
BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 24, Number 1, January 1991 

MINIMAL SURFACES BOUNDED BY A PAIR 
OF CONVEX PLANAR CURVES 

WILLIAM H. MEEKS III AND BRIAN WHITE 

In 1956 M. Shiffman [9] proved several beautiful theorems con­
cerning the geometry of a minimal annulus A whose boundary 
consists of two closed smooth convex curves in parallel planes P{, 
P2. The first theorem stated that the intersection of A with any 
plane P, between P{ and P2, is a convex Jordan curve. In par­
ticular it follows that A is embedded. He then used this convexity 
theorem to prove that every symmetry of the boundary of A ex­
tends to a symmetry of A. In the case that dA consists of two 
circles Shiffman proved that A is foliated by circles in parallel 
planes. Earlier Riemann [7] described, in terms of elliptic func­
tions, all minimal annuli that can be foliated by circles in parallel 
planes (also see [2] for an analytic description of these surfaces as 
well as a computer graphics image of one of them). Together these 
results of Riemann and Shiffman yield a classification of all mini­
mal annuli with boundary consisting of circles in parallel planes. 

We shall call a compact minimal surface M stable if, with re­
spect to any nontrivial normal variation fixing the boundary, the 
second derivative of area is positive. If the second derivative of 
area is negative for some variation, then M is called unstable. If 
M is neither stable nor unstable, we will call it almost-stable. 

The theorem given below augments Shiftman's first theorem. 
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Theorem 1. If T is a pair of smooth convex Jordan curves in distinct 
parallel planes, then exactly one of the following holds: 

1. r is not the boundary of any connected compact minimal 
surface, with or without branch points. 

2. r is the boundary of exactly one minimal annulus and this 
annulus is almost-stable. In this case, T bounds no other connected 
compact branched minimal surfaces. 

3. r is the boundary of exactly two minimal annuli; one stable 
and one unstable. (Perhaps T is also the boundary of a connected 
higher genus minimal surface.) 

In certain cases it is known that every connected branched min­
imal surface with boundary T described in Theorem 1 is actually 
an annulus. For example, R. Schoen [8] proved that when T is 
contained in parallel horizontal planes and is invariant under re­
flection in two vertical planes, then every branched minimal sur­
face with boundary T is actually an annulus. Thus, in certain 
cases, Theorem 1 shows that T is the boundary of 0, 1, or 2 min­
imal annuli and no other connected branched minimal surfaces. 

The proof of Theorem 1, which we will later outline, is based on 
an analysis of the Gauss map of a minimal annulus with boundary 
T and a geometric approach to calculating the index of a minimal 
annulus with boundary Y. In the proof of Theorem 1 we rely on 
the description of the space of smooth embedded minimal annuli 
in R as developed in [ 12] and techniques from global analysis. 

Using Theorem 1 and Riemann's classification of minimal an­
nuli foliated by circles, we give a new and simpler proof of Shiff-
man's second theorem: A minimal annulus bounded by circles in 
parallel planes is foliated by circles in parallel planes. 

An important application of Theorem 1 occurs in proving 
uniqueness of the solution to a natural free boundary value prob­
lem, which we now describe. Suppose a is a Jordan curve in 
a plane P0 and Z is a compact branched minimal surface such 
that 9Z consists of a together with a nonempty collection of im­
mersed curves on a parallel plane P{. If Z is orthogonal to P{ 

along <9Z n Px and <9Z ^ a, then Z is called a solution of the 
free boundary value problem for a and P{ . If, with respect to any 
nontrivial normal variation of S that vanishes on a, the second 
derivative of the area functional is positive, then Z is called a 
stable solution to the free boundary value problem. Similarly, we 
can define when Z is unstable or almost-stable. 
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Theorem 2. Suppose £ is a solution of the free boundary value 
problem for a smooth convex plane curve a and a plane Px paral­
lel to the plane containing a. Then X is embedded. Furthermore, 
there exists a unique stable or almost-stable solution I to the free 
boundary value problem for a and Pl. This surface Z is an an-
nulus foliated by convex curves in parallel planes. 

Theorem 2 is related to Theorem 1 since Z together with its 
reflected image in Px is a minimal surface bounded by convex 
curves in parallel planes. The surface Z is a graph over its pro­
jection onto Px by [8]. We use this graphical property to prove 
that when I is stable or almost-stable then it must be an annulus. 
Since this annulus together with its reflected image is an annulus 
with boundary a pair of convex curves in parallel planes, Shiff-
man's first theorem implies Z is foliated by convex curves. 

Recall that a set in R is extremal if it lies on the boundary 
of its convex hull. By generalizing the techniques used to prove 
Theorem 1 we show: 

Theorem 3. The conclusions of Theorem 1 hold under the following 
weaker hypotheses: Y is a pair of convex planar curves such that 
Y is not contained in a plane and Y is extremal Furthermore, all 
minimal annuli bounded by such Y are embedded. 

An immediate consequence of Theorem 3 is the following gener­
alization of Shiftman's symmetry extension theorem. This theorem 
can fail even for a pair Y of circles when Y is not extremal. 

Theorem 4. Suppose Y is a pair of smooth convex planar curves 
and T is extremal. Then every symmetry of Y extends to every 
minimal annulus bounding Y. 

More generally we consider minimal annuli bounded by smooth 
Jordan curves on parallel planes. We prove the following nonem-
beddedness result. 

Theorem 5. There exists a pair of smooth Jordan curves in paral­
lel planes that bounds an immersed minimal annulus that is not 
embedded. 

It follows easily from Theorem 5 and the maximum principle 
that the space S of smooth immersed minimal annuli bounded by 
Jordan curves in two fixed parallel planes is not a path connected 
space. However, we are able to prove: 
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Theorem 6. If S c S is the subspace of embedded minimal annuli, 
then S is path connected. In fact, S is a contractible space. 

The theory we develop to prove Theorems 1 and 2 is quite gen­
eral and probably would be applicable in studying surfaces satis­
fying other reasonable geometric constraints. For example, moti­
vated by our work, Hoffman, Rosenberg and Spruck [3] have tried 
a similar geometric approach to describe the set of compact con­
stant positive Gaussian curvature surfaces bounded by a pair of 
convex planar curves in parallel planes. As in our work, they use 
the observation that the Gauss map for such a surface is one-to-
one. 

Sketch of the proof of Theorem 1. Consider the space ^ of smooth 
embedded minimal annuli in R3 with boundary curves in two 
fixed parallel planes. Let p: JP —> S? be the associated projection 
onto the space of pairs of smooth Jordan curves that are contained 
in the parallel planes. A basic result (see [11, 12]) is that ^ and 
^ are smooth infinite dimensional manifolds and p is a proper 
Fredholm map of index zero. 

In order to apply the powerful methods from global analysis to 
prove Theorem 1, one first needs some specific information about 
the "index of stability" of a minimal surface. The index of stability 
is the number of negative eigenvalues (counting multiplicity) of 
the second derivative of the area functional. Since the second 
derivative of area is positive for any variation of a stable minimal 
surface, a stable minimal surface must have index zero. 

Let A be a minimal annulus with convex boundary T e& . To 
get detailed information on the index of stability of A , we apply: 
a classical result of Schwarz [1]. If M is a compact minimal sur­
face and the Gauss map G is one-to-one on the interior of M, then 
the index of stability is equal to the index of A+2 on G(M), where 
A is the Laplace-Beltrami operator on S . A straightforward ap­
plication of the open mapping theorem shows that the Gauss map 
of A is one-to-one on the interior of A . With respect to A + 2, 
a proper subdomain of 5 can have at most one nontrivial eigen-
function with eigenvalues less than or equal to zero. Therefore 
Schwarz's theorem implies that the index of A is at most 1 and 
if A has index 1, then the second derivative of the area func­
tional has no zero eigenvalues; i.e., the projection p has trivial 
kernel. In particular A is either stable, almost-stable or unstable of 
index 1. 



MINIMAL SURFACES 183 

A surface X e Jf is called a regular point of /? : Jl —• £? if 
the derivative /^ : T^f —• Td^ë? has trivial kernel; and a € ^ 
is a regular value of /? if p_1(a) consists of regular points. By 
the Sard-Smale Theorem [10], almost all a G ? are regular values 
of p in the sense of Baire category. When a = T is a pair of 
convex curves, we have already identified the nonregular points of 
p~{ (T) as those annuli that are almost-stable. Thus for generic T, 
every annulus with boundary T is unstable of index 1 or is stable. 
From this point on, we will make the additional assumption: T is 
a regular value of p . 

Since p : J? —• W is a proper map, for a a regular value, 
p~\a) consists of a finite number of minimal annuli. Thisproper-
ness property of p has been used by White [12] to prove that the 
number of odd index annuli in p~\a) is equal to the number of 
even index annuli. Since the minimal annuli bounded by T have 
index 0 or 1, the number of stable examples equals the number of 
unstable ones. In particular, if T is the boundary of more than 
one unstable minimal annulus, then it bounds at least two stable 
minimal annuli. 

Suppose T is the boundary of a connected minimal surface 
X. Then using X as a barrier, the Geometric Dehn's Lemma 
of Meeks-Yau [6] shows that T is the boundary of a least-area 
minimal annulus A that lies "outside" X. Applying the properness 
property of p and the Meeks-Yau barrier argument, we prove that 
there exists a stable or almost-stable minimal annulus sf that is 
outermost in the sense that every compact minimal surface X with 
dX = T, lies inside the ball with boundary srf union the planar 
disks bounded by T. 

Suppose T is the boundary of another stable minimal annulus 
A inside $/ . It follows (by e.g., a minimax argument) that there 
is an unstable minimal annulus Au with boundary Y such that Au 

lies geometrically between $f and A , and Au is never tangent to 
s/ or A along T. Since Au lies outside A, a simple geometric 
argument shows that N(AU) c N(A) c S2, where N denotes the 
normal maps for these surfaces. Since larger domains of S have 
smaller first eigenvalue with respect to A^ + 2, Schwarz's theorem 
implies Au must be stable (since A is stable). This contradic­
tion shows that A cannot exist. Hence T is the boundary of no 
connected minimal surface or T is the boundary of exactly two 
minimal annuli, one stable and one unstable. 
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The proofs of Statement 3 of Theorem 1, in the case T is not 
a regular value of p, and of Statement 2 in Theorem 1 require 
some further arguments. 

All the results described here will appear in [4] and [5]. 
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