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MAIN RESULTS 

Let H0 = - A , where A = (d/dxj2 + ••• + (d/dxn)
2 is the 

Laplacian in Rn . For f e R, one can define u(-, t) = eltH°f using 
the spectral theorem. The function one obtains is the solution to 
the time-dependent Schrödinger equation 

ƒ idu/dt + H0u = 0 
W ( x , 0 ) = ƒ(*). 

Since the kernel of eitH° is (4nit)~n/2elx~yl2/4it, it is clear that the 
solution is dispersive in the sense that 

(2) ||M(., onL,< . < cr l , ( 1 / p-1 / 2 ) | | / | |L , ( R . ) , t > o, 
if 

(3) 1 < P < 2 , and l / p + l / / / = l. 

It is well known that the local decay estimates (2) are useful in 
studying nonlinear Schrödinger equations (see [8, §XI.13], [11]). 
On the other hand little seems to be known when one replaces the 
free operator HQ by more general Hamiltonians 

(4) H = -A + V(x), 

even when the potential V is in C^°(RW). Obviously, one has 
to assume that H has no bound states for an estimate like (2) to 

it M 

hold for u = e ƒ . If in addition n > 3 and if one assumes 
that there are no half-bound states (i.e., zero resonances) the best-
known decay estimates seem to be 
(5) 

(X)-au(-, t)\\L2{Rn) < crn/2\\(x)a'/nt2(Rn), (x) = v i T w 2 
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if V is bounded and decays sufficiently fast at infinity, and the 
exponents a, a are large enough, (see Rauch [7], Jensen and 
Kato [4], and Jensen [2, 3].) In the applications, the presence of 
the radial weights in (5) makes these estimates less useful than 
estimates like those in (2) (see [10]), but it is well known that they 
are needed if one is going to use spaces involving the square norm. 

In our results, we need to assume some regularity on the poten­
tial, but we get the appropriate generalization of (2). Specifically, 
we shall require 

ƒ (x)aV(x): We ^W\ some a > In, e > 0 
(6 ) \VeL\Rn). 

The first assumption means that multiplication by (x)aV sends 
the usual L Sobolev space We into itself, and it would always 
be fulfilled when {x)aV e Lip(g) (uniformly). Undoubtedly the 
assumption regarding a can be improved, and at the expense of 
simplicity we can show that a > n is sufficient. 

If Pc denotes the projection onto the continuous part of the 
spectrum of H (i.e., (0, oo) ), then our main result is the follow­
ing: 

Theorem. Let n > 3 and V satisfy (6). Then, if 0 is neither an 
eigenvalue nor a resonance for H, 

(7) lk'"VllL/ ( in < cr 'W'-^H/ i i^ , , t > o, 

if p and p are as in (3). 

The spectral assumptions on H are probably necessary to get 
the optimal decay rate as in (5) (cf. [2, 3]). But in certain cases we 
can show that there is slower decay as t —• oo if the assumptions 
are relaxed. We should also point out that when the dimension is 
> 5 the resonance condition is automatically fulfilled since there 
can be no half-bound states in this case. This assertion just follows 
from the fact that the fundamental solution for H0 is in L near 
infinity when n > 5 . 

The proof of (7) splits into two parts: a "high-energy" estimate 
and a "low-energy" estimate. To be more specific, suppose that 
ƒ É [X)dX is the resolution of the identity associated to H. Fix 
P e C°°(R) satisfying fi(k) = 0 for -oo < X < 1/2 and p{X) = 1 
for 1 < X < oo. We then define high- and low-energy functions 
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associated to Pcf by 

fM = ffiWM)E'(X)fdX 

ÏM = j[l-PWM)\E!(X)Pcfdk9 

where M > 0 is a large number that depends on V. Note that 

The first step in the proof of (7) is to show that 

(7.1) \\etHfM\\LP'<Ct-n{llp-{l2)\\f\\L,, 

if M is large enough. Here it turns out that one only has to assume 
(6); that is, (7.1) is true for any Hamiltonian H, even if 0 is an 
eigenvalue or resonance and the quantity M depends only on the 
constants in (6). The proof of this high-energy estimate involves a 
bootstrapping argument which uses DuHamePs formula and two 
main estimates. The first one is that 

K"° f I I e-is^Ve^HAe-is^Veis'H\ 

| • ||(Li Loo} denotes the Ll —• L°° operate 

\{L{ ,L°°) 

3r norm. where || • ||(Li LOO) denotes the L —• L operator norm. This 
estimate follows from an argument which uses the Fourier trans­
form. It is here that the second assumption in (6) is used. The 
other main ingredient in the proof of the high-energy estimate is 
the "local smoothing" property of the free Schrödinger equation: 

||<x)-1/2-*(/ + H0)
i/4eilH°/||t2(Rnx[0) ,„ < C7.H/ | | i V ) , e > 0. 

This was proved independently by Sjölin [9] and Vega [13] and 
Constantin and Saut [1]. In the part of the argument which uses 
this estimate the first assumption in (6) is needed. Here it turns 
out that we also have to use the fact that the operators fi(H/M) 
(defined by the spectral theorem) are weakly pseudolocal in the 
sense that their kernels multiplied by \x -y\N are integrable away 
from the diagonal for any N. 

In the case of odd dimensions, V e C°° and DaV decay­
ing exponentially for all a, A. Mellin [6] has shown that certain 
intertwining operators for e exist and are unitary when acting 
on functions whose spectrum is nonzero only for large A. For the 
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Schrödinger operators associated to such potentials, his results can 
be used to give a more direct proof of (7.1). 

The other part of the proof of (7) is establishing the low-energy 
estimate 

(7.2) \\eitHfM\\L, < Crn{i/p-l/2)\\f\\LP. 

Here the spectral assumption on H of course is used. The proof of 
this low-energy estimate is based on writing the operator involved 
using the spectral theorem and then using the identity 

E\X) = n Im{(7 + R0(A + iO)V)~lR0(À + /O)}. 

Here i?0(C) = (HQ - Q~l denotes the free resolvent, and R0(À + 
/O) = lim^Q R0(À + ie). The properties of the free resolvent are 
well known and one can consequently obtain the desired estimates 
for E\k) by using results of Jensen and Kato [2-4] concerning 
the behavior of (/ + RQ(À + /O) V)~~x. If the dimension n is odd, 
it turns out that 

/ 
(ƒ + R0(OV)~l[I - fi(H/Af)] = J^tf'^Bj + o(C12), 

7=0 

asC<EC+->0, 

in the L {{x)~a dx) —• L2((x)~a dx) topology for certain a. The 
operators B. are real and in principle can be computed explicitly 

for any j , using the Neumann series for (/ + R0(QV)~l . In 
particular, one can show the important fact that B. = 0 for odd 
j < n - 2. Using this asymptotic expansion together with certain 
stationary phase estimates such as 

/•OO 

/ eatp(A/M)(Àl/2)jImRJÀ + /0; JC, y)dk = 0(t~n/2), 
Jo 

j > 0 even, 
/•OO 

/ eatp(À/M)(Àl/2)jReR0(À + iO;x,y)ca 
Jo 

= 0(t~n/2[l + \x- y\~{n~2)]), j > n - 2 odd, 
one gets (7.2). Here R0(k+/0 ; x, y) denotes the kernel of Ü0(A+ 
/0) and p = 1 - P, where /? is as above. The argument for 
even dimensions is similar, except both the asymptotic expansion 
for (ƒ + R0(QV)~l and the stationary phase estimates that are 
required are more technical since the free resolvent has a more 
complicated form in even dimensions. 
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SOME APPLICATIONS 

One of our main applications is an extension of a "global de­
cay estimate" of Strichartz [12] for the free operator to include 
Schrödinger operators having no bound states. 

Corollary. Let u(x, t) be the solution to the Schrödinger equation 
(I) where H0 is replaced by H = -A + V with V satisfying (6). 
Assume that H has no bound states or half bound states and that 
n>3. Then if f E L2(Rn), it follows that u is globally in Lq if 
q = 2(/i + 2)In : 

<8> IWL«VxR) * CWfWtpy 

The same conclusion holds if 0 is neither an eigenvalue nor reso­
nance and we assume that ƒ is orthogonal to the bound states. 

In the free case this inequality is equivalent, by duality, to the 
following restriction theorem for the Fourier transform: 

( |R„ \ê{Z, l£l V # ) < C\\g\\L«{RnxR), q = 2(n + 2)/(/i + 4). 

To prove the global decay estimate one uses duality and then re­
peats the first part of the proof of this restriction theorem to see 
that (8) is equivalent to the inequality 

I I r°° II 

/ ei('-s)Hg(.,s)ds\\ , < C\\g\\L« „ 
\J-oo \\Lq (R"xR) 

Finally, the fact that optimal local decay estimates can be used to 
prove inequalities like (8') is well known, and by using arguments 
similar to those in Kenig and Sogge [5] one sees that (2) yields 
(8'). 

Using this global decay estimate we can extend results of Strauss 
[II] concerning scattering theory for nonlinear Schrödinger equa­
tions of the form 
(9) idu/dt + Hu + b(\u\) arg u = 0 

involving H as in the corollary and b e C satisfying 

\b'{s)\ < C\sf~l, some 1 + 4/n < p < 1 + 4/(/i - 2). 

For instance, by using results in [11] together with (8) one can 
show that, given initial data f0eWl with \\f0\\wi <S and S > 0 

file:///J-oo
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small, there is a unique solution u to the nonlinear initial value 
problem for (9) and unique f+9 f_ e Wx so that 

\\u(-,t)-eitH°f±\\wi-+0, a s ^ i o c . 

Detailed proofs and applications concerning scattering theory for 
nonlinear multichannel problems will appear later. 
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