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A CLASSIFICATION OF COHERENT STATE
REPRESENTATIONS OF UNIMODULAR LIE GROUPS

WOIJCIECH LISIECKI

1. INTRODUCTION

Let G be a connected Lie group and (7, #) a unitary represen-
tation of G on a complex Hilbert space # . Throughout we shall
assume that (mn, #) is nontrivial in the sense that dim# > 1.
By a coherent state orbit (CS orbit for short) for (7, #) we mean
a complex orbit of G on the projective space P(#) (which is
equipped with a natural structure of an (infinite-dimensional in
general) Kaehler manifold (cf. [L])). We call (n, #Z) a coherent
state representation (CS representation for short) if (1) it admits
a CS orbit, (2) is irreducible and (3) has (at most) discrete ker-
nel, and we call G a CS group if it possesses CS representations.
The purpose of this note is to announce a complete classification
of connected unimodular CS groups and their CS representations
(Theorems 1 and 2 below). This generalizes the results of Enright-
Howe-Wallach [EHW] and Jakobsen [J] on the classification of
unitary highest weight (or holomorphic) representations of reduc-
tive groups (which coincide with the CS representations as we have
shown in [L]). The proofs are “geometric,” the main tool being the
recent structure theory of homogeneous Kaehler manifolds due to
Dorfmeister and Nakajima [DN].

In physics, any orbit on P(#) is called a system of coher-
ent states in the sense of Perelomov (see [P] and the references
therein).

Of particular importance are symplectic coherent state orbits; in
many cases such an orbit may be interpreted as the classical phase
space of the system whose quantum phase space is P(#). Such
an embedding of the classical phase space into the quantum one
is the starting point of Berezin’s quantization (see [B1] and [B2];
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see also [T] for a comparison of Berezin’s quantization with the
Kostant-Souriau geometric quantization) and the “quantization of
states” proposed recently by Odzijewicz (see [O1] and [02]). In
both theories, the case of complex orbits plays a distinguished role.
On one hand, “complex” coherent states are in a sense closest to
the classical states [P] and on the other, we may apply in this
case powerful techniques of complex analysis (with Bergman type
reproducing kernels playing an essential role).

Thus there is a strong physical motivation for studying CS rep-
resentations.

2. BAsIC PROPERTIES OF CS REPRESENTATIONS

Here the term CS representation refers to a (n, /#) which has
property (1) but not necessarily (2) and (3).

Proposition 1 [L]). Any CS orbit has a natural structure of a Hamil-
tonian G-space and the corresponding moment mapping takes it
diffeomorphically onto an integral coadjoint orbit with Kaehler (i.e.
positive totally complex) polarization.

There is a natural holomorphic line bundle E over P(#) whose
fiber at [v] = Cv is the dual [v]*. The linear dual #" of #
is naturally isomorphic to the space of holomorphic sections of
E. Given a CS orbit G-[v] corresponding to a CS representation
(n, #), we get a natural map from #"* to the space I'(G-[v], L)
of holomorphic sections of L, the restriction of E to G- [v].

Proposition 2. The following are equivalent.
(i) v is a cyclic vector for (n, #).
(ii) The map #" — (G -[v], L) is injective.
(iii) (7, &) is irreducible.

The implications (i) = (ii) and (iii) = (i) are clear, and (ii) =
(iii) can be deduced from a well-known theorem of Kobayashi [K].

3. THREE SPECIAL CASES

It turns out that the case of a general unimodular group can be
reduced to three special cases, which we shall now briefly discuss.

3.1. Heisenberg groups. Let H, be a (2n + 1)-dimensional
Heisenberg group (not necessarily simply connected). Identify the
(multiplicative) group X(C) of unitary characters of the center
C of H, with an (additive) subgroup of the dual ¢* of the Lie
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algebra of C. The infinite-dimensional irreducible unitary rep-
resentations of H, are in 1-1 correspondence with the nonzero
elements 4 of X(C), (B,,%,) being the unique (up to equiv-
alence) representation with A as central character (or, in other
terms, the unique representation corresponding, via Kirillov’s bi-
jection, to the integral coadjoint orbit &, determined by 4). It
is well known that any (f,, %) is a CS representation. Any of
the CS orbits on P(#,) is mapped by its moment onto &_, . This
establishes a 1-1 correspondence between these orbits and Kaehler
polarizations of &_, which, in turn, are in 1-1 correspondence
with points of the Siegel space &, (i.e. the Hermitian symmetric
space Sp(2n, R)/U(n)).

Next we consider reductive groups. We shall say that a reductive
group is of compact (resp. noncompact) type if its Lie algebra is so.

3.2. Groups of compact type [KS]. Any such group is a CS group
and any of its nontrivial representations is a CS representation.
For any CS representation, there is exactly one CS orbit, namely
the orbit through a highest weight line. Geometrically, these orbits
are compact simply connected homogeneous Kaehler manifolds
(i.e. flag manifolds).

3.3. Groups of noncompact type [L]. Such a group is a CS group
if and only if it is of Hermitian type (i.e. the symmetric space &
associated with it is of Hermitian type). CS representations are the
highest weight representations. Again the orbit through a highest
weight line is the unique CS orbit for a given CS representation.
Geometrically, it is a holomorphic fiber bundle over & (equipped
with one of its invariant complex structures) with flag manifolds
as fibers.

4. HOMOGENEOUS KAEHLER MANIFOLDS

Our approach to the problem of classifying CS groups is based
on Dorfmeister-Nakajima theorem [DN] (which gives an affirma-
tive answer to a long standing conjecture of Vinberg and Gindikin).
For our purposes, it is convenient to state it as follows. Every ho-
mogeneous Kaehler manifold X has a holomorphic double fibration

X
LN
M - 9,

where M is a homogeneous Kaehler manifold without flat homo-
geneous Kaehler submanifolds and the fibers of X — M are flat
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homogeneous Kaehler manifolds (i.e. they are of the form C"/T,
where T is a discrete subgroup of C" and the Kaehler metric is
induced by the standard Kaehler metric on C"), & is a homoge-
neous bounded domain and the fibers of M — & are flag man-
ifolds. Such a double fibration is unique and is preserved by all
automorphisms of X .

5. STRUCTURE OF A CS ORBIT

Now suppose (n,#Z) is a CS representation of G and X =
G-[v] c P(#) is a CS orbit such that neither its flat fibers nor &
reduce to points. The fact that X is a Hamiltonian G-space im-
plies that these flat fibers are isomorphic to some C” and coincide
with the orbits of a Heisenberg group N (of dimension 27 + 1)
which is contained in G' as a normal subgroup. Let J, denote the
moment mapping of the corresponding Hamiltonian action of N
on X . Since the orbits of this action are symplectic, the symplec-
tic reduction theorem (see [AM]) implies that J,(X) is a single
coadjoint orbit &, .

N being a normal subgroup of G, there is a homomorphism

p:G — Aut(N), g — Int g|,

(where Int g denotes the inner automorphism of G corresponding
to g), which factors through N to give a homomorphism

p:S =G/N — Out N = Aut N/Int N.

It is clear that j(S) C (Aut N),, the stabilizer of &, (or 1) in
Aut N (which is the same for all 4 # 0), and, consequently,
p(S) C (Aut N),/Int N = Sp(2n, R).

Being a complex submanifold of X, each N-orbit carries a
Kaehler polarization which is mapped by J,, into a Kaehler po-
larization of &, . We thus get a p-equivariant map from the orbit
space M = X/N to the space of all Kaehler polarizations of &,
i.e. the Siegel space &,. It can be shown that this map is holo-
morphic. Hence it factors through the compact fibers of M to
give a p-equivariant holomorphic map

PeD — 6,

6. CLASSIFICATION OF UNIMODULAR CS GROUPS

From now on we assume that G is unimodular (and nonreduc-
tive). Using the results of the preceding section it is not hard to
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show that then S = G/N is also unimodular and so is its quotient
S/Ng which acts effectively on &' . Moreover, N, is of compact
type (here the assumption that n has discrete kernel is essential).
Now a theorem of Hano [Ha] asserts that if a unimodular Lie
group acts effectively and transitively on a bounded domain, then
it is semisimple and the domain is symmetric. Thus S/N, is
semisimple and, consequently, S is reductive and of Hermitian
type. It follows that N coincides with the nilradical (the maximal
connected nilpotent normal Lie subgroup) of G.

We have sketched the proof of the “only if part” of the follow-
ing.

Theorem 1. A connected unimodular (nonreductive) Lie group G
is a CS group if and only if it satisfies the following conditions.
(i) The nilradical N of G is isomorphic to a Heisenberg group
H .
n
(ii) The reductive group S = G/N is either of compact or of
Hermitian type and its image under the natural homomor-
phism p:S — Out(N) is contained in Sp(2n, R).
(iii) If S is of Hermitian type, there exists a p-equivariant holo-
morphic map from the Hermitian symmetric space < as-
sociated with S to the Siegel space &, .

That this theorem really classifies unimodular CS groups follows
from the results of Satake (see [S2]) who classified p-equivariant
holomorphic maps & — &, (this classification is closely related
to the classification of Howe’s reductive dual pairs in Sp(2n, R)
(cf. [Ho)).

7. CLASSIFICATION OF CS REPRESENTATIONS

Irreducible unitary representations of the groups which occur in
Theorem 1 have been classified by Satake [S1]. Using his results
and the results of the preceding sections (with Proposition 2 play-
ing an essential role) we can complete the proof of Theorem 1 and
also prove the following.

Theorem 2. Suppose G has properties (i)-(iii) of Theorem 1. For
any nonzero A € X(C), let (o,, #,) be a projective representation
of G obtained by composing the (projective) metaplectic represen-
tation of (Aut N), (associated with (B,, %)) with p and let o
be its cocycle (o does not depend on A and can be considered as
a cocycle on S = G/N). Let (n,, &) be an irreducible projective
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unitary representation of S with the following properties:

(i) its cocycle is o~ ';
(ii) its kernel ker m, is contained in Ny (cf. §6);
(iii) the corresponding representation of S/ker m, is a (projec-

tive) CS representation.

Then (n, #), where Z = & ® #, (Hilbert tensor product) and

n(g)=#,(8)®0,(g) forgeq,

ft, being the composition of m, and the projection G — S, is a
(linear) CS representation of G and any CS representation of G is
of this form.
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