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In its current incarnation, Probabilités et Potentiel is a five-
volume book, the last volume of which has not yet appeared. 
This fourth volume, subtitled "Théorie du potentiel associée à 
une résolvante. Théorie des processes de Markov," brings Prob­
abilités et Potentiel to an impressive 1,372 pages. Although ap­
pearing in "installments," the text is very cohesive, laced with ref­
erences to previous sections or chapters (and sometimes to future 
ones), and complemented with helpful remarks, "commentaries," 
and examples. The authors are in complete control of their sub­
ject, and the result is masterful. Meyer and Dellacherie have built 
their careers at the interface between probability and potential the­
ory, and are responsible not only for creating a good deal of new 
mathematics there, but also for energetically propagating the ideas 
and techniques among members of the probability community via 
the proceedings of the (Strasbourg) Séminaire de Probabilités, and 
through their books. This current project is a tour deforce. We'll 
start with a quick look at the project as a whole. 

THE FAMILY HISTORY 

This family of volumes has a history. Its raison-d'ëtre is the ex­
istence of an intimate connection between probability theory and 
potential theory, whose discovery inspired a burst of mathematical 
activity during the 1950s and early 60s, with probability supplying 
new methods for potential theory and potential theory suggesting 
new directions for probability. Meyer set out to write a research 
monograph on potential theory, with the goal of exposing the new 
probabilistic techniques (especially martingale theory) to a wider 
audience of analysts. The book would also collect for probabilists 
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the analytic tools (such as the theories of analytic sets and ca­
pacities) needed to exploit the potential theoretic approach. The 
resulting first edition of Probabilités et Potentiel [7] was a "slim" 
266 pages consisting of three parts: A. Introduction to Probability 
Theory, B. Martingale Theory, and C. Analytic Potential Theory. 
(A second volume to be devoted to Markov processes was planned, 
which would tie together the various topics of the first volume by 
illustrating their applications to the theory of Markov processes. 
This second volume appeared a year later in draft form [8], but 
the final form is only now materializing in the second edition; the 
original project was sidelined by the publication of [1] in 1968.) 

Probabilités et Potentiel was an influential book and, together 
with Dellacherie's Capacities et Processus Stochastiques [2], be­
came one of the cornerstones of the "general theory of (stochas­
tic) processes." This theory led to remarkable advances in Markov 
process theory, revolutionized stochastic differential equations and 
martingale theory, and provided a framework for probabilistic po­
tential theory. In turn, the general theory of processes has grown 
to meet the demands of these (and other) areas. Dellacherie and 
Meyer say, in the preface to the first volume of the new edition of 
Probabilités et Potentiel, "the rapid evolution of the whole theory 
has discouraged us from building on the old foundations, and the 
support of an active mathematical environment has been an incen­
tive to undertake again the full work from the start." The first vol­
ume of the second edition (Chapters I through IV) was published 
in 1975 (in English in 1978). In the new edition, each of the three 
parts of the first edition has become an entire volume (at least in 
the English translation—in the French, two chapters of Part C spill 
over into the fourth volume). The treatment of Markov processes 
(Part D) begins midway through the fourth (French) volume, and 
will be continued in the fifth. 

PROBABILITY 

A random variable X is a measurable mapping from a prob­
ability space into a state space E. The image of the probability 
measure under X is a measure on E called the distribution, or 
law, of X. Many properties of X are determined by its law, 
which is a basic tool of statisticians. A family of random vari­
ables (Xt) indexed by a parameter t e T is called a stochastic 
process. (T is usually a subset of the nonnegative integers or real 
numbers, and is thought of in these cases as "time.") Stochastic 
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processes can also be studied "in law," although the situation is 
more complicated than for a single random variable because now 
we are working with a (possibly infinite, even uncountable) fam­
ily of variables. The law of the process is actually a measure on 
the space of ^-valued sequences or functions, and incorporates 
joint distributions for the family of variables. For certain classes 
of stochastic processes, analytic tools have been developed to aid 
in this study. For instance, real-valued Gaussian processes are 
studied largely in terms of the autocovariance function v(s, t) = 
E(XSX(), which is a positive-definite function on TxT. Another 
kind of function is used in the study of Markov processes. 

Markov processes are characterized by the property that the 
"past and future are conditionally independent given the present." 
This means, even when the entire "past" {Xu, 0 < u < t) is 
known, the best prediction of the "future" Xs+t uses only knowl­
edge of Xt (the "present"). Because of this property, we can ex­
press the joint distributions of the process in terms of the transition 
function Ps t(x, dy), which gives the distribution of Xt, condi­
tional on the knowledge that Xs = x e E (s < t). (For homoge­
neous processes, the usual case, this distribution depends only on 
t - s.) Use of transition functions to study Markov processes goes 
back to Kolmogorov [6], who began the study of their properties. 
A basic property of a Markov transition function Pt(x, dy) is: 
the operators Tt given by 

Ttf(x) = jf(y)Pt(x9dy) 

form a contraction semigroup, which is in turn associated with a 
generator and a resolvent 

/»oo 

Upf(x)= e~ptTtf{x)dt. 
Jo 

(It is standard in Markov process theory to use Pt for both the 
transition function and the semigroup of operators.) Thus the 
whole analytic theory of such semigroups, including the famous 
Hille-Yosida theory, is available for the study of Markov processes. 

Studying a stochastic process in law has limitations. Many inter­
esting questions concerning a stochastic process are probabilistic, 
in the sense that they require reasoning directly with the sample 
functions t -+ Xt. (Indeed, probabilistic methods occasionally 
lead to analytic results which have never been proved analytically. 
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In the case of Markov processes, for example, the structure em­
bodied in its sample paths is much richer than that reflected in its 
transition function. One can decompose or transform the paths 
in various ways for which there are no counterparts in the analy­
sis of transition functions.) Two of the pioneers in the study of 
the sample functions of stochastic processes were Paul Levy and 
J. L. Doob, both of whom attacked questions concerning the sam­
ple functions of Markov processes, starting in the late 1930s. Doob 
also did fundamental work on martingales and submartingales, 
whose sample path behavior and other properties turned out to 
be key for many further developments in the theory of stochastic 
processes in general, and for Markov processes in particular. 

In "continuous time" (i.e., when T is an interval of R), sam­
ple function analysis demands a considerable amount of mea­
sure theory, so during the period starting in 1931 and lasting into 
the 1950s, Markov processes were studied principally "analyti­
cally" (in law) via their transition semigroups and their generators. 
For example, Feller's important work on the classification of one-
dimensional (real-valued) diffusions, performed during this period, 
was based on analysis of the semigroup. Since Hunt's ground­
breaking work [5] in the late 1950s, attention has shifted to the 
resolvent. Hunt's use of "p-potentials" (Up) was the forerunner 
of the modern approach, wherein manipulation of the resolvent 
replaces reasoning with the semigroup. Hunt is responsible for 
many innovations in both Markov process theory and abstract po­
tential theory; his major contribution was the identification of the 
two theories. 

POTENTIALS 

The connection between Brownian motion and Newtonian po­
tential theory, first observed by Kakutani and Kac, was taken up 
by Doob in a series of papers in the 1950s. This connection springs 
from the fact that the infinitesimal generator of the Brownian semi­
group is a constant times the Laplacian, and it has many manifes­
tations. In particular, harmonic and subharmonic (or superhar-
monic) functions play a special role for Brownian motion. For 
instance, let Px denote the law of Brownian motion Bt in Rn 

started at x, and for a < b consider the event A that Bt hits the 
sphere {y : |y| = b} before hitting {y : \y\ = a}. It follows from 
basic properties of Brownian motion that the function x -+ PX(A) 
is harmonic in {x : a < \x\ < b}. Doob proved a deeper result in 
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[4]: when a subharmonic function u is composed with a Brownian 
motion trajectory Bt, the resulting function u(Bt) is almost surely 
continuous in t. In the same paper, Doob gives a probabilistic so­
lution of the Dirichlet problem in terms of Brownian paths. It can 
be shown that virtually all potential theoretic concepts (capacity, 
equilibrium distribution/potential, energy, etc.) have interpreta­
tions in terms of Brownian motion (see [3] or [9]). 

Hunt [5] showed that the relationship between the Brownian 
semigroup and the Newtonian potential kernel was no coincidence. 
Hunt's theorem states that for a large class of positive kernels 
V satisfying "the complete maximum principle" of potential the­
ory, there corresponds a contraction resolvent and associated sub-
Markovian semigroup Pt, with Vf = /0°° Ptfdt. (V is called 
the "potential kernel" of the semigroup.) Along with this semi­
group comes a Markov process which bears the same relationship 
to the potential theory associated to V as Brownian motion does 
to Newtonian potential theory (for example, Riesz potential theory 
corresponds to symmetric stable processes), although some auxil­
iary hypotheses may be necessary to develop this potential theory 
fully. Hunt's exposition was the starting point of both a new way 
to study Markov processes and a new way to look at potential 
theory. As indicated above, sample function techniques (use of 
hitting times, transformations, martingale arguments, etc.) are a 
powerful addition to the arsenal of analytic techniques available 
to study potential theory; the result is the probabilistic potential 
theory described in this book. 

There is one last point to mention in this brief look at the math­
ematics behind Probabilités et Potentiel. The discussion above, as 
well as the volume under review, centers on Markov processes. 
This focus may obscure the synergy (which is more apparent when 
you read the volumes together) between the general theory of pro­
cesses, including martingale theory, and Markov process theory. 
In fact, these theories developed in tandem, each theory at times 
borrowing ideas or using techniques developed for the other. 

THIS VOLUME 

This volume includes two chapters from analytic potential the­
ory (the part having to do with semigroups and resolvents, with 
resolvents being the fundamental objects). Dellacherie and Meyer 
describe these chapters as "the development of the analytic parts of 
Hunt's work," a development which over the past 30 years has been 
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quite extensive. All the basic notions and principles are covered, 
including the Hille-Yosida theory and Hunt's theorem which con­
cern the construction of resolvents and semigroups. Here too are 
the ergodic theory for a resolvent, compactification methods (Ray-
Knight theory), duality, Dirichlet spaces, and many examples. The 
next three chapters begin the treatment of Markov processes, pre­
sented in what Dellacherie and Meyer call an "elementary form" 
(primarily for Feller semigroups), to keep technicalities to a mini­
mum. In these chapters the reader meets the probabilistic side of 
potential theory, via sample function analysis and manipulation. 
Included are "realizations" of Feller and Ray processes, the strong 
Markov property, notions associated with first hitting times, the 
Levy system for dealing with the jumps of the process, and trans­
formations associated with multiplicative functionals. In Chapter 
XV, one section is devoted to introducing the theory developed to 
describe the behavior of a Markov process "around" a point of the 
state space, which brings in the notions of local time and excur­
sions. In the last chapter, the more general class of right processes 
is discussed briefly (for more on this class of processes, the reader 
may consult Sharpe's new book [10]). 

The authors have promised to continue their discussion of 
Markov processes in still another volume. If the promises of the 
preface come true, many of the topics which will appear in the 
next volume can be found in no other book. Needless to say, the 
final volume of Probabilités et Potentiel is eagerly awaited. 
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