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ELLIPTIC SPACES 

YVES FÉLIX, STEPHEN HALPERIN, AND JEAN-CLAUDE THOMAS 

ABSTRACT. A simply connected CW complex of finite type is 
elliptic if it has finite L.S.-category and if its loop space homol­
ogy has polynomial growth. 

Theorem A. If X is elliptic it has the homotopy type of a finite 
Poincaré complex. 

Theorem B. If X is elliptic then H^ (CIX) is a left noetherian 
ring. 

Let Q.X denote the loop space of a nontrivial simply connected 
CW complex X. One of the first applications of the Serre spec­
tral sequence was the theorem [15] that X and Q.X could not 
both have homology concentrated in finitely many degrees. If we 
weaken these conditions slightly, and require that X have finite 
Lusternik-Schnirelmann category and that the homology of QX 
grow at most polynomially, we obtain the class of elliptic spaces, 
which we introduce here (the precise definition follows). 

In the rough analogy between spaces X and local rings R with 
residue field k, the homology of £IX corresponds to Tor^ (k, k). 
Since polynomial growth in the latter characterizes complete inter­
sections [9], we may think of elliptic spaces as analogues of local 
complete intersections. 

As we see with Theorems A and B to follow, ellipticity is a very 
severe restriction on a topological space. It is therefore somewhat 
remarkable that many of the spaces which play an important role in 
geometry are, in fact, elliptic. For example, simply connected Lie 
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groups and homogeneous spaces (in particular, spheres) are ellip­
tic. More generally, simply connected finite //-spaces are elliptic, 
and indeed so are simply connected finite complexes whose loop 
space homology algebra is commutative [4], and the //-space ana­
logues of homogeneous spaces [5]. Fibrations built out of elliptic 
spaces are elliptic; this then includes sphere bundles and principal 
bundles over elliptic manifolds. 

In Riemannian geometry, the simply connected Dupin hyper-
surfaces in Sn are elliptic [7]. Moreover all known examples of 
simply connected positively curved manifolds are elliptic, and a 
conjecture of Bott asserts that they all should be. Finally, the con­
nected sums CPn#CPn, HPn#HPn and KP2#KP2 are elliptic, 
but these are essentially the only elliptic connected sums. 

We come now to the precise definition, and to Theorems A 
and B, which are the main object of this note. In the following, 
/ /„(-) denotes singular homology with integral coefficients, p is 
an (arbitrary) prime, and R is always a subring of Q . 

Definition. A simply connected CW complex, X, is called elliptic 
(or Z-elliptic) if it satisfies the following conditions: 

(i) X has finite Lusternik-Schnirelmann category. 
(ii) Each H((X) is finitely generated. 

(iii) For each k = Zp or Q there is an integer N = iV(k) and 
a constant C = C(k) such that 

dim Hr ( ÇIX ; k) < CrN, r = 1, 2, . . . . 

More generally, for any R c Q , X is i?-elliptic if the local­
ization XR satisfies (i) and (iii) and if each Ht(XR) is a finitely 
generated /^-module. 

In the presence of conditions (i) and (ii) the loop space homol­
ogy tends to be relatively small (the elliptic case) or very large. In 
the rational case, which has been considered in some detail (eg. 
[10, 8, 11]), this is precise: either X is a rationally elliptic or else 
its rational loop space homology grows exponentially [2]. 

In this note we prove the following two theorems: 

Theorem A. If X is a simply connected and R-elliptic CW com­
plex, then XR satisfies Poincaré duality in the following sense: for 
some n 

Ht(XR) = 0, i>n, Hn(XR)*R; 
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and if œ e Hn(XR) is a generator, then 

nco: H\XR) ^ H^(XR). 

is an isomorphism. In particular, elliptic spaces have the homotopy 
type of finite Poincaré complexes. 

Recall that H^{ÇiX) is an algebra with multiplication induced 
from composition of loops. 

Theorem B. If X is simply connected and R-elliptic CW complex 
then H^(SIXR) is left (and right) noetherian. In particular, it is a 
finitely generated R-algebra. 

The proofs of Theorems A and B, which follow, depend on 
the following ingredients, some of which we announce here with 
details to appear elsewhere. 

Theorem 1 [3, Theorem B]. Suppose X is l-connected, cat X < 
oo and for some constants C and N, dim Hr(£lX\ k) < CrN, 
r = 1 , 2 , . . . , where k is a field. Then H*(X\ k) is a finite 
dimensional Poincaré duality algebra. 

Theorem 2 [12, Theorem A]. Let X be a simply connected fi­
nite CW complex. Suppose 1 jp e R for p < dim X and that 
H^(ÇIX;R) has no torsion. Then H^(QX\ R) = UL, where L is 
the primitive sub Lie algebra. 

We note that Theorem 2, which generalises the Milnor-Moore 
theorem [14], depends heavily on the work of Anick [1]. 

Theorem 3 ([13]). If X is a rationally elliptic simply connected 
finite CW complex, then H^(QX) has p-torsion for only finitely 
many primes p. 

Theorem 4 [3, 4]. If X is a finite simply connected CW complex 
such that for some C, N: dim Hr(£lX ; Zp) < rN, r = 1, 2, . . . , 
then H^(£IX ; Z ) is a finite module over a central polynomial sub-
algebra Zp\yl9 . . . ,y{\. 

Theorem 5 [6]. If X is Z ̂ -elliptic then for some m, p annihi­
lates all the torsion in HJ^IX ; Z, , ) . 

Proof of Theorem A. If X is JR-elliptic Theorem 1 shows that 
H*(X ; k) is a finite dimensional Poincaré duality algebra for any 
residue field k of R. The top dimension classes of these alge­
bras are integral, because of Poincaré duality, and so for some 
n, Ht(XR) = 0, i>n and Hn{XR) s R. 
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Let co e Hn(XR) be a generator. Then f]co: H*(XR;k) -^ 
H^(XR ; k) for each residue field of R. Hence, by the universal co­
efficient theorem, C\co: H*(XR)®k -> H^(XR)<8>k is injective, and 
hence an isomorphism. It follows that f] co: H*(XR) —> H^(XR) is 
surjective with torsion kernel. In particular it restricts to a surjec-
tion between the torsion subgroups, which have the same number 
of elements, and so it is an isomorphism there. Hence f] co is an 
isomorphism. 

Proof of Theorem B. By Theorem A, X has the i?-homotopy type 
of a finite complex and so we may assume it is one. Let R' C Q 
be the subring obtained from R by adjoining l/p to R whenever 
p < dim X or H^(QX; R) has p-torsion. 

Then Theorem 2 asserts that H^(QX\ R') = UL, where L is 
the primitive sub Lie algebra. But since X is necessarily rationally 
elliptic L <g> Q is finite dimensional [4]. Thus L is a free finitely 
generated i?'-module, and H^QX; Rf) is left noetherian, by a 
standard mild generalization of the Hubert Basis theorem. 

On the other hand, the McGibbon-Wilkerson theorem (Theo­
rem 3) implies that R' = R(l/px, l /p 2 , . . . , l/ps). Another stan­
dard argument shows that a graded JR-algebra A is left noetherian 
if each At is a finitely generated i?-module, and if for some p , 
A<g)RR(l/p) and A®RZp are both left noetherian. Thus a simple 
induction reduces us to showing H^ (QX) ® Zp is left noetherian 
for each noninvertible p e R. 

Use Theorem 4 to write H^(QX; Zp) as a finite module over 
Zp[yx, . . . , ys]. Since the Bockstein differentials are derivations, 

m 

xt = yt survives to the (m + l)st term of the Bockstein spec­
tral sequence, and so Theorem 5 implies that xt e H^(ÇIX) <g> 
Zp . Thus H^(QX) <g> Zp c H^(ÇIX\ Zp) is a finite module over 
Zp[xx, . . . , xt] and so H^(QX) <g> Zp is left noetherian. 
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