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OF ITS GENERALIZATIONS 
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Let T be the unit circle in the complex plane. Let $/ be the 
Banach algebra of all complex valued continuous functions on T 
with absolutely convergent Fourier series. 

Norbert Wiener [10] proved that if any ƒ in sf is invertible 
in the ring of continuous functions on T, then \/f also is an 
element of sf . Paul Levy [7] generalized Wiener's result, showing 
that for each ƒ in sf and each complex analytic function O that 
is defined on a neighborhood of f(T), $(ƒ) belongs to stf . 

Levy did so by an argument that shows, more generally, that 
0(ƒ) belongs to sf whenever ƒ is in J / and O is analytic on 
some neighborhood of f(T) in C . Later, G. E. Silov [9] estab­
lished such a result for a class of Banach algebras of continuous 
functions that includes sf . Silov's proof uses the Cauchy-Weil 
integral formula for an analytic function of several complex vari­
ables. 

1. AN INTEGRAL FORMULA 

Here, we prove the several variable form of the Wiener-Levy 
theorem by showing that for each ƒ in sf and each O analytic 
on a neighborhood of ƒ (r) in Cd , 0 ( ƒ ) is given by a one variable 
Cauchy integral formula for a related $f -valued function that is 
analytic on a neighborhood of Y in the plane. 

Let u be the identity function restricted to T, viewed as an 
element of sf . If z is at a positive distance from T, either 1/z 
times the geometric series in u/z or -l/u times the geometric 
series in z/u is an inverse for z - u in s/ . Therefore, as an 
sf -valued function of z , l/(z - u) is uniformly continuous on 
the complement of each neighborhood of T. 

For each n , let fn be the mapping from F to Cd each coordi­
nate of which is the truncation from -n to n of the Fourier series 
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of the corresponding coordinate of ƒ . Then fn is an element of 
sf . Let fn{z) be the induced mapping from the punctured plane 
to C whose coordinates are the polynomials in z and 1/z gotten 
by substituting z for u. 

View C as a subspace of sf by regarding C as a subalgebra 
of $/ . Use the local power series expansions for O to extend it 
to be an sf -valued analytic function on a neighborhood of f(T) 
in j / d . 

For each ƒ and n9 f - fn + fn(z) maps the punctured plane 
into sf , and for n large enough and r < 1 < R sufficiently close 
to 1, it maps a planar neighborhood of {z : r < \z\ < R} into the 
domain of O in sf . Therefore, if T(R, r) denotes the oriented 
boundary of this annulus, 

2TTI y z - M 
r(fl,r) 

is an element of J / . 
Because convergence in sf implies uniform convergence on T, 

the value of I at each p in T is 

2ni J z - p 
T(R,r) 

For each p , the numerator of the integrand is an analytic function 
of z on a neighborhood of {z : r < \z\ < R} , and the expression 
above is a Cauchy integral formula for its value at z = p. But 
that value is 0(/(p) - fn{p) + ƒ„(/?)) = *(ƒ(/>)). Hence, ƒ is an 
element of J / that, as a function on T, is equal to 0(ƒ). 

2 . A . P . C A L D E R Ó N ' S INTEGRAL FORMULA 

If h is any complex valued analytic function on a neighbor­
hood of T, its Fourier series is the restriction to T of its Laurent 
expansion on some {z : l/R < \z\ < R} . Cauchy's estimate shows 
immediately that h is in sf and that WhW^ < M/{R-l), where 
M is any bound for h on {z : 1/i? < \z\ < R} . 

Maintaining the notation of the previous section, it follows that 
for e > 0 sufficiently small and n = n(e) sufficiently large, if 
9(e) is the rf-fold product of the circle of radius e about 0 in 
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C, then 
{2Ki)"'I d(e) 

defines an element of s/ . Here n is the product mapping from 
sfd to sf . If for each p in T, we set dn(p9 e) = fn(p) + 0(e) 
and v = fn(p) + w , we can reason as above to get 

dn(p,e) 

But the expression above is a ^/-dimensional Cauchy integral 
formula for the value of O(v) at v = f(p) in C . Hence / is 
an element of s/ that as a function on T is equal to 0(ƒ). 

This lovely and illuminating idea was discovered more than 
forty years ago by A. P. Calderón. For the case d = 1, and with 
the functions of class C given the role played here by the ones 
that are analytic in a neighborhood of T, it can be found on p. 
246 of volume I of the 1959 edition of A. Zygmund's treatise, 
Trigonometric series [12]. 

3 . A DIVISION LEMMA 

Let 3$ be the Banach algebra of all complex-valued continuous 
functions on R that are Fourier transforms of elements of Ll(R). 
The £% norm of any such function is taken to be the L1 (R) norm 
of the element of which it is the transform. 

If ƒ is the Fourier transform of F, we let fn denote the 
Fourier transform of the product of F with the characteristic 
function of [-n, n]. Thus fn is a sequence of entire func­
tions whose restrictions to R converge in ^ to ƒ . Because 
the <â?-norm dominates the sup norm over R, fn also converges 
uniformly to ƒ on R. 

Wiener used his lemma about the group of units of s/ to prove 
a certain division lemma for 38 . However, here we depart from 
Wiener's approach and show instead how each of the two integral 
formulas for the units lemma for sf can be modified to get similar 
ones for the division lemma for âS. The constructions that we 
give work also for $f . 

Division lemma. If ƒ and g are in 3§, and ƒ is bounded away 
from zero on the support of g, then g/f is in &. 
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Proof. Because functions in 38 vanish at infinity, the lower bound 
for | / | on the support of g determines a finite interval containing 
that support. 

Two integrations by parts and the Fourier inversion theorem 
show that 38 contains every C2 function with compact support. 
Let ô be such a function that is 1 on the support of g and on 
whose support ƒ is bounded away from 0. Then g/f = g(S/f). 
So we may assume that g is of class C . 

In that case, if |iu| = e > 0 is so small and n = n(e) is so large 
that fn + w is bounded away from zero on the support of g, then 
two integrations by parts show that </>n(w) = g/(fn + w) maps 
r(e) = {w eC:\w\ = e} continuously to 3S . 

If n also is taken so large that || ƒ - fn\\# < e , then the sums 
of the positive powers of (f-fn)/w converge uniformly on T(e) 
to an element of 3S that equals \/{w+fn-f)-\/w as a function 
on R. Therefore, the Calderón type integral 

1 f (j>n{w)dw 

2ni J w + f n - f 
r(€) 

defines an element h of 3S . Because convergence in & implies 
uniform convergence on R, h(p) vanishes off the support of g 
and on it is given by a Cauchy integral formula for the value of 
&(v) = g(p)/v at ƒ(/?). Hence, h = g/f on R. 

Second proof. We may assume that g is of class C and sup­
ported on a finite union of intervals /? on which ƒ is bounded 
away from 0. Two integrations by parts show that if v is the 
identity function on R, then g/(z - v) is uniformly continuous 
as a ^-valued function of z on the complement of each neigh­
borhood of ft in C. 

For n sufficiently large and e = e(n) > 0 sufficiently small, the 
sums of the positive powers of {f — fn)/fn(z) converge uniformly 
on the e-neighborhood of ji to an element of 3S that equals 
! / ( ƒ - ƒ „ + ƒ„(*))-!/ƒ„(*) as a function on R. 

Therefore, if d is the oriented boundary of any sufficiently 
small neighborhood of /?, then by a familiar line of reasoning, 

_L f 1 Sdz 
2niJ f-f +f(z) z-v 

d 

is an element of 3S that, as a function on R, is equal to g/f. 
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4. WIENER'S GENERAL TAUBERIAN THEOREM [10] 

Theorem. If b is any bounded linear functional on L*(R), its 
convolution with every member of Ll (R) vanishes at + oo provided 
that it does so for at least one member whose Fourier transform has 
a continuous inverse on R. 

Proof. If AT is in L1 (R) and b*K vanishes at + oo, then so does 
the convolution of b*K with each F in Ll(R). But (b*K)*F = 
b*(K*F)9 and the set of G such that b * G vanishes at + oo is 
closed in Ll(R). Hence, if b*K vanishes at +00, this condition 
persists when K is replaced by anything belonging to the closure 
of {K*F:FeLl(R)}. 

By the division lemma, if K has a continuous inverse on R 
and G has compact support, then G/K is the Fourier transform 
of some element F of L !(R). Hence, by the inversion theorem, 
G = K * F . Because every element of Ll(R) is a limit of ones 
whose Fourier transform has compact support, the argument of 
the preceding paragraph establishes the desired result. 

5. WIENER'S PROOF OF THE UNITS LEMMA 

Let us compare Wiener's own proof of the units lemma, and 
Levy's generalization of it, with the ones given by the integral for­
mulas of §§1 and 2. The heart of it begins with a demonstration 
that for a certain one parameter family of functions Ur in sf , 
each of which is constantly 1 on some neighborhood of 1, if 
for each ƒ in sf and p in T, we set f{x) = f(px), then 
(fp - f(p))Ur -* 0 in sf as r —• 00, uniformly for p in T. 

It follows from this that if \f{p)\ > 0 and r is large enough, 
then the geometric series in (1 - fp/f(p))Ur is an inverse for 
f{p) + {fp - f{p))Ur in sf . Hence, because fp and f{p) + 
{fp - f(p))Ur agree near 1, the composition of this geometric 
series with x —• x/p is an element h of sf that equals \jf on 
a neighborhood of p . 

Therefore, each subset S of T on which ƒ is bounded away 
from 0 can be covered by finitely many arcs on each of which ƒ 
is continuously invertible by an element of sf . Thus, with the 
aid of any partition of unity in sf that is subordinate to these 
arcs—say, by functions of class C , we can construct an element 
of sf that is a continuous inverse to ƒ on all of S. So, if ƒ is 
bounded away from 0 on T, then ! /ƒ is an element of sf . 
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Paul Levy observed that the same line of reasoning works for 
any analytic function <P(w) in place of l/w , because all that we 
need are the local power series expansions about points of the form 
ƒ(/?). For the same reason, the argument works for any ƒ in sfd 

and O analytic on a neighborhood of ƒ(r) in Cd . 
Wiener chose Ur to be a one parameter family of trapezoidal 

functions—viewing a function on R supported on a closed subin-
terval of (—n,n) as a function on T that vanishes near /, and 
showing that for functions supported on any one such subinterval, 
the sf and âS norms are equivalent. However, the short com­
putation that he made to prove (f - f{p))Ur -+ 0 as r —• oo 
can be used to show, more generally, that for all V and g in 
38 , if Vr(x) = V(rx) and gp(x) = g(p + x), then (gp - g[p))Vr 

converges to 0 in 3S, uniformly for p in R. 
For another simple proof of this last assertion, note first that 

because Vr and V are equal in norm, it suffices to prove it for 
g and V belonging to some dense subset of 3S. So we may 
suppose that g and V are Fourier transforms of compactly 
supported continuous functions, G and v. In that case, it is 
especially easy to check that \\(gp - g{p))Vr\\^ is bounded above 
by ff\G(x)\\v(t-x/r)~-v(t)\dxdt, and that the latter converges 
to 0 as r —• oo. 

6. THE COMMON IDEA 

Like Wiener's proof of the units lemma, Calderon's method 
exploits the observation that if we view C as a subalgebra of sf , 
then the power series expansions for O(tu) = l/w extend it to be 
an s# -valued analytic function near C* in sf . Our own method, 
like Levy's, employs the generalization of this to the case that O 
is an arbitrary complex analytic function. 

Each method involves a trade. Putting Tl(w + fn- f) in the 
denominator of the integrand forces us to put 0(/w + w) in the 
numerator. This works only if we start out knowing a strong form 
of the result for fn in place of ƒ . Putting $>{f - fn+fn{z)) in the 
numerator requires no such prior knowledge about fn . But it is 
parasitic upon the ordinary Cauchy integral formula for functions 
analytic on a neighborhood of T. 

Comparing the arguments in §§1 and 2, this may seem to be a 
distinction without a difference. As evidence that it is not, consider 
the question of showing that <&(ƒ) is in ^ whenever ƒ is in 
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38d , O is analytic on a neighborhood of /(R) U {0} in <ƒ and 
O(0) = 0. 

Even though fn is analytic on a strip about R, we lack a coun­
terpart to the Cauchy integral formula over T(R, r), and this 
blocks a straightfoward application of the method of § 1. 

On the other hand, it easily is verified that the class % of com-
pactly supported C functions is dense in 38, and also that for 
each g in I? , if O is analytic on a neighborhood of g(R) in 
C and e > 0 is sufficiently small, then w —• 0(g + w) - O(tu) 
maps the support of 9(e) continuously to ^ . Consequently, we 
can employ the method of §2, replacing sf by 38 and /^ by a 

suitable g in I? , to show that if 0(0) = 0, then J is an element 
of 3S that, as a function on R, is equal to 0( ƒ ) . 

To see that I? is dense in 38, observe that if ƒ is any com­
pactly supported element of 38 and V is any element of % for 
which ƒ = fV, then /n V is a sequence in J? that converges to 
ƒ in 38. 

To see that for g in <§" and e > 0 sufficiently small, 
0 (g + tu) - Q>(w) is a continuous ^-valued function of w in 
ö(e), factor it through I? and use two integrations by parts to 
verify that the 38 norm of any member of <£? is dominated by its 
C norm times the length of any interval on which it is supported. 

7. GENERAL SETTINGS 

The argument just given works equally well when R is replaced 
by a differentiable manifold M and 38 by the completion of 
C™(M) in an algebra norm that dominates the sup norm but, for 
each compact subset of M and some k e N , is majorized by the 
Ck norm on the subalgebra of C°° functions supported in that 
set. 

Likewise, for the argument used in §2, we can replace T by 
a compact K c Cm and sf by the completion of W(K) in an 
algebra norm that dominates the sup norm on K but is majorized 
by the sup norm on each compact neighborhood of K. Here, 
Jf(K) is the algebra of functions analytic about K. 

Suppose B c C(K) is the completion of %f{K) in an algebra 
norm that dominates the sup norm. To prove that the B norm is 
majorized by the sup norm on each compact neighborhood of K, 
it suffices to show how to construct, inside any such neighborhood, 
a compact analytic polyhedron containing K and a Cauchy-Weil 
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type integral whose kernel is a continuous J?-valued function on 
the support of the cycle over which the integral is defined. This, or 
something very like it, also is what we need to construct a 5-valued 
integral formula of the kind presented in § 1. 

8. SlLOV'S THEOREM REVISITED 

These considerations allow us to make a certain conceptual sim­
plification in those proofs of Silov's generalization of the Wiener-
Lévy theorem that use a Cauchy-Weil integral formula. In them, 
even if we already have such a setup for K and B, for each ƒ in 
Bd we must pass to the graph of ƒ in Cm+d , lift B to an algebra 
on it, and create a similar environment of analytic polyhedra and 
Cauchy-Weil type integral formulas. 

But once we have such an environment for K, there is no need 
to leave it. Given any ƒ in Bd and O analytic on a neighborhood 
of ƒ (K) in C , by taking a g sufficiently close to ƒ in B , each 
coordinate of which is analytic on a neighborhood of K, and using 
either of the two methods presented here, we can express <I>(ƒ) 
either as a J9-valued Cauchy-Weil type integral of 0( ƒ - g + g(z)) 
or as a 5-valued Cauchy integral of 0 (g + w)/Tl(g + w - ƒ) over 
some d(e). 

To see why this sometimes may be a good thing to do, we need 
only contrast the treatment accorded to analytic functions of mem­
bers of sf by the methods presented here with their handling by 
the usual proofs of Silov's theorem—for example, in [2] or [4]. 
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