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PSL2(#) AND EXTENSIONS OF Q(x) 

HELMUT VÖLKLEIN 

INTRODUCTION 

We recall that an extension K/Q(x) of finite degree n is called 
regular if Q is algebraically closed in K. Tensoring with the com­
plex field C we obtain the extension ~K/C(x) of degree n . Since 
C(x) is the function field of the Riemann sphere P 1 , the field 
extension ~K/C(x) corresponds to a cover X —• P1 of Riemann 
surfaces. All but finitely many points of P1 have exactly n pre-
images in X, and these finitely many exceptional points are called 
the branch points. 

If a finite group G is the Galois group of a regular extension of 
Q(x), then G occurs as a Galois group over every number field 
(by Hubert's irreducibility theorem). This is the basis of all recent 
work on the inverse problem of Galois theory (by Fried, Matzat, 
Thompson, and others). An important invariant of a regular ex­
tension of Q(x) is the number r of branch points. Most work has 
been concentrated on the case r = 3 , using Thompson's concept 
of rigidity [Thl]. Indeed, the case r = 3 seems at first the natu­
ral one to work with, since it involves using r - 1 = 2 generators 
of the group under consideration, and it is known that every (fi­
nite) simple group can be generated by two elements; furthermore, 
the rigidity condition becomes too stringent for r > 3 , and there 
seems only one example known (due to Thompson) of a simple 
group for which rigidity holds with r > 3 . 

It appears that for r > 3 one has to include the action of the 
Hurwitz monodromy group (see §2), which goes back to [Frl]. In­
deed Matzat [Mai, Chapter III] has used this action to realize a 
few groups as Galois groups over Q(x) with r > 3 . However, by 
far the most simple groups (and related groups) that are known so 
far to be Galois groups over Q (or over certain number fields) have 
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been realized with r = 3 : e.g., over Q, the monster group [Thl] 
and several other sporadic simple groups ([Ma2, HS, Hunt, etc.]), 
the groups PSL2(p) for primes p ^ ±1 ( mod 24) [Sh, MM], 
the groups PSL3(/?) for primes p = 1( mod 4) [Th2], the orthog­
onal groups 0^1 ! (2) for primes I > 11 with 2 as a primitive 
root mod t [Th3]), the exceptional Chevalley groups G2(p) for 
primes p > 5 ([Th4, FF]), the groups PSL2(p

2) for primes p = 
±2 ( mod 5) [Fl], certain special unitary groups SU3(/?) [Malle2], 
certain groups E% (p ) [Malle 1 ]. 

In particular, we see that the Chevalley groups that have been 
realized over Q comprise only groups over fields of prime order 
p, or order p2. Here we show that indeed not all simple groups 
can be realized with three branch points: 

Theorem. Let p be any prime. Ifn>S then the group PSL2(p
n) 

does not occur as Galois group of a regular extension of Q(x) with 
three branch points. 

This indicates the need to consider the case of r > 4 branch 
points, as in [FrTh; Fr2; Mal, Kap. Ill; FrVo]. It was brought to 
my attention that J. Thompson has obtained similar results as in 
the above theorem (unpublished) for PSL2(3"). 

The proof of the theorem will be indicated in §3. In §2, we 
discuss how the groups PSL2(#) relate to the approach via Hurwitz 
spaces and Nielsen classes, due to M. Fried [Frl] and developed 
further in [FrVo]. 

2. HURWITZ SPACES AND PSL2(#) 

The general results described in §2.1 are contained in [Frl, Fr2, 
FrVo]. 

2.1. The General Set-up. Let G be a finite group and let & = 
(Cj, . . . , Cr) be an r-tuple of conjugacy classes of G. Let TV be 
the least common multiple of the orders of the elements in these 
conjugacy classes. We assume that for each integer m prime to JV 
and for each (ox, . . . , ar) e Cx x • • • x Cr we have (cr™, . . . , crr

m) e 
^TC(I)

 x " ' x ^n(r) f° r s o m e n € Sr • (This generalizes the usual 
notion of a rational conjugacy class, so we say ^ is a rational 
r-tuple of conjugacy classes). 

Let Ni(8") be the set of all (ax, . . . , ar) e Gr with < ax, . . . , 
ar >- G and ax ...or - 1, such that {ox, . . . , ar) e C,x) x 
• • x Cff/rj for some n e Sr. Let A denote the group of inner 
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automorphisms of G (resp., the group of those automorphisms 
of G that permute the conjugacy classes C{, . . . , Cr). Then we 
define the set Nm of inner Nielson classes (resp., the set 7Vab of 
absolute Nielsen classes) to be the quotient of Ni(^) by the (com­
ponentwise) action of A. 

Let P1 be the Riemann sphere, and let ^ ( r ) be the space of 
r-tuples (Xj, . . . , xr) of pairwise distinct points from P 1 . Fur­
ther, %r denotes the quotient of ^ ( r ) by the natural action of 
Sr (permuting xx, . . . , xr). View Wr as the space of all un­
ordered r-tuples of distinct points from P 1 . The fundamental 
group of Wr is the Hurwitz monodromy group Hr. It has gener­
ators Q{, . . . , Qr_x (the "simple braidings"), which define a per­
mutation action of Hr on Nm and on Nah by the following rule: 

Qt sends the class of (a{, . . . , ar) 

to the class of (al, . . . , ^^i+ï^ , <ri9 > o r ) . 

These permutation representations of the fundamental group of 
^ define covering spaces ^m (resp. ^ a b ) of %fr, fitting in the 
sequence 

By the theory of covering spaces, the connected components of 
•Tab and %f'm correspond to the orbits of Hr on 7Vab and on 
Nin, respectively. 

The space ^ a b is a moduli space for Galois covers (of Rie­
mann surfaces) ƒ : X —• P1 with monodromy group G and with 
the property that some description of branch cycles of ƒ lies in 
Ni(^T). That is, each point p e ^ a b corresponds to exactly one 
equivalence class of such covers ƒ , and thereby *F(p) is the un­
ordered tuple of branch points of ƒ (see [Fr2, §3.3]). 

For technical reasons we now assume G has a self-normalizing 
subgroup H containing no normal subgroup ^ 1 of 6 , such 
that the conjugacy class of H is invariant under Aut(G). (This 
is true for all simple groups G.) When this holds we are able 
to assert a key property of the space %?m. The Galois group 
T = Gal(Q/Q) permutes the connected components of the spaces 
^ a b and X m , and if such a component is fixed by T then it can 
be viewed naturally as an algebraic variety defined over Q. Now 
let p0 be a point on such a T-fixed component %? of X i n . If p = 
O(p0) is a Q-rational point of O ( ^ ) then each cover ƒ : X -» P1 
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corresponding to p can be defined over Q, and if p0 is already a 
Q-rational point then Q(X) is Galois over Q(P*) = Q(x) ; in the 
latter case, Q(X)/Q(x) is a regular Galois extension with Galois 
group G (and r branch points). 
2.2. Examples for r = 3. Let G = PSL2(p) for a prime p > 3. 
If G has elements of order m < 4, then these elements form a 
single conjugacy class m . 
Example 1. Suppose p = ±1 ( mod 8), and ^ = (4 ,4 ,4) . Then 
SL2(p) has two conjugacy classes C, C' of elements of order 8, 
and Ni(^) is the disjoint union of the image of Ni(C, C, C) and 
of the image of Ni(C', C', C'). Thus, by Lemma 2, Nah consists 
of two elements, both of which are fixed by the Hurwitz group H3. 
This means that the space ^ a b consists of two components. It 
follows from the "branch cycle argument" of [Frl, p. 63] that these 
components are interchanged by T. Therefore none of the covers 
ƒ parametrized by ^ a b can be defined over Q. 

Example 2. Suppose again p = ±1 ( mod 8 ), and ^ = (4 ,4 ,3) . 
Then the triples (ax, a2, a3) e 4 x 4 x 3 with oxa2a3 = 1 fall into 
two classes under PGL2(/?), with the triples in one class generating 
G and the triples in the other class generating a subgroup isomor­
phic S4 (cf. [Malle3, 6.2]). Thus only the first kind of triples 
appear in Ni(^), and iVab consists of three elements, which are 
permuted transitively by the Hurwitz group H3. Hence ^ a is 
irreducible, and can be identified as ^(3)/((12)). It follows that 
all the covers ƒ parametrized by ^ a b and having rational branch 
points can be defined over Q. Furthermore, the space JPm is irre­
ducible if and only if p = ±1 ( mod 24 ); in this case, ^ i n = ^ (3 ) 

has lots of Q-rational points, and we have realized G as the Galois 
group of a regular extension of Q(x) with ramification structure 
(4 ,4 ,3) . This was done by a different method in [MM, Satz 2] 
and in [Malle3, 6.4]. If p = ±1 ( mod 24), then ^ i n has two 
components, and it is not clear whether they are interchanged by 
T or not. If not, then we have again realized G as Galois group 
of a regular extension of Q(x) with three branch points. This 
is interesting because if p = ±1 ( mod 24 ) and 7 is a quadratic 
residue mod p, then it is not known so far whether G occurs at 
all as a Galois group over Q (cf. [Sh, MM]). 

2.3. Increasing the number of branch points. Consider again G = 
PSL2(#). For r = 3 the problem is that Ni(^) may be empty (as 
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in §3 below) or %fm may not be connected (as in §2.2). Both of 
these difficulties disappear for larger r : Firstly, it follows from a 
theorem of Conway and Parker [CP] that if W contains the conju-
gacy class of involutions a suitably large number of times then <%*m 

will be connected. Secondly, the cardinality of Nm grows very fast 
with r, it will roughly be of the order of magnitude # 2 ( r - 3 ) . Un­
fortunately, the latter fact creates new difficulties: When %fm is 
a high degree cover of %r then it becomes very difficult to study 
this variety, and in particular to find a rational point on it. 

3. THE PROOF OF THE MAIN THEOREM 

We give a proof of the theorem stated in the Introduction in the 
case n > 12 : 

By [Frl, Corollary 5.2] we know that if a finite group G occurs 
as Galois group of a regular (Galois) extension of Q(x) with three 
branch points, then G has generators ax, a2, a3 with axo1al = 1 
that satisfy: 

( 1 ) For any integer k prime to the order of each a. there is 
k 

a permutation n e S3 such that ai is conjugate to an^ 
for i = l , 2 , 3 . 

Now let p be a prime, and G = PSL2(#), g = pn . Let ox, a2, o3 

be generators of G with oxa2a3 — 1, satisfying (1). We will show 
that this forces n < 12. 

We need the following elementary properties of the group G = 
PSL2(#) (see e.g., [Hu, Kap. 11,8]): Each g G G is either of order 
p or of order prime to p ; in particular, g is a p-element or a 
//-element. Furthermore, for any integer k we have: 

If g e G is a //-element, then g is conjugate to g if and 
only if g = g 

If g is a /7-element, then g is conjugate to g if and only if 
k is a (nonzero) square mod p . 

Let ^(cr) denote the number of generators of the cyclic group 
((7Z). The following is an easy consequence of (1): 

Lemma 1. (a) Suppose p ^ 2. Then either none or two of the a{ 's 
arep-elements. If, say, a2 and a3 are p-elements, then (p{ox) < 2. 

(b) Suppose that either p = 2 or none of ax, a2, a3 is a p-
element. Then either {(p{ox), (p(o2), (p{o3)} c { 1 , 2 , 4 } or(p(ox) 
= (p(°2) = P(ff3)

 = 6 • 
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Now choose elements tx, r2 , r3 e SL2(q) mapping to ax, a2, 
cr3, respectively. Then these elements generate SL2(#). Since 
°\G2°z = 1 ? we can arrange it that ixx2x^ = 1. Set tt = t r ^ ) for 
i = 1, 2, 3 . If tx = ±2 then ax is a p-element. Thus, by Lemma 
1(a), we may assume with no loss that tx ^ ± 2 . (Note that for 
p = 2 each p-element is an involution.) Let K be the subfield 
of F^ generated by tx, t2, t3. Then i£ = F^ by Lemma 2 below. 
Thus from the following assertion we get n < 12, as desired. 

(2) [ * : F p ] < 1 2 . 

To prove (2), note that (p{xt) = (p(ot) or (p{xt) = 2(p{oi). Let I be 
the set of those i = 1 , 2 , 3 for which ai is a //-element. From 
Lemma 1 it follows that either all of the ç{Tt), iel, divide 8, 
or all of them divide 12. 

Clearly, K is contained in the field generated by the eigenvalues 
of the T., i e l . The eigenvalues £,-> Ç,-1 of such a i, are 
primitive ^-th roots of unity, where et is the order of r . . Thus 
the degree [Fp(C[) : Fp] is a divisor of <p(Tt). Now it follows from 
the last paragraph that either all the Ç., i e I, lie in F g, or they 
all lie in Fpn . Thus K c Fp8 or A: C Fpi2. This proves (2). 

Remark 1. The case ^(tj) = (p{z2) = <p(r3) = 12 is not excluded 
by condition (1), but it actually cannot arise from a realization 
of G as Galois group of a regular extension of Q(x) with three 
branch points. This can be seen as in Example 1. Once this case 
is excluded, the above shows that n < 8, completing the proof of 
the theorem. 

Remark 2. For p = 2 we get more precisely that PSL2(2") occurs 
as Galois group of a regular extension of Q(x) with three branch 
points if and only if n < 3 . (The "if-part" is well known, see 
[Mai] for example). 

Lemma 2. Let tx, t2, t3 be elements of the field F , q = pn, and 
suppose tx ^ ±2 . Then the following hold: 

(a) All triples (TX , r2 , T3) of elements of SL2(#) with the follow­
ing properties are conjugate under GL2(q) : TJTJTJ = 1, ^ , r2 , r3 

do not have a common eigenvector, and tr(Tf.) = ti (i = 1, 2, 3). 
(b) If any such triple (rx, T 2 , T3) as in (a) generates SL2(^r), 

/̂ẑ « the traces tx, t2, t3 generate the field Fq . 
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Proof of (a). Let (r{, T2 , r3) be a triple with the above properties. 
The eigenvalues Ç, C_1 of xx are determined by ^ , and they 
are distinct since tx £ ±2. If £ $ ¥ we embed GL2(q) into 

GL2(#2) as the group of all matrices 

C i ) 
with rf = a and c = &, where the map x h-> x is the generator of 
Gal(F 2/F ) . Then we may assume that rx is the diagonal matrix 
diag(Ç, C"1)- Take T2 to be 

T = (a b \ 

Since the product of the T. 's is 1, this gives t3 = tr(r3) = Ça + 
C_1(*2 ~ à) • This determines a . Then the product èc is deter­
mined by the condition det(r2) = 1. Since r{, r2, T3 do not have 
a common eigenvector, we have be ^ 0. These conditions deter­
mine the matrix r2 up to conjugacy by diagonal matrices (which 
centralize xx ): This is clear if Ç e Fg . In the other case, note that 
the norm bb = be of b over F^ is determined by the above con­
ditions. Since the diagonal matrix diag(>/, ff) conjugates r2 into 
a matrix with right upper entry rj~lfjb, and since every element 
of F 2 of norm 1 is of the form rfxf\, it follows that r2 is de­
termined up to conjugacy by matrices diag(rç, f\). This completes 
the proof of (a). 

Proof of '(b). Let a be any automorphism of the field F^ that fixes 
f j , £2, t3, and let â denote the automorphism of SL2(#) induced 
by a. If ( i j , r2 , T3) is a triple as in (a), then â maps this triple to 
another one with the same properties. By (a) it follows that â has 
the same effect on this triple as some automorphism /? induced 
by GL2(#). Now if ( t j , T 2 , T3) = SL2(#), then it follows that 
a = /?. Thus â preserves the trace of the elements of SL2(#), 
and so a is trivial. That is, each automorphism of F that fixes 
t{, t2, t3 is trivial, which proves F (^ , t2, t3) = Fg . D 
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