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A CLASSIFICATION OF COHERENT STATE 
REPRESENTATIONS OF UNIMODULAR LIE GROUPS 

WOJCIECH LISIECKI 

1. INTRODUCTION 

Let G be a connected Lie group and (n, %*) a unitary represen­
tation of G on a complex Hubert space %f. Throughout we shall 
assume that (n, %?) is nontrivial in the sense that d i m ^ > 1. 
By a coherent state orbit (CS orbit for short) for (n, %?) we mean 
a complex orbit of G on the projective space P ( ^ ) (which is 
equipped with a natural structure of an (infinite-dimensional in 
general) Kaehler manifold (cf. [L])). We call (n, %*) a coherent 
state representation (CS representation for short) if (1) it admits 
a CS orbit, (2) is irreducible and (3) has (at most) discrete ker­
nel, and we call G a CS group if it possesses CS representations. 
The purpose of this note is to announce a complete classification 
of connected unimodular CS groups and their CS representations 
(Theorems 1 and 2 below). This generalizes the results of Enright-
Howe-Wallach [EHW] and Jakobsen [J] on the classification of 
unitary highest weight (or holomorphic) representations of reduc­
tive groups (which coincide with the CS representations as we have 
shown in [L]). The proofs are "geometric," the main tool being the 
recent structure theory of homogeneous Kaehler manifolds due to 
Dorfmeister and Nakajima [DN]. 

In physics, any orbit on P ( ^ ) is called a system of coher­
ent states in the sense of Perelomov (see [P] and the references 
therein). 

Of particular importance are symplectic coherent state orbits; in 
many cases such an orbit may be interpreted as the classical phase 
space of the system whose quantum phase space is P ( X ) . Such 
an embedding of the classical phase space into the quantum one 
is the starting point of Berezin's quantization (see [Bl] and [B2]; 
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see also [T] for a comparison of Berezin's quantization with the 
Kostant-Souriau geometric quantization) and the "quantization of 
states" proposed recently by Odzijewicz (see [Ol] and [02]). In 
both theories, the case of complex orbits plays a distinguished role. 
On one hand, "complex" coherent states are in a sense closest to 
the classical states [P] and on the other, we may apply in this 
case powerful techniques of complex analysis (with Bergman type 
reproducing kernels playing an essential role). 

Thus there is a strong physical motivation for studying CS rep­
resentations. 

2. BASIC PROPERTIES OF CS REPRESENTATIONS 

Here the term CS representation refers to a (n, <%*) which has 
property (1) but not necessarily (2) and (3). 

Proposition 1 [L]. Any CS orbit has a natural structure of a Hamil-
tonian G-space and the corresponding moment mapping takes it 
diffeomorphically onto an integral coadjoint orbit with Kaehler (i.e. 
positive totally complex) polarization. 

There is a natural holomorphic line bundle E over P ( ^ ) whose 
fiber at [v] = Cv is the dual [v]*. The linear dual %?* of %f 
is naturally isomorphic to the space of holomorphic sections of 
E . Given a CS orbit G • [v] corresponding to a CS representation 
(n, &), we get a natural map from %** to the space T(G- [v], L) 
of holomorphic sections of L, the restriction of E to G • [v]. 

Proposition 2. The following are equivalent. 
(i) v is a cyclic vector for (n, J?). 
(ii) The map %?* —• T(G • [v], L) is injective. 
(iii) (n, &) is irreducible. 

The implications (i) =» (ii) and (iii) =*• (i) are clear, and (ii) =*• 
(iii) can be deduced from a well-known theorem of Kobayashi [K]. 

3. THREE SPECIAL CASES 

It turns out that the case of a general unimodular group can be 
reduced to three special cases, which we shall now briefly discuss. 

3.1. Heisenberg groups. Let Hn be a (2n + l)-dimensional 
Heisenberg group (not necessarily simply connected). Identify the 
(multiplicative) group X(C) of unitary characters of the center 
C of H with an (additive) subgroup of the dual c* of the Lie 
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algebra of C. The infinite-dimensional irreducible unitary rep­
resentations of Hn are in 1-1 correspondence with the nonzero 
elements X of X(C), (/?A, ^ ) being the unique (up to equiv­
alence) representation with k as central character (or, in other 
terms, the unique representation corresponding, via Kirillov's bi-
jection, to the integral coadjoint orbit (9k determined by X). It 
is well known that any (/?A, ^ ) is a CS representation. Any of 
the CS orbits on P(«5̂ ) is mapped by its moment onto @_k. This 
establishes a 1-1 correspondence between these orbits and Kaehler 
polarizations of (9_x which, in turn, are in 1-1 correspondence 
with points of the Siegel space &n (i.e. the Hermitian symmetric 
space Sp(2/i,R)/U(/i)). 

Next we consider reductive groups. We shall say that a reductive 
group is of compact (resp. noncompact) type if its Lie algebra is so. 

3.2. Groups of compact type [KS]. Any such group is a CS group 
and any of its nontrivial representations is a CS representation. 
For any CS representation, there is exactly one CS orbit, namely 
the orbit through a highest weight line. Geometrically, these orbits 
are compact simply connected homogeneous Kaehler manifolds 
(i.e. flag manifolds). 

3.3. Groups of noncompact type [L]. Such a group is a CS group 
if and only if it is of Hermitian type (i.e. the symmetric space Sf 
associated with it is of Hermitian type). CS representations are the 
highest weight representations. Again the orbit through a highest 
weight line is the unique CS orbit for a given CS representation. 
Geometrically, it is a holomorphic fiber bundle over 2 (equipped 
with one of its invariant complex structures) with flag manifolds 
as fibers. 

4. HOMOGENEOUS KAEHLER MANIFOLDS 

Our approach to the problem of classifying CS groups is based 
on Dorfmeister-Nakajima theorem [DN] (which gives an affirma­
tive answer to a long standing conjecture of Vinberg and Gindikin). 
For our purposes, it is convenient to state it as follows. Every ho­
mogeneous Kaehler manifold X has a holomorphic double fibration 

X 
I \ 

M -> 3, 
where M is a homogeneous Kaehler manifold without flat homo­
geneous Kaehler submanifolds and the fibers of X -» M are flat 
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homogeneous Kaehler manifolds {i.e. they are of the form C"/I \ 
where T is a discrete subgroup of Cn and the Kaehler metric is 
induced by the standard Kaehler metric on Cn), 3 is a homoge­
neous bounded domain and the fibers of M —• 3 are flag man­
ifolds. Such a double fibration is unique and is preserved by all 
automorphisms of X. 

5. STRUCTURE OF A CS ORBIT 

Now suppose (n, Jf) is a CS representation of G and X = 
G • [v] c P ( ^ ) is a CS orbit such that neither its flat fibers nor 3 
reduce to points. The fact that X is a Hamiltonian G-space im­
plies that these flat fibers are isomorphic to some C* and coincide 
with the orbits of a Heisenberg group N (of dimension 2n + 1) 
which is contained in G as a normal subgroup. Let JN denote the 
moment mapping of the corresponding Hamiltonian action of N 
on X. Since the orbits of this action are symplectic, the symplec-
tic reduction theorem (see [AM]) implies that JN(X) is a single 
coadjoint orbit ffk. 

N being a normal subgroup of G, there is a homomorphism 

p:G-+A\xt(N),g^Intg\N 

(where Int g denotes the inner automorphism of G corresponding 
to g ), which factors through N to give a homomorphism 

p: S = G/N -• Out N = Aut N/Int N. 

It is clear that p(S) c (Aut N)x, the stabilizer of <9k (or X) in 
Aut N (which is the same for all X / 0), and, consequently, 
p(S) c (Aut A0A/Int N a Sp(2n, R). 

Being a complex submanifold of X, each iV-orbit carries a 
Kaehler polarization which is mapped by JN into a Kaehler po­
larization of &k . We thus get a />-equivariant map from the orbit 
space M = X/N to the space of all Kaehler polarizations of 0k, 
i.e. the Siegel space &n. It can be shown that this map is holo-
morphic. Hence it factors through the compact fibers of M to 
give a p-equivariant holomorphic map 

P^3^&n. 

6. CLASSIFICATION OF UNIMODULAR CS GROUPS 

From now on we assume that G is unimodular (and nonreduc-
tive). Using the results of the preceding section it is not hard to 
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show that then S = G/N is also unimodular and so is its quotient 
S/N2 which acts effectively on 3f. Moreover, N2 is of compact 
type (here the assumption that n has discrete kernel is essential). 
Now a theorem of Hano [Ha] asserts that if a unimodular Lie 
group acts effectively and transitively on a bounded domain, then 
it is semisimple and the domain is symmetric. Thus S/N3 is 
semisimple and, consequently, S is reductive and of Hermitian 
type. It follows that N coincides with the nilradical (the maximal 
connected nilpotent normal Lie subgroup) of G. 

We have sketched the proof of the "only if part" of the follow­
ing. 

Theorem 1. A connected unimodular (nonreductive) Lie group G 
is a CS group if and only if it satisfies the following conditions. 

(i) The nilradical N of G is isomorphic to a Heisenberg group 

(ii) The reductive group S = G/N is either of compact or of 
Hermitian type and its image under the natural homomor-
phism p:S —• Out(iV) is contained in Sp(2n, R). 

(iii) If S is of Hermitian type, there exists a p-equivariant hob-
morphic map from the Hermitian symmetric space 3J as­
sociated with S to the Siegel space &n . 

That this theorem really classifies unimodular CS groups follows 
from the results of Satake (see [S2]) who classified />-equivariant 
holomorphic maps 3 -> &n (this classification is closely related 
to the classification of Howe's reductive dual pairs in Sp(2«, R) 
(cf. [Ho]). 

7. CLASSIFICATION OF CS REPRESENTATIONS 

Irreducible unitary representations of the groups which occur in 
Theorem 1 have been classified by Satake [SI]. Using his results 
and the results of the preceding sections (with Proposition 2 play­
ing an essential role) we can complete the proof of Theorem 1 and 
also prove the following. 

Theorem 2. Suppose G has properties (i)—(iii) of Theorem 1. For 
any nonzero X e X(C), let (ox, 9j) be a projective representation 
of G obtained by composing the {projective) metaplectic represen­
tation of (Aut N)k (associated with (fiÀ, Sfy) with p and let a 
be its cocycle (a does not depend on X and can be considered as 
a cocycle on S = G/N). Let {nx,ê

>) be an irreducible projective 
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unitary representation of S with the following properties: 
(i) its cocycle is a - 1 ; 

(ii) its kernel ker nx is contained in N^ (cf §6); 
(iii) the corresponding representation of S'/ker n{ is a {projec­

tive) CS representation. 
Then {n, &), where %? = IP <g><̂  {Hubert tensor product) and 

n{g) = nx{g)® ak{g) for g e G, 

nl being the composition of ni and the projection G —• S, is a 
{linear) CS representation of G and any CS representation of G is 
of this form. 
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