 
basis of £l (for the supremum norm). 

(ii) Each sequence of Z has a pointwise convergent subsequence. 
(iii) Z does not contain an independent sequence. 
(iv) Each sequence of Z has a pointwise cluster point in Br[T). 
(v) ZcBr(T). 

(vi) For each Radon measure fi on T, Z consists of /a-meas-
urable functions. 

When T is metrizable, (ii) to (vi) remain equivalent under the 
assumption that T is Polish rather than compact. 

One of the meanings of this result is a strong dichotomy. 
Either Z is contained in Br{T), or it contains very pathologi­
cal functions. 
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When the separable Banach space X does not contain £ , the 
unit ball of its second dual identifies to a pointwise compact set 
of BX{T) ; this provides motivation for the study of pointwise 
compactness in BX(T). Building on previous work of Rosenthal, 
Bourgain, Fremlin and Talagrand proved that for a Polish space 
T, BX(T) is angelic for the pointwise convergence topology (that 
is, if a subset A of Bx (T) is such that each countable subset has a 
cluster point, it is relatively compact, and every t e A is the limit 
of a sequence of A ). 

Another delicate result of Bourgain-Fremlin-Talagrand is that 
the convex hull of a uniformly bounded pointwise compact set in 
BX(T) is relatively compact. More generally, consider a bounded 
function on Z x T, where Z is compact (nonmetrizable in gen­
eral) and T Polish. Assume that ƒ is continuous in the first 
variable, and of first Baire class in the second variable. Then, for 
each Radon probability /u on Z , the function ƒ f(z, t)dfi(z) is 
in BX(T). This does not stay true when BX(T) is replaced by the 
space Ba(T) of functions of Baire class at most a. The correct 
formulation in that case is to assume Z , T Polish , ƒ Borel on 
Z x T such that all the sections f(z, •) belong to Ba(T). In a 
profound study, A. Louveau [L], relying on tools from effective 
descriptive theory of Borel sets, proved (among much more) that 
for each probability fi on T, the function ff(z9 t)d/u(t) belongs 
to Ba(T). 

While studying sequences in spaces of vector valued measur­
able functions, the need arises to have a "parametrized" version 
of the equivalence of (i) to (iii). The correct formulation involves 
considering not only subsequences of a given sequence, but also 
sequences of convex combinations. Using this idea, combined 
with those underlying Theorem 1,1 could prove in particular that 
Ll(X) is weakly sequentially complete if and only if this is the 
case for X [Tl]. 

Let us now turn to some characterizations, in purely Banach 
space terms, of the separable Banach spaces not containing £l. 
The equivalence of (i) to (iv) relies on the results presented above. 
Some extra work, of more Banach space theoretical nature, is 
needed to obtain the other equivalences. 

Theorem 2. For a separable Banach space X, the following are 
equivalent 

(i) X does not contain £1. 
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(ii) Every bounded sequence in X has a weak Cauchy subse­
quence. 

(iii) Every bounded subset of X (resp. X**) is weak * sequen­
tially dense in its weak (resp. weak*) closure. 

(iv) card X** = card R. 
(v) X* contains no subspace isomorphic to tl (F) for any un­

countable r . 
(vi) C([0, 1]) is not a quotient of X. 

(vii) X* contains no subspace isomorphic to Ll[0, 1] (resp. 
C([0,1]*)). 

Finally, let us conclude this section by mentioning that much of 
Theorems 1 and 2 have been extended (or, rather, "localized") in 
[G-G-M-S]. 

3. SETS OF MEASURABLE FUNCTIONS 

Much of §2 is concerned with sets of functions that are regular 
with respect to topology. It is natural to consider similar questions, 
when topological regularity is replaced by measurability. The land­
mark result in that direction establishes a close parallel (although 
only at a rather formal level) with the equivalence of (ii) and (iv) 
in Theorem 1. 

Fremlin9s subsequence theorem. Consider a bounded sequence of 
measurable functions on [0, 1], provided with Lebesgue measure. 
Then either it has a subsequence which converges a.s., or it has a 
subsequence with no measurable cluster points. 

A function cp from a measure space (Q, Z, fi) to a Banach 
space X is called scalarly measurable if x* o q> is measurable 
whenever x* e X*. In that case, Z = {x* o q> ; x* e X*, ||x*|| < 
1} is a pointwise compact set of measurable functions. This fact 
and the parallel with the pointwise compact sets of B{(T), provide 
motivation for the study of these objects. The main problem is as 
follows. Consider a compact metric space T, a probability /u on 
T, and a set Z of continuous functions on T. When is it true 
that all the pointwise cluster points of Z are //-measurable? The 
difference with condition (vi) of Theorem 1 is that we required 
there that the cluster points be measurable for all measures v on 
T. It turns out that the techniques needed to study this ques­
tion are unrelated to those needed for Theorem 1 (and signifi­
cantly harder). The fundamental concept has been invented by 
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D. H. Fremlin. Let us say that a set Z of measurable functions 
on a probability space (Q, S, //) is stable if the following occurs. 
Given A e X, with fi(A) > 0, and a < /?, then for some n > 0, 
we have 

G"2Y({(*i> ••• >xn>yi>'~ »y„); 
3 / G Z ; Vi < n, ƒ(*,) < a, f(yt) > fi}) < (fi(A))2n. 

While grasping the meaning of this condition certainly requires 
some effort it should nonetheless be immediately apparent that it 
is of a combinatorial nature. A bounded stable set of measurable 
functions is pointwise relatively compact in the set of measurable 
functions. Let us go back to sets Z of continuous functions on 
T, that have only //-measurable cluster points. The difficulty is 
that in order to use the hypothesis, one needs tools to construct 
nonmeasurable cluster points, and that the tools available require 
some special axiom (Continuum Hypothesis (CH), or even much 
weaker consequences, does the job). Using such axioms, Fremlin 
showed that Z must be //-stable. A recent forthcoming paper of 
Fremlin and Shelah [F-S], however, constructs a model of ZFC 
where this fails. This intervention of special axioms is certainly 
a nuisance. At second thought, the situation is not so bad. The 
interesting objects are simply not the pointwise compacts of mea­
surable functions—that could conceivably be very pathological in 
some unusual models of ZFC—but the stable sets of measurable 
functions. These sets, that are studied in detail in my AMS mem­
oir (no. 307), certainly have remarkable properties. For example, 
Fremlin showed that on such a set, the identity map is continu­
ous from the pointwise convergence topology to the topology of 
convergence in measure. The nicest surprise concerning stable sets 
(which establishes beyond doubt the importance of the notion) 
is that, in the uniformly bounded case, they are exactly the sets 
on which the law of large numbers holds uniformly (in a variety 
of equivalent forms). This solves the so called Glivenko-Cantelli 
problem [T2]. 

A scalarly measurable function cp from a measure space to a 
Banach space X is called Pettis integrable if, for each measurable 
set A , there exists fi(A) e X such that x*(/i(A)) = fAx*o(pd/u for 
all x* in X*. The map A -> ji{A) is the vector measure, of which 
<p is called a Pettis derivative. Not surprisingly, the theory of Pettis 
integration is closely connected to that of pointwise compact sets 
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of measurable functions. Say now that X has the Weak Radon-
Nikodym property (WRNP) if each bounded variation X-valued 
vector measure has a Pettis derivative. This definition attempts 
to mimiek that of the RNP (where the notion of Pettis integral 
is replaced by the ordinary Bochner integral). It is however much 
less successful, and actually little can be proved unless X is a dual, 
X =Y*. In that case, X has the WRNP if and only if Y does 
not contain £l (L. Janika); this, of course, is related to condition 
(vi) of Theorem 1, although extra difficulty arise when X is not 
separable. Also closely related to this is the fact that X does not 
contain £l if and only if each weak* compact set of X* is the 
norm closed convex hull of its extreme points (Odell-Rosenthal in 
the separable case; Haydon in general). This should be compared 
to the much older result of Huff and Morris that X* has the Krein-
Milman property (KMP), that is, each norm closed convex set is 
the norm closed convex hull of its extreme points, if and only if 
it has the RNP(which, when X is separable, means that X* is 
separable). In the separable case, the use of the techniques of R. 
C. James allows one to refine this result considerably (G. Godefroy 
[G2], S. Stegall [S]). 

4. MORE GEOMETRY OF BANACH SPACES 

In a Banach space with the RNP (and in particular in a separable 
dual) each convex set has a slice (i.e. a non empty intersection with 
a half space) of arbitrarily small diameter. J. Bourgain proved that 
in the dual of a space not containing £1, for each bounded convex 
set one can find a finite convex combination of slices of arbitrarily 
small diameter. Banach spaces with this property are now called 
strongly regular. This is an interesting property, in particular in 
view of the fact, proved by W. Schachermayer, that it can be char­
acterized by the fact that all bounded operators T from Ll to 
X are such that T*(B°°) is suitably small where B°° denotes the 
unit ball of L°° . (This provides a nice analogy with the fact that 
X has the RNP if and only if r*(2?°°) is an equimeasurable set— 
in the sense of Grothendieck—for all bounded operators from L1 

to X.) We refer the reader to the memoir [G-G-M-S] for this and 
other notions of regularity. 

It is an old problem whether RNP and KMP are equivalent for 
Banach spaces. W. Schachmayer proved that this is the case for 
strongly regular Banach spaces. 
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We have detailed only topics covered by the book under review, 
but there is a sizable body of literature in geometry of Banach 
spaces that builds upon these ideas; as a particularly elegant ex­
ample, one can refer e.g. to Godefroy's work on uniqueness of 
preduals [Gl]. 

5. THE BOOK 

The topics explored in the book extend quite beyond the char­
acterizations of Banach spaces that do not contain I1, and the 
book contains more measure theory than would be needed to de­
scribe that topic from, say, the pure geometry of Banach spaces 
point of view. This is certainly the right way to bring out the sub­
ject's real flavor. The book provides a self contained account of a 
variety of rather far reaching results. It is designed to be accessi­
ble with only a general background in functional analysis , but no 
previous knowledge of the subject. Accordingly, it provides very 
readable and detailed proofs, and it focuses on the most important 
results, (thereby staying pleasantly short.) These include Fremlin's 
subsequence theorem, some material on stable sets of measurable 
functions, the proofs of Theorems 1,2, the proofs of Bourgain's 
and Schachermayer's results on strong regularity and a chapter on 
the ever fascinating James's tree space JT. Seven appendices cover 
the basis of the necessary "advanced" tools (Radon measures, lift­
ing theorem, analytic sets etc.) and greatly enhance readability for 
the nonexpert. 

My only regret concerns the part of Chapter 2 where it is proved 
that, under certain conditions, pointwise compact sets of measur­
able functions are stable. As I mentioned earlier this does require 
some special axiom. The paper [F-S] demonstrating that this is in­
deed the case was written after the book, but in any case the proof 
given in the book does use CH. This is unfortunately mentioned 
neither in the introduction of the chapter, nor in the statement 
of the results, and only in the course of one proof does one find 
stated that CH is used at this place, although it must be said that 
the notes at the end of the chapter do bring attention to this point. 
(Clearly, the author considers CH natural, and wishes it were true. 
So do I, although I would never admit it publicly.) 

Overall, however, van Dulst's book is very well written, and 
should become a standard introduction to a very attractive chapter 
of functional analysis. 
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Accessible categories: The foundations of categorical model theory, 
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1. INTRODUCTION 

It is some years since a research level book on "pure" cate­
gory theory has appeared, and perhaps that is sufficient reason 
to review it here. Category theory was invented in the 1940s by 
S. Eilenberg and S. Mac Lane and has gone through a number of 
transformations since then. At one point, it appeared to be part 
of homological algebra, while at another point, topos theory swept 
away all other concerns. It may be that the intensity with which 


