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The title of the present book refers to a class of graphs whose 
regularity properties go back to the platonic solids of antiquity. Ex­
amples of such graphs are provided by the vertices and the edges 
of the cube, or of the icosahedron. On the other hand, the graphs 
have deep connections to many topics of the present-day theory 
and applications of groups, geometries, codes, and designs. Thus 
the book represents a large part of discrete mathematics. The ge­
ometry of the graphs is phrased in terms of distances; it has a direct 
translation into algebra. Many mathematical disciplines, ranging 
from functional analysis to computation, contribute to the under­
standing of our graphs. Now let us first give some definitions. The 
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cube graph serves as a trivial example; we will meet other examples 
later. 

Let T = (V, E) denote an undirected, connected graph, with 
vertex set V of size v and edge set E of size e. The distance 
d(y, ô) between any y, ô € V is measured by the minimum num­
ber of steps in T to get from y to ô. Thus the pairs of the vertices 
of the cube graph are at distance 0, 1,2, or 3. The regularity prop­
erties of T are expresssed in terms of distances as follows. Given 
y e V, the sphere r\(y) consists of the vertices at distance j from 
y . The graph T is called regular if the valency k := | Tx(y)\ is a 
constant for y € V. The graph T is called a distance-regular graph 
(DRG for short) if, for each distance j , each of the cardinalities 

a y : = | r , ( y ) n 1 ^ ) 1 , bj := |r,+1(y) n 1 ^ ) 1 , 
Cj^ir.^iy) 0^(0)1 

is a constant for y, S e V at distance j . Thus the cube graph has 
(b0, bx, b2 ; cx, c2, c3) = (3, 2 , 1 ; 1 , 2 , 3 ) . The relevant param­
eters are the intersection numbers in the array (b0, bx,... , ôrf_t ; 
q , c2,... , cd), where rf is the diameter of the graph. Indeed, 

b0 = k, c0 = 0 = bd, cx = 1, k = aj + bj + Cj 
for; = 0, 1, ... , d. 

We translate this definition into algebra. The distance-/-matrix At 

of size v x v is defined by its entries A.(y, S) = 1 if rf(y 9S) = i 
in T, and ^ ( y , (J) = 0 otherwise. Then 

where 7 and J denote the unit matrix and the all-one matrix 
of size v x v . In terms of At the definition of DRG reads, for 
i = 0, 1, ... , d , 

A\AX = bi__lAi_1 + a ^ + c /+1^.+1. 
Notice that the matrices ^ can be written as polynomials of de­
gree i in A:= A x . In addition we find 

4/^i = 'M; = zZPijAl 
/=0 

for certain P/. e N , that is, our DRG with its distance relation 
forms a (symmetric) association scheme with d classes. This con­
cept orginates from the design of experiments in statistics (Bose1 

1A11 references are to the bibliography in the text under review. 
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es. [ I l l , 109]) and, independently, from finite permutation groups 
(Wielandt [782]). It was applied in coding theory by Delsarte 
[251], and further developed by him, Higman [386], and Bannai-
Ito [33]. The concept and the theory of DRG were introduced by 
Biggs [71]. 

Important classes of DRG are the following. The Hamming 
graph H(d, n) has as its vertices the words of length d over 
an alphabet of size n, and the (Hamming) distance between two 
words is the number of the coordinates in which they differ. The 
intersection array of the Hamming graph is {dm, (d - 1 )m,. . . , m; 
1, 2 , . . . , d) for m = n - 1. For n = 2 this is the rf-cube, and 
it subsets are the binary codes of length d. 

The Johnson graph J(n, d) consists of the d-subsets of an «-
set, and any two ^-subsets are adjacent if they intersect in d - 1 
elements. J(n, d) is a DRG and has v - (J), k = d(n -d). It 
is the graph underlying designs with constant block sizes. 

The heart of the book, Chapters 4 through 9, gives an extensive 
treatment of the theory of DRG. One of the most spectacular re­
sults is contained in Theorem 6.1.1. It states that the Hamming 
graphs H (d, n), for n ^ 4, and the Johnson graphs J(n, d), 
for (n, d) 7* (8, 2), are characterized by their intersection arrays. 
This problem has puzzled scientists from various backgrounds for 
a number of years. The exceptions come from statistical schemes 
which share the parameters, yet are nonisomorphic with H(l, 4) 
(Shrikhande), with H(n, 4) (Doob), and with ƒ (8, 2) (Chang), 
respectively. The characterization was finally settled by Neumaier 
[561] and Terwilliger [719]. We give an indication of the methods 
used in their proofs. Both authors find an appropriate idempotent 
matrix E = X)/=0

 ui^t *n ^ e algebra spanned by the distance-1-
matrices A- of a DRG T. Viewing the symmetric matrix E as the 
Gram matrix of the inner products (•, •) of v vectors yx,... , yv 

in a Euclidean space of dimension ƒ := rank is , one obtains a geo­
metric representation of the graph T. Assuming we are in the case 
u. = a - bi, we calculate the inner products of the differences of 
the vectors in terms of the distances of the corresponding vertices 
in T: 

{yp -yq>vr- V = b(d(yP > JV)+d(yq > ?,) - d(yP > vs) ~
 d^q ' JV))-

This leads to an even integral lattice in Euclidean /-space: 
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In the case that this lattice spans the space, the root system tech­
niques introduced by Cameron c.s. [180] can be applied. The lat­
tice then must be a direct sum of root lattices of the well-known 
types A, D, and E. Eventually, this leads to the desired result, 
cf. Theorem 4.4.10. 

After this introduction in the subject and the methods, we will 
briefly sketch the content of the book by going through the various 
chapters. The first three are preliminary. Together with the Ap­
pendix they collect the material for a separate book on graph theory 
and combinatorics. DRGs are treated in Chapters 4 through 9, and 
in the tables of Chapter 14. The remaining Chapters 10 through 
13 study graphs occurring in relation to Coxeter systems, Cheval-
ley groups, codes, classical geometries, and sporadic groups. Most 
valuable is the bibliography which contains 800 references. Thus 
this Ergebnisse book of almost 500 printed pages really presents a 
survey of discrete mathematics as it was developed in the last 25 
years. 

The book is written for the researcher. It is not a textbook. 
For the beginner in the field the tract by Biggs [71] of 1974 still 
maintains its value as an introduction. It is difficult to compare 
the present book with the work by Bannai-Ito, since up to now 
their "Algebraic Combinatorics" has only appeared in Part I, cf. 
[33]. The starting points of the two books are different. Chapter 
1 of [33] deals with representations of finite groups; the notions 
of distance-regular and distance-transitive graphs are introduced 
in the same subsection. In the book under review the prelimi­
nary chapters are combinatorial, and the group case of distance-
transitive graphs appears in Chapter 7, halfway through the book. 
In [33] algebraic combinatorics is described as "a character theo­
retic study of combinatorial objects" or as "a group theory with­
out groups." The book under review has the same philosophy, but 
is more independent in its approach; it studies the group case of 
distance-transitive graphs of Lie type in the context of Tits systems 
(Chapter 10). It is interesting to observe the interaction between 
the books. The core of [33] is Leonard's result [487] that DRGs 
of éf-polynomial type satisfy restricted parameter conditions, and 
have integral eigenvalues if the diameter is large. The present book 
performs a fine job in reworking Leonard's theory in Chapter 8. 
Meanwhile new bounds for the diameter have become available 
(Ivanov [430], Godsil [325], Terwilliger [715]), which are treated 
in Chapter 5. Thus, as the authors expect, these common efforts 
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may lead to a complete solution of Bannai's problem to determine 
all éf-polynomial DRGs of diameter > 2. 

There is no doubt that the book under review will be an essen­
tial tool for the specialists in discrete mathematics. But also the 
general mathematician may take advantage of the ideas expressed 
in the book. To illustrate this we recall that in the very first line 
of this review we spoke of regularity, and not of symmetry of 
the platonic solids. Indeed, the book is devoted to graphs having 
well-defined regularity properties. In the group case regularity ac­
tually can be interpreted as symmetry. This is important for two 
reasons. Group theory provides many examples of nice graphs; 
and algebraic graph theory sometimes provides interesting results 
about groups. 
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Diophantine approximation begins with the following theorem 
of Dirichlet: Let a be a real number and Q > 1 an integer, 
then there exist integers p and q such that 1 < q < Q and 
\&q - p\<{Q+l)~x. From this basic result there springs a large 
number of generalizations, extensions and variations. Suppose, for 
example, that \\x\\ denotes the distance from the real number x to 
the nearest integer. If a is irrational, then it follows immediately 
that there are infinitely many positive integers q which satisfy 

(1) Q\\*q\\ < 1. 

Naturally one may ask if the bound in (1) can be sharpened and 
it is a result of Hurwitz [5] (and implicit in an earlier paper of 
Markoff [8]) that it can be. In fact if a is irrational, there are 
infinitely many positive integers q such that 

(2) q\\*q\\ < 5"1/2 


