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G-ELLIPTIC SYSTEMS AND THE 
GENUS ZERO PROBLEM FOR M24 

GEOFFREY MASON 

1. INTRODUCTION 

Toward the end of the 1970s J. H. Conway and S. P. Norton 
wrote a quite unique and influential paper [3] in which they pro­
duced incontrovertible evidence, based partly on ideas of J. McKay 
and J. G. Thompson [13], that the Fischer-Griess Monster simple 
group M was intimately related to the modular function j{x) 
familiar from the theory of modular forms. Thus was so-called 
'Moonshine' brought into the world. Among other things, it was 
conjectured that there is a natural infinite-dimensional complex 
vector space V^ which carries a Z-grading into finite-dimensional 
subspaces Fö = V_x e Vx 0 V2 0 • • • such that each Vi is a CM-
module. Moreover the graded character chvt(q):=J2n>-\ dimf^tf" 
of Fö should be the Fourier expansion of j(r), namely q~l + 
196884# + 21,493,760#2 + • • • if the indeterminate q is inter­
preted as e2nix for r in the upper half-plane H. There should in 
addition be an analogous interpretation for 

trvt{g,q) := ^ t r a c e ^ s ) ^ 
n>-\ 

for each g e M; namely, corresponding to g there is a discrete 
subgroup T^ of SL2(R) of genus zero i.e., the compactified or­
bit space (f \H)* is a sphere, such that trFi(#, q) is a modu­
lar function invariant under T which generates the field of all 
such functions over C. (Briefly, trvi(g, q) is a so-called 'haupt-
modul'.) 

This conjecture is known as the genus zero problem for M and 
has recently been settled in the affirmative. The work of Frenkel-
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Lepowsky-Meurman [7] and Borcherds [1] established the exis­
tence of a V^ with the correct graded character and, equally impor­
tantly, showed that the proper setting for studying such questions 
is conformai field theory and the theory of chiral algebras. Very 
recently, Borcherds [2] has announced a solution of the remainder 
of the genus zero problem for M by indeed verifying the haupt-
modul property of trvt(g, q), but it is perhaps fair to say that the 
true meaning of this property is still something of a mystery. 

In the meantime, Norton has considerably extended the genus 
zero problem. In an appendix to [12], he suggested the possibil­
ity of attaching to each element g e M a certain complex vec­
tor space V* which is graded (by rational numbers with bounded 
denominator) into finite-dimensional CAf(5

r)-modules (CM(g) = 
{h e M\gh = {g}), so that Vf is our original space V% and 
for h € CM(g) the ^-expansion trvt(h, q) is either a constant or 
again a hauptmodul. Furthermore there is a certain 'compatibility' 
between the various trace functions afforded by the modular group 
SX2(Z)—see below for more details. 

This conjecture remains open, but it has been pointed out by 
physicists (cf. [5, 14] for example) that there is again a 'stringy' 
perspective from which to understand it: conformai field theory 
on an orbifold. Very roughly, if a finite group G acts smoothly 
on a manifold X, one considers the space of all smooth (in a 
suitable sense) maps Sl -* G\X. This decomposes into subsets 
indexed by g G G corresponding to maps f:[09l]->X such 
that f (I) = gf(0). After implementation of a suitable quanti­
zation procedure, what results is a Hilbert space Hg which en­
joys all of the properties of V^ sketched above except perhaps the 
hauptmodul property of the trace functions, which appears to be 
a relatively unusual occurrence. 

Thus this point of view leads to the tantalizing question of 
whether the Monster M acts on a suitable (24-dimensional?) man­
ifold X in such a way that the extended genus zero problem of 
Norton can be explained. Furthermore, it suggests developing a 
moonshine type theory for arbitrary finite groups. Do other of 
the so-called sporadic groups (cf. [8]) enjoy monstrous proper­
ties? The results of this announcement are a step in this direction. 
We show how, given any finite group G < SO(24n, R), there is 
attached a certain family {H } of explicitly described complex 
vector spaces, with all of the expected properties. Furthermore, 
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in at least one case, M24 < S0(24, R) where M24 is the largest 
sporadic Mathieu group [loc cit.], the extended genus zero prop­
erty holds. One of the novelties of our approach, however, is that 
the construction of the family {H } proceeds not from a group 
action on a manifold but from a quite different perspective. We 
adopt the vantage point of classical number theory and follow­
ing [11] introduce a theory of Hecke-type operators into the study 
of G-elliptic systems (see below), so that for us the modular in­
variance of the trace functions—a crucial issue in conformai field 
theory—depends on the theory of these operators. 

2. STATEMENT OF RESULTS 

For a finite group G, let P(G) = P = {(g,h) e Gx G\gh = 
hg} . If T = SL2(Z) and ( ^ ) G T , define 

(2.1) ( * ' * > ' ( c b
d)=iSah\gbhd). 

Then the map a: (g,h) »-• (g, h) • a"1 defines a left action of 
r on P . Let */# be the space of nowhere-vanishing C-valued 
functions on P, which we can naturally regard as a (multiplicative) 
right Zr-module. 

Let k: P —• Z be a T-invariant weight function and j (a, T) = 
(ex + d) the usual 1-cocycle of T associated to its left action on 
ƒ/ , where a= (a

c
b

d) eT. Then for a 1-cocycle a in Cl(T, J?) 
there is a right action of T on functions f:PxH-^C given by 

(f\\k9.«)(g,h;T) 

= (T(a;g, h)j(a, T)-k{g>h)f((g, Kfla\ ax) 

where in (2.2) we have set a(a ; g, h) = a(a)((g, h)). 

Definition. A G-elliptic system consists of the following data: 

(i) A weight function k and 1-cocycle a as above. 
(ii) For each g e G, a (rationally) graded virtual complex 

vector space 

n€Z 

with Hg a virtual CG(£)-module, q indeterminate, D 
an integer depending only on g. Moreover the following 
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are required to be satisfied: 
If (g, h) e P and f(g,h; T) := E ^ H ^ W ^ 8 i s the graded 

trace of h on H , q = elnix, then 
(iii) f(g, h ; T) is meromorphic on ƒ/ U {oc} . 
(iv) f\\k o<* = f f 0 r a 1 1 ^ T . 
(v) f{g\h\ r) = f(g\h\T) for all x e G . 

It is not hard to see that (iii) and (iv) already force f(g, h ; r) to 
be a modular form of weight k(g, /*), and a G-elliptic system is 
essentially a collection of modular forms (and their ^-expansions 
at the cusps) together with an interpretation as trace functions. A 
discussion of this can be found in [9]. Orbifolds provide exam­
ples where each H is a genuine representation space, the weight 
function k is identically zero, and each a(a\ g, h) is a root of 
unity. Norton's extended genus zero problem for the Monster is 
that such an elliptic system exists for M—together with the haupt-
modul property. 

We say that the G-elliptic system {H } is of weight zero if the 
weight function k is identically zero i.e., if each trace function 
trace(/z on H ) is a modular function of weight zero. The G-
elliptic systems we are interested in describing are of this type and 
depend only on an embedding G < SO(24d, R), d an integer. 

Let V be the underlying orthogonal space with scalars extended 
to C, and set W = V 0 V. 

Fix g e G. Using the shorthand e(x) for exp(27r/x), let 
0 < bx < b2 < • • • < br < 1 be such that e{bj) are the distinct 
eigenvalues of g in its action on V, and let V. (resp. Wj) be 
the corresponding eigenspace. We define graded CG(#)-modules 
as follows: 

r 00 

(2.3) ^ = 09^# r , / 2 

7=1 i=0 

r ex) 

(2-4) Ng = QQWjq
M' 

j=\ (=0 

and a linear (degree 1) character given by 

(2.5) kg{h) = det./T1 on ® Vj, he CG(g). 
6;>l/2 

In (2.3), * indicates that the sum runs only over indices satisfying 
i + bj> 1/2. 
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As Wx and Wx,2 have a structure of real orthogonal spaces ad­
mitting the diagonal action of CG(g), we may consider the usual 
1/2-spin modules A* for the corresponding real spin group af­
fording representations of CG(g). Similarly A is the restriction 
of the spin-module for the real spin group corresponding to Wx. 

Next, let B2(X) = X2 - X + 1/6 denote the second Bernoulli 
polynomial, and set 

(2.6) w = zEdimWèA 
7=1 

For a (graded) module M let A (M) denote the even and odd 
parts of the exterior algebra on M, that is A+(M) = (&k>0 A

2 (M), 
A"(M) = e ^ 0 A u + 1 ( M ) . 

Finally, if S = ( °{ ~0
l ) , T = ( l0 \ ) are the standard generators 

of T and h e CG(g), define 

(2.7) o{T\g,h) = e{ E ^2dimF,.-idimF, 
8 1/2 

{ bj<l/2 

(2.8) a(S\g9h) = e{ 
dim V,. 

-2 E E ^ - Ï ^ V ^ 
; i=i 

bj<\/2 

where in (2.8), e[b\ ), e(ô'. ), ... runs over the eigenvalues of h 
(with multiplicity) on V. and -1/2 < ô._ < 1/2, and K1/2> 1/2 is 
the subspace of V on which both g and h act as - 1 . 

Remark. We have (7(5; #, g)"1 = o(T\ g,h)2. For the rele­
vance of this to orbifold theory, see [4]. 

Theorem 1. The function a defined by (2.7) and (2.8) extends to 
a l-cocycle a € Cl(T9 Jt). 

Theorem 2. For g e G, set 

(2 9) H* = qB(8 ]~2B{ê){^ ® A + ( M * } e A* ® A _ ( ^ ) } 

* 
A^A(AM. 

# g' 
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Then {Hg} is an elliptic system of weight zero corresponding to the 
l-cocycle a of F given by Proposition 1. 

Remarks. (1) There is a 'denominator' of 2 in (2.9). This can be 
removed, yielding a true representation space for CG(g) if, for 
example A is the sum of a pair of isomorphic CG(g)-modules. 
This in turn holds, for example, if G fixes a nonzero vector in V ; 
in particular, this is the case in Theorem 3. 

(2) The character of Hx i.e. / ( 1 , 1, r) is a monic polynomial 
in j{x) of degree d (recall dim V = 24d). More precisely, we 
have 

(2.10) f (1, 1, T) = chartfj = T2A
d/Ad 

where A = q Yl^L\ ( 1 - Qn)2* is the discriminant and T2 is the sec­
ond Hecke operator. There is an analogous, but more complicated, 
identity for the other trace functions. 

Theorem 3. Take G = M24 < 50(24, R) and let {Hg} be as in 
Theorem 2. Then this elliptic system has the genus zero property. 
Precisely, if (g9 h) e P(M24) and f(g, h\ x) = trace(/z on H ) 
then one of the following holds: 

(a) (g, h) has noncyclic Sylow 2-subgroup and f(g, h ; t) 
= 0. 

(b) (g, h) has cyclic Sylow 2-subgroup, and ifTh is the full 
invariance group of j\g, h\ T) is SL2(R) then (F h\H)* 
is a sphere and the function field is generated by f(g, h ; T) . 

3. SKETCH OF PROOFS 

Keeping earlier notation, set 

(3-D Lg = g™A(-é<$Vjq
n+b). 

\ ;=i «=o J 

Lemma 1. Assume that G acts on V evenly i.e., for each (g, h) e 
P we have dimCv((g, h)) even. Then {L } is a (virtual) elliptic 

system with respect to a certain /? e Cl(T, J?) and weight function 
k : (g, h) H-> 1/2 dim Cv((g, h)). (A discussion of a special case is 
already contained m [10].) 

We wish to define a theory of Hecke-type operators which will 
act on {L } and produce a second elliptic system for us. This 
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entails extending (2.2) to actions of a G GL2(Z). There is a left 
action of GL2(Z) extending (2.1), namely 

(3.2) a: (g9 h) *-> (g, h)a , a = (det a)aT 

but to extend (2.2) we must introduce an index in the fashion of 
Jacobi forms (cf. [6]). Precisely, the 1-cocycle Ji of Lemma 1 
factors as yô where y e Cl(F, Jf) and ô is a twisted l-cocycle 
in the sense that 

(3.3) S(axa2 ; g, h) = ô(ax ; {g, h)a2)ô(a2 ; g, A)***1 

for ax, a2 e GL2(Z). Note that <J(a ; g, A) may well vanish, but 
not if deta = 1. Now define for ƒ : P x H —• C, 

(3.4) 

/ll*,m.M°(*> A: *) = (dcta)1/2*( ' '«j(a. *)-*<''« 
x / ( (^ , A)a' ; ax)y{a ; g, A)i(a ; g, /*)m. 

We have 

(3-5) fk9m9ytôWaP = ( / H i k . m . y . ^ l l i k . m d e t a . y , ^ 

in case either (i) det ap is odd or (ii) V is the sum of a pair of 
isomorphic CG-modules (e.g., replace V by W). Under either 
of these conditions we can develop a theory of Hecke operators. 
To some extent this is formal: for a double coset TaT of T in 
GL2{Z) define 

f\\k9m,y,âlTarK8>h'>r) 

(3.6) = ( d r t a ) * ^ 2 - 1 £ f\\k,m,y,3°i(g> A: T) 

where a. runs over representatives of r \ T a r , which is well de­
fined by (3.5). According as cases (i) or (ii) above take n odd or 
arbitrary and set 

(3-7) Tnf=J2f\\k,m,7,s[Tar] 

with the sum running over all double cosets of T in the matrices 
of determinant n in GL2(Z). Then by (3.5) we get 

(3.8) Tnfh,n,y,3"=Tnf> ^ T 

if ƒ is the trace function of the elliptic system {L } of Lemma 
1. The hard part is to now establish 
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Proposition 2. There is a G-elliptic system {E } and a function 
e: P(G) -• {roots of unity] with the following properties: 

(a) The weight function is the same as that for {Lg}. 
(b) The \-cocycle y e C(I\ «/#) associated with {E } is given 

by p' = yeyôn where ye is the l-coboundary determined 
by e. 

(c) The trace function F(g9h\r) of {E } satisfies F = 

Theorem 2 follows from the case n = 2 by taking the quo­
tient elliptic system {E }/{L } (note: the denominator never van­
ishes!) while the 1-cocycle a of Theorem 1 is just yeô. Because 
we have complete control over the various 1-cocycles, i.e. they 
are computable in terms of the action of G on V, the functional 
equation (3.8) for T2 ƒ and the analogue for ƒ itself lead to the 
proof of Theorem 3. 
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