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A COMPLETE SOLUTION 
TO THE POLYNOMIAL 3-PRIMES PROBLEM 

GOVE W. EFFINGER AND DAVID R. HAYES 

I. INTRODUCTION 

By the "classical 3-primes problem" we mean: can every odd 
number > 7 be written as a sum of three prime numbers! This 
problem was attacked with spectacular success by Hardy and Lit-
tlewood [8] in 1923. Using their famous Circle Method and assum­
ing the Generalized Riemann Hypothesis, they proved that there 
exists a positive number N such that every odd integer n > N 
is a sum of three primes. In 1937, Vinogradov [12] employed his 
ingenious methods for estimating exponential sums to prove the 
Hardy-Littlewood conclusion without invoking the Riemann Hy­
pothesis. The result is therefore known as Vinogradov's Theorem. 
Vinogradov's proof actually implies a computable value for N, 
raising the possibility that the classical 3-primes problem can be 
completely settled by computation. For example, by carefully es­
timating the errors in Vinogradov's proof, Borodzkin [2] showed 
that one can take 

. 1 5 

JV = 33 . 
Unfortunately, this value is far beyond the minimum that would 
make the problem accessible to even the fastest computers. 

If instead of Z we consider the ring Fq[x] of polynomials in 
a single variable x over the finite field F^ of q elements, we can 
easily formulate, in direct analogy to the classical 3-primes prob­
lem, a polynomial 3-primes problem. To this end we observe that 
the analog of prime number is irreducible polynomial, of positive 
number is monic polynomial, and we need also: 
Definition. A monic polynomial M over F^ is called even if 
q = 2 and if M is divisible by x or x + 1 ; otherwise M is 
called odd (so, for all q ^ 2, all M are odd). 
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It is easy to show that there exist even monic polynomials of 
arbitrarily high degree which cannot be written as a sum of three 
monic irreducibles [5]. Moreover, just as 1, 3, and 5 in the classical 
setting are "too small" to have the desired representation, so in the 
polynomial setting are all linear polynomials (over all finite fields) 
and quadratic polynomials of the form x2 + a over even finite 
fields "too small" to have the desired representation [5]. Thus we 
must omit these cases from consideration. 

Definition. A monic polynomial M over F^ of degree r is said 
to be a 3-primes polynomial if it can be written as a sum of three 
irreducible monic polynomials over F^ , one of degree r and the 
other two of lesser degree. 

The following theorem provides a complete solution to the poly­
nomial 3-primes problem: 

The Polynomial 3-Primes Theorem. Every odd monic polynomial 
M of degree r > 2 over every finite field Fq (except the case 
M = x2 + a with q even) is a 3-primes polynomial 

The proof of this theorem falls naturally into three parts: 

1. An Asymptotic Theorem analogous to Vinogradov's The­
orem in the classical setting. 

2. Subtheorems which reduce the cases not covered by the 
Asymptotic Theorem to a finite, tractable number. 

3. A computer check of all remaining cases. 

In the remainder of this announcement, we summarize these 
three parts. 

II. THE ASYMPTOTIC THEOREM 

A complete exposition of the proof of the following theorem is 
contained in [7]. See also [3] and [10]. 

Asymptotic Theorem. For every degree r > 5 there exists a qr, 
depending on r and decreasing as r increases, such that if q >qr, 
then every odd monic polynomial of degree r over Fq is a 3-primes 
polynomial. Moreover, we have qr = 2 for all sufficiently large r. 

The method of proof is the Hardy-Littlewood Circle Method 
adapted to the function field setting. The analog for the unit circle 
T is the adéle class group Ck = Ak/k with k = F (x) (cf. [11]). 
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The normalized Haar measure dt on the compact A>vector space 
Ck is a natural replacement for the complex path integral around 
T. After the choice of the generator x of k, there is a canonical 
additive character E : A^ -• T which is defined as follows 

E(t) = eq(re$(tdx)) for teAk, 

where eq is the usual additive character on F^ . By the residue 
theorem, the discrete subgroup k of Ak lies in the kernel of E, 
and so E can be regarded as a character on Ck . 

For t e Ak , we introduce the functions 

Fr(t)= £ E(Pt) and Hr(t) = £ £(Pt) 
deg P=r deg P<r 

and observe in the familiar way that Fr(t) • H*{t) is a generating 
function for the number of representations N(M) of the monic 
polynomial M as a 3-primes polynomial. Therefore 

N(M)= [ F(t)H2(t)E{-Mt)dt 
JD 

where D c Ak is any fundamental domain for Ck. It remains 
to estimate Fr(t) by simpler functions and to choose D so that 
the error term is as small as possible. In estimating Fr{t), one can 
imitate the original Hardy-Littlewood line of attack because the 
analog of the Generalized Riemann Hypothesis is a consequence 
of Weil's celebrated proof of the Riemann Hypothesis for smooth 
projective curves over F . The resulting approximation to Fr(t) 
is good when the denominator 

all P 

of the adéle t satisfies 

degö(t)<r/2 and v^tj > r/2 + deg0(«), 

where oo is the infinite place of k. The union D of all t e Ak 

which satisfy these relations is the analog of the Farey dissection, 
and this D is indeed a fundamental domain for Ck . Just as in 
the Hardy-Littlewood approach to the classical 3-primes problem, 
"minor arcs" are not required. 

The end result of the work is an asymptotic formula for N(M) 
with a very good error term 

N(M) = (\lr)(Lr__x{q))2S{M) + 0(q7r/4/((q - l)(r - 1))) 
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where 
Lr-M)= Yl qlll 

KKr-1 
and S (M) is the "singular series." The Asymptotic Theorem then 
follows from the facts that 

Lr_x(q)>qrl{{q-\)(r-\)) 
and that S(M) is bounded below by a strictly positive constant 
which is independent of q. 

Now it is possible to make a careful evaluation of the constant 
in the error term of the asymptotic formula above, obtaining for 
each r > 5 a lower bound for qr (see [7]). The results of this 
evaluation are summarized in the following table. (This data is, of 
course, the polynomial analog of Borodzkin's astronomical N.) 

NUMERIC RESULTS FOR THE ASYMPTOTIC THEOREM 

For odd monic polynomials 
of degree r = 

2 - 4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

1 7 - 2 0 
2 1 - 2 4 
2 5 - 3 3 
3 4 - 4 1 

42 and up 

The 3-Primes Conjecture is 
true provided that q > 

not covered by Asymptotic Theorem 
2,231,753 

2933 
311 

97 
47 
29 
23 
17 
13 
11 
9 
8 
7 
5 
4 
3 
2 

It remains then to "fill in" these remaining cases. 

III. THE SUBTHEOREMS 

The first subtheorem covers the low degree cases at the top of 
Table 1. 

Subtheorem 1. Every odd monic polynomial M of degree r = 
2 , 3 , 4 , or 5 over every finite field Fq is a 3-primes polynomial 
except for the case M = x2 + a, q even. Every monic polynomial 
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of degree r = 6 is a 3-primes polynomial provided that q > 19. 
Every monic polynomial of degree r = 7 i ^ 3-primes polynomial 
provided that q > 211 but q ^ 256. 

See [4] and [5] for the q odd and # even cases respectively. 
The methods employed are primarily affine geometry over finite 
fields (as in Artin [1]), although the cases r = 6 and r = 7, q odd 
require in addition the Riemann Hypothesis for certain nonabelian 
Artin L-functions. 

Combining Subtheorem 1 with the Asymptotic Theorem does 
indeed reduce the polynomial 3-primes problem to a finite calcu­
lation, but as it stands an intractable one. For example, to check 
the 333 monic polynomials of degree 33 over F3 at a rate of one 
per millisecond would require about 176 years. More mathematics 
is needed. 

Subtheorem 2. If q and r are relatively prime, then it suffices to 
check for 3-primes representations only of polynomials with first 
coefficient 0 and second coefficient 0, 1, and, for q odd, some fixed 
quadratic nonresidue. 

Again, see [4] and [5]. This result says we can replace q2 checks 
by two (for q even) or three (for q odd) checks. It helps substan­
tially for the larger q 's remaining to be checked, but not much for 
the smaller q 's. For these, the following result is crucial: 

Subtheorem 3. Among monic polynomials of degree r over Fq, 
there exist irreducible polynomials with every possible choice of first 
s coefficients provided that 

r/2>s + logq(s+l). 

See the proof of Theorem 9.3 of [9]. This result says that given 
M of degree r, we can find an irreducible Px of degree r such 
that M - Px is monic of degree not much larger than r/2. For 
example, in the case q = 3 , r = 33, we are assured by Subtheorem 
3 of the existence of a Px such that M - Px is monic of degree 
19. The combination of the Asymptotic Theorem together with 
the three subtheorems has now reduced the problem to a tractable 
computation. 

IV. THE COMPUTER CHECK 

Application of all the preceding results reduces the polynomial 
3-primes problem to the following: for 85 separate combinations 
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of q and r (for example q = 256 r = 5, #= 199 r = 4 , . . . , # = 
2 r = 25, etc.), we must check that every monic polynomial (ex­
cept for odd polynomials when q = 2) with first coefficient 0 and 
second coefficient 0, 1, and (for odd q) a fixed quadratic non-
residue is a sum of two monic irreducible polynomials. This is 
still a large computation requiring a powerful computer. One of us 
(Effinger) programmed the IBM 3090 Supercomputer at the Cor­
nell National Supercomputing Facility to check these remaining 
cases. Algorithms were designed to: 

1. generate lists of irreducible polynomials, and 
2. check off the sums of appropriate pairs of irreducibles. 
For the former both the Berlekamp factorization algorithm for 

F [x] and an "extension field" algorithm were employed. For the 
latter extensive indexing was used. See [6] for the details of the 
algorithm design. 

On December 19, 1989, the IBM 3090 completed the list of the 
85 cases which needed to be checked. A total of 64.8 hours of cen­
tral processing was needed. A complete solution to the polynomial 
3-primes problem was then at hand. 

The authors gratefully acknowledge the support of the Cornell 
National Supercomputing Facility, which generously provided ac­
cess to its computers and user support resources. 
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