A CLASSIFICATION OF COHERENT STATE REPRESENTATIONS OF UNIMODULAR LIE GROUPS

WOJCIECH LISIECKI

1. Introduction

Let G be a connected Lie group and (π, \mathcal{H}) a unitary representation of G on a complex Hilbert space \mathcal{H} . Throughout we shall assume that (π, \mathcal{H}) is nontrivial in the sense that $\dim \mathcal{H} > 1$. By a coherent state orbit (CS orbit for short) for (π, \mathcal{H}) we mean a complex orbit of G on the projective space $P(\mathcal{H})$ (which is equipped with a natural structure of an (infinite-dimensional in general) Kaehler manifold (cf. [L])). We call (π, \mathcal{H}) a coherent state representation (CS representation for short) if (1) it admits a CS orbit, (2) is irreducible and (3) has (at most) discrete kernel, and we call G a CS group if it possesses CS representations. The purpose of this note is to announce a complete classification of connected unimodular CS groups and their CS representations (Theorems 1 and 2 below). This generalizes the results of Enright-Howe-Wallach [EHW] and Jakobsen [J] on the classification of unitary highest weight (or holomorphic) representations of reductive groups (which coincide with the CS representations as we have shown in [L]). The proofs are "geometric," the main tool being the recent structure theory of homogeneous Kaehler manifolds due to Dorfmeister and Nakajima [DN].

In physics, any orbit on $P(\mathcal{H})$ is called a system of coherent states in the sense of Perelomov (see [P] and the references therein).

Of particular importance are symplectic coherent state orbits; in many cases such an orbit may be interpreted as the classical phase space of the system whose quantum phase space is $P(\mathcal{H})$. Such an embedding of the classical phase space into the quantum one is the starting point of Berezin's quantization (see [B1] and [B2];

Received by the editors December 1989 and, in revised form, December 11, 1990.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 22E45, 81D30; Secondary 32M10, 58F05, 58F06.

see also [T] for a comparison of Berezin's quantization with the Kostant-Souriau geometric quantization) and the "quantization of states" proposed recently by Odzijewicz (see [O1] and [O2]). In both theories, the case of complex orbits plays a distinguished role. On one hand, "complex" coherent states are in a sense closest to the classical states [P] and on the other, we may apply in this case powerful techniques of complex analysis (with Bergman type reproducing kernels playing an essential role).

Thus there is a strong physical motivation for studying CS representations.

2. Basic properties of CS representations

Here the term CS representation refers to a (π, \mathcal{H}) which has property (1) but not necessarily (2) and (3).

Proposition 1 [L]. Any CS orbit has a natural structure of a Hamiltonian G-space and the corresponding moment mapping takes it diffeomorphically onto an integral coadjoint orbit with Kaehler (i.e. positive totally complex) polarization.

There is a natural holomorphic line bundle \mathbf{E} over $\mathbf{P}(\mathcal{H})$ whose fiber at $[v] = \mathbf{C}v$ is the dual $[v]^*$. The linear dual \mathcal{H}^* of \mathcal{H} is naturally isomorphic to the space of holomorphic sections of \mathbf{E} . Given a CS orbit $G \cdot [v]$ corresponding to a CS representation (π, \mathcal{H}) , we get a natural map from \mathcal{H}^* to the space $\Gamma(G \cdot [v], \mathbf{L})$ of holomorphic sections of \mathbf{L} , the restriction of \mathbf{E} to $G \cdot [v]$.

Proposition 2. The following are equivalent.

- (i) v is a cyclic vector for (π, \mathcal{H}) .
- (ii) The map $\mathcal{H}^* \to \Gamma(G \cdot [v], \mathbf{L})$ is injective.
- (iii) (π, \mathcal{H}) is irreducible.

The implications (i) \Rightarrow (ii) and (iii) \Rightarrow (i) are clear, and (ii) \Rightarrow (iii) can be deduced from a well-known theorem of Kobayashi [K].

3. Three special cases

It turns out that the case of a general unimodular group can be reduced to three special cases, which we shall now briefly discuss.

3.1. Heisenberg groups. Let H_n be a (2n + 1)-dimensional Heisenberg group (not necessarily simply connected). Identify the (multiplicative) group X(C) of unitary characters of the center C of H_n with an (additive) subgroup of the dual c^* of the Lie

algebra of C. The infinite-dimensional irreducible unitary representations of H_n are in 1-1 correspondence with the nonzero elements λ of X(C), $(\beta_{\lambda}, \mathscr{F}_{\lambda})$ being the unique (up to equivalence) representation with λ as central character (or, in other terms, the unique representation corresponding, via Kirillov's bijection, to the integral coadjoint orbit \mathscr{O}_{λ} determined by λ). It is well known that any $(\beta_{\lambda}, \mathscr{F}_{\lambda})$ is a CS representation. Any of the CS orbits on $P(\mathscr{F}_{\lambda})$ is mapped by its moment onto $\mathscr{O}_{-\lambda}$. This establishes a 1-1 correspondence between these orbits and Kaehler polarizations of $\mathscr{O}_{-\lambda}$ which, in turn, are in 1-1 correspondence with points of the Siegel space \mathfrak{S}_n (i.e. the Hermitian symmetric space $Sp(2n, \mathbb{R})/U(n)$).

Next we consider reductive groups. We shall say that a reductive group is of *compact* (resp. *noncompact*) type if its Lie algebra is so.

- 3.2. Groups of compact type [KS]. Any such group is a CS group and any of its nontrivial representations is a CS representation. For any CS representation, there is exactly one CS orbit, namely the orbit through a highest weight line. Geometrically, these orbits are compact simply connected homogeneous Kaehler manifolds (i.e. flag manifolds).
- 3.3. Groups of noncompact type [L]. Such a group is a CS group if and only if it is of Hermitian type (i.e. the symmetric space \mathscr{D} associated with it is of Hermitian type). CS representations are the highest weight representations. Again the orbit through a highest weight line is the unique CS orbit for a given CS representation. Geometrically, it is a holomorphic fiber bundle over \mathscr{D} (equipped with one of its invariant complex structures) with flag manifolds as fibers.

4. Homogeneous Kaehler manifolds

Our approach to the problem of classifying CS groups is based on Dorfmeister-Nakajima theorem [DN] (which gives an affirmative answer to a long standing conjecture of Vinberg and Gindikin). For our purposes, it is convenient to state it as follows. Every homogeneous Kaehler manifold X has a holomorphic double fibration

where M is a homogeneous Kaehler manifold without flat homogeneous Kaehler submanifolds and the fibers of $X \to M$ are flat

homogeneous Kaehler manifolds (i.e. they are of the form \mathbb{C}^n/Γ , where Γ is a discrete subgroup of \mathbb{C}^n and the Kaehler metric is induced by the standard Kaehler metric on \mathbb{C}^n), $\mathscr D$ is a homogeneous bounded domain and the fibers of $M \to \mathscr D$ are flag manifolds. Such a double fibration is unique and is preserved by all automorphisms of X.

5. STRUCTURE OF A CS ORBIT

Now suppose (π, \mathcal{H}) is a CS representation of G and $X = G \cdot [v] \subset P(\mathcal{H})$ is a CS orbit such that neither its flat fibers nor \mathcal{D} reduce to points. The fact that X is a Hamiltonian G-space implies that these flat fibers are isomorphic to some \mathbb{C}^n and coincide with the orbits of a Heisenberg group N (of dimension 2n+1) which is contained in G as a normal subgroup. Let J_N denote the moment mapping of the corresponding Hamiltonian action of N on X. Since the orbits of this action are symplectic, the symplectic reduction theorem (see [AM]) implies that $J_N(X)$ is a single coadjoint orbit \mathcal{O}_{λ} .

N being a normal subgroup of G, there is a homomorphism

$$\tilde{\rho}$$
: $G \to \operatorname{Aut}(N)$, $g \mapsto \operatorname{Int} g|_{N}$

(where Int g denotes the inner automorphism of G corresponding to g), which factors through N to give a homomorphism

$$\rho: S = G/N \to \text{Out } N = \text{Aut } N/\text{Int } N.$$

It is clear that $\tilde{\rho}(S) \subset (\operatorname{Aut} N)_{\lambda}$, the stabilizer of \mathscr{O}_{λ} (or λ) in Aut N (which is the same for all $\lambda \neq 0$), and, consequently, $\rho(S) \subset (\operatorname{Aut} N)_{\lambda}/\operatorname{Int} N \cong \operatorname{Sp}(2n, \mathbb{R})$.

Being a complex submanifold of X, each N-orbit carries a Kaehler polarization which is mapped by J_N into a Kaehler polarization of \mathscr{O}_{λ} . We thus get a ρ -equivariant map from the orbit space M=X/N to the space of all Kaehler polarizations of \mathscr{O}_{λ} , i.e. the Siegel space \mathfrak{S}_n . It can be shown that this map is holomorphic. Hence it factors through the compact fibers of M to give a ρ -equivariant holomorphic map

$$\rho_{\mathscr{D}}: \mathscr{D} \to \mathfrak{S}_n$$
.

6. CLASSIFICATION OF UNIMODULAR CS GROUPS

From now on we assume that G is unimodular (and nonreductive). Using the results of the preceding section it is not hard to

show that then S = G/N is also unimodular and so is its quotient $S/N_{\mathscr{D}}$ which acts effectively on \mathscr{D} . Moreover, $N_{\mathscr{D}}$ is of compact type (here the assumption that π has discrete kernel is essential). Now a theorem of Hano [Ha] asserts that if a unimodular Lie group acts effectively and transitively on a bounded domain, then it is semisimple and the domain is symmetric. Thus $S/N_{\mathscr{D}}$ is semisimple and, consequently, S is reductive and of Hermitian type. It follows that N coincides with the nilradical (the maximal connected nilpotent normal Lie subgroup) of G.

We have sketched the proof of the "only if part" of the following.

Theorem 1. A connected unimodular (nonreductive) Lie group G is a CS group if and only if it satisfies the following conditions.

- (i) The nilradical N of G is isomorphic to a Heisenberg group H_n .
- (ii) The reductive group S = G/N is either of compact or of Hermitian type and its image under the natural homomorphism $\rho: S \to \text{Out}(N)$ is contained in $\text{Sp}(2n, \mathbb{R})$.
- (iii) If S is of Hermitian type, there exists a ρ -equivariant holomorphic map from the Hermitian symmetric space \mathcal{D} associated with S to the Siegel space \mathfrak{S}_n .

That this theorem really classifies unimodular CS groups follows from the results of Satake (see [S2]) who classified ρ -equivariant holomorphic maps $\mathscr{D} \to \mathfrak{S}_n$ (this classification is closely related to the classification of Howe's reductive dual pairs in $\operatorname{Sp}(2n, \mathbb{R})$ (cf. [Ho]).

7. Classification of CS representations

Irreducible unitary representations of the groups which occur in Theorem 1 have been classified by Satake [S1]. Using his results and the results of the preceding sections (with Proposition 2 playing an essential role) we can complete the proof of Theorem 1 and also prove the following.

Theorem 2. Suppose G has properties (i)–(iii) of Theorem 1. For any nonzero $\lambda \in X(C)$, let $(\sigma_{\lambda}, \mathscr{F}_{\lambda})$ be a projective representation of G obtained by composing the (projective) metaplectic representation of (Aut N)_{λ} (associated with $(\beta_{\lambda}, \mathscr{F}_{\lambda})$) with $\tilde{\rho}$ and let α be its cocycle $(\alpha$ does not depend on λ and can be considered as a cocycle on S = G/N). Let (π_1, \mathscr{E}) be an irreducible projective

unitary representation of S with the following properties:

- (i) its cocycle is α^{-1} ;
- (ii) its kernel ker π_1 is contained in $N_{\mathscr{D}}$ (cf. §6);
- (iii) the corresponding representation of $S/\ker \pi_1$ is a (projective) CS representation.

Then (π, \mathcal{H}) , where $\mathcal{H} = \mathcal{E} \otimes \mathcal{F}_{\lambda}$ (Hilbert tensor product) and

$$\pi(g)=\tilde{\pi}_1(g)\otimes\sigma_{\lambda}(g)\quad for\ g\in G,$$

 $\tilde{\pi}_1$ being the composition of π_1 and the projection $G \to S$, is a (linear) CS representation of G and any CS representation of G is of this form.

REFERENCES

- [AM] R. Abraham and J. Marsden, Foundations of mechanics, 2nd ed., Benjamin/Cummings, Reading, MA, 1978.
- [B1] F. A. Berezin, Quantization, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 1116-1175; English transl. in Math. USSR Izv. 38 (1974).
- [B2] ____, Quantization in complex symmetric spaces, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), 363-402; English transl. in Math. USSR Izv. 39 (1975).
- [DN] J. Dorfmeister and K. Nakajima, The fundamental conjecture for homogeneous Kaehler manifolds, Acta Math. 161 (1988), 23-70.
- [EHW] T. Enright, R. Howe and N. Wallach, A classification of unitary highest weight modules, Representation Theory of Reductive Groups (P. Trombi, ed.), Progress in Math., vol. 40, Birkhäuser, Boston, 1983, pp. 97-143.
- [Ha] J. I. Hano, On Kaehlerian homogeneous spaces of unimodular Lie groups, Amer. J. Math. 79 (1957), 885-900.
- [Ho] R. Howe, θ-series and invariant theory, Automorphic Forms, Representations and L-functions, Proc. Sympos. Pure Math., vol. 33, Amer. Math. Soc., Providence, RI, 1979, pp. 275-285.
- [J] H. P. Jakobsen, Hermitian symmetric spaces and their unitary highest weight modules, J. Funct. Anal. 52 (1983), 385-412.
- [K] S. Kobayashi, Irreducibility of certain unitary representations, J. Math. Soc. Japan 20 (1968), 638-642.
- [KS] B. Kostant and S. Sternberg, Symplectic projective orbits, New Directions in Applied Mathematics, Springer-Verlag, Berlin and New York, 1982, pp. 81-84.
- [L] W. Lisiecki, Kaehler coherent state orbits for representations of semisimple Lie groups, Ann. Inst. H. Poincaré Phys. Théor. 53 (1990), 245-258.
- [O1] A. Odzijewicz, On reproducing kernels and quantization of states, Comm. Math. Phys. 114 (1988), 577-597.
- [O2] ____, On the notion of mechanical system (to appear).
- [P] A. M. Perelomov, Generalized coherent states and their applications, Springer-Verlag, Berlin and New York, 1986.

- [S1] I. Satake, Unitary representations of a semi-direct product of Lie groups on $\overline{\partial}$ -cohomology spaces, Math. Ann. 190 (1971), 177-202.
- [S2] ____, Algebraic structures of symmetric domains, Princeton Univ. Press, Princeton, NJ, 1980.
- [T] G. M. Tuynman, Studies in geometric quantization, Ph.D. thesis, Amsterdam, 1987.

Institute of Mathematics, University of Warsaw, BiaŁystok Branch, Akademicka 2, 15-267 BiaŁystok, Poland