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MAPPING PROBLEMS IN COMPLEX ANALYSIS 
AND THE 5-PROBLEM 

S. BELL 

1. INTRODUCTION 

Mark Twain's most famous short story, The Celebrated Jumping 
Frog of Calaveras County, was translated into many languages dur­
ing his lifetime, including French. The French did not think the 
story was funny. Twain, in order to discover whether it was a flaw 
in the French persona or a flaw in the translation that rendered his 
hilarious story a flop, had the French translation translated word 
for word back into English. The French persona was exonerated; 
indeed the retranslation was not funny. In this paper, I will trans­
late some results from one complex variable into the language of 
several variables, and then back again to one variable. The end 
result will differ from the original. I hope that the new perspective 
will enhance, rather than detract from, our understanding of the 
original. 

Translating a result from one complex variable to several is 
more involved than merely saying, "Now let n > 1." Indeed, 
many arguments in one variable use the special relationship that 
exists between harmonic and holomorphic functions in the plane. 
In several variables, harmonic functions do not enjoy an elevated 
status; they are almost never mentioned. Thus, in several vari­
ables, a substitute must be found for the Laplace operator and 
the functions it annihilates. Generally, it is the d -operator which 
replaces the Laplacian. In one variable, the ö-operator is given 
by d/dz = j(-jfc + i-jfc). An excellent place to see classical one 
variable results proved using 8 -techniques is in the first chapter of 
Hörmander's book on several complex variables [23]. For exam-
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234 S. BELL 

pie, there you will find the following three line proof of the Mittag-
Leffler Theorem based on the fact that, given any function a which 
is C°° on a domain £2, there exists a function v e C°°(Q) such 
that dv/dz - a . Suppose that ai is a sequence of distinct points 
which does not have a limit point in the domain Q and suppose 
that Pt(z) is the principle part of a meromorphic function at ai. 
Let Df be a sequence of disjoint discs contained in Q such that 
ai G Di and let <j>. be a function in C^°(D/) which is identically 
one on a small neighborhood of ai. The function u = Y1^L\ ^ / ^ 
is in C°°(Q - {af}) and has the correct principle parts, but it is 
not holomorphic there. To get a holomorphic solution, we let v 
be a C°° solution to the d-problem, dv/dz = a , where a is a 
C°° function and is equal to du/dz on Q - {at} and zero at each 
a{. Now, w — v is a solution to the Mittag-Leffler problem. (OK, 
four lines.) Besides harmonic functions, the cherished notion of 
conformality is also absent from the theory of functions of several 
complex variables. 

Most of us agree that the theory of conformai mappings of pla­
nar domains is a sublimely beautiful subject. Since many of the 
most highly appreciated theorems of this subject have no obvious 
analogue in several complex variables, one might expect that the 
theory of holomorphic mappings between domains in Cn lacks 
the appeal of the classical one variable theory. I want to show 
how some of our favorite theorems in one complex variable can be 
viewed in order to obtain interesting results in several variables. In 
particular, I want to consider problems in several variables which 
spring from the Riemann Mapping Theorem in one variable. 

I have tried to make this paper comprehensible to any reader 
who knows first year graduate level analysis. 

2. THE RIEMANN NON-MAPPING THEOREM IN SEVERAL VARIABLES 

(The prefix non belongs somewhere in the heading of this sec­
tion, but it is difficult to decide where. I have found that putting 
non in front of the word Theorem yields a good title for a lecture 
on several complex variables.) Poincaré discovered that the unit 
polydisc and the unit ball in Cn are not biholomorphically equiv­
alent, i.e., that there does not exist a one-to-one holomorphic map 
of one domain onto the other. Thus, the statement of a Riemann 
Mapping Theorem in several complex variables must be quite dif­
ferent than in one variable. This is one reason that I find mapping 
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problems in two complex variables to be more than twice as inter­
esting as those in one variable. (I must admit here that I have also 
heard it argued that this is why mapping problems in C2 are less 
than half as interesting as in C1 .) 

Let me begin by giving a proof of Poincaré's result which will 
introduce some of the features of holomorphic mappings in several 
variables that I will need later. 

Theorem (2.1). The ball and the polydisc in Cn are not biholomor-
phically equivalent. 

Proof. For r e R and a e Cn , let P(a ; r) denote the polydisc 
{ Z G C " : \zi - at\ < r ; ƒ = 1, 2 , . . . , « } , and let B(a ; r) denote 
the ball {z e Cn : ^ = 1 \zi ~ af < r2}. Let us suppose that 
ƒ : P(0; 1) —» 5(0 ; 1) is a biholomorphic mapping. We remark 
that it is a classical fact that the inverse of ƒ is also a holomor­
phic map (see Rosay [38] or Krantz [28]). We may suppose that 
ƒ (0) = 0 . Indeed, because the cartesian product of Möbius trans­
formations is a biholomorphic map of the polydisc onto itself, we 
may compose our given map with such a product map to obtain 
one that fixes the origin. 

Let u = det [df/dzj] denote the holomorphic jacobian deter­
minant of the mapping ƒ . It can easily be shown by means of the 
Cauchy-Riemann equations that \u\ is equal to the classical real 
jacobian of ƒ when viewed as a mapping from E n to itself (see 
[39, p. 11]). Furthermore, because the inverse of ƒ is holomor­
phic, it follows that u cannot vanish on P(0; 1). Let F = f~{ 

and let U = det [dFJdzj\ denote the holomorphic jacobian de-

terminant of F . Because \u\ is a real jacobian, it follows from 
the classical change of variables formula that 

f \u(z)\2\<t>(f(z))\2dK= [ \<Kw)\2dVw 
JP{0;\) " JB{0;\) 

2/7 

where dV denotes Lebesgue measure on R . Thus, if 0 G 
L2(£(0; 1)), then u((f) o ƒ) e L2(P(0; 1)). (Here, the notation 
u((t)of) stands for: u times the quantity, </> composed with ƒ.) 
A similar application of the change of variables formula will yield 
the identity 

/ u(z)<Kf{z))lï(ï)dVz= f <Kw)U(wMF(w))dVw 
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which holds for all <\> e L2(B(0; 1)) and all y/ e L2(P(0; 1)). 
Indeed, to prove this formula, we may first assume that (f> and y/ 
have compact support. The fact that u(z) U(f(z)) = 1 allows us 
to write 

u(cf>o f)v = \u\2(c/>o f)((U(y/ oF))o ƒ ) . 

Now it is clear that the identity follows from the classical change 
of variables formula. To obtain the more general result with <f> 
and y/ in L , we apply a standard density and limit argument. 
Using ( , )Q to denote the L2 inner product on a domain Q in 
Cn , our formula can be abbreviated 

(2.1) < w ( 0 o / ) , v)P{0.X) = {<l>, U(y/oF))B{0.{y 

Now, because every holomorphic function on the polydisc has a 
power series expansion, and because the monomials za are orthog­
onal in L2 on the polydisc, it follows that the set {za : |a| > 0} 
forms an orthogonal basis for the space H2(P(0; 1)) of holo-
morphic functions which are in L of the unit polydisc. The 
same reasoning applies to the ball. Thus, by expanding a function 
h G H (2?(0; 1)) in its Taylor series, it can be seen that 

dah 
< ^ Z % 0 ; 1 ) = ^ ^ ( ° ) 

for some constant ca and for all holomorphic functions h in 
L2(B(0; 1)). (Note that in case a = (0, 0, . . . , 0), then za = 1 
and the formula becomes (h, l) f i (0. {) = cQh(0).) 

We shall now show that the mapping ƒ must be linear. First, 
we will show that u is a constant. Indeed, using the conjugate of 
(2.1), we see that 

<*"> ">/>«,;!) = (UF\ \ ) B { 0 . { ) = c0U(0)F(0)a 

and this last term is equal to zero if |a| > 0 because F(0) = 
0. Thus, the power series expansion for u must consist only of 
a single (nonzero) constant term. Now, to see that ƒ is linear, 
observe that 

<*"> "//>|.(0;i) = (UF'\ z,>a(0;1) = c^iUF"}(0) 

and this last term is equal to zero if |a| > 1. Thus, the power 
series expansion of u fi must be linear and, because u is a nonzero 
constant, we conclude that ƒ is linear. It is now clear that no such 
ƒ can exist. This finishes the proof of the theorem. 
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The proof given above is not Poincaré's original proof which 
involved an explicit computation of the dimensions of the auto­
morphism groups of the ball and polydisc as Lie groups. The proof 
above has the virtue of generalizing to yield a proof of Cartan's 
lemma which states that if ƒ : Q{ —> Q2 is a biholomorphic map­
ping between bounded circular domains in Cn which contain the 
origin and if ƒ(0) = 0, then ƒ must be linear. (A domain Q is 

iff 

called circular if z e Q. implies that e z e Q for all real 6 .) 

3. BOUNDARY BEHAVIOR OF BIHOLOMORPHIC MAPPINGS 

The polydisc is topologically equivalent to the ball, yet the two 
domains are holomorphically inequivalent. It is reasonable to sus­
pect that the problem lies with the fact that the ball has a C°° 
smooth boundary, whereas the polydisc has "corners" in its bound­
ary. Indeed, it turns out to be a very good idea to consider proper­
ties of the boundaries when studying the problem of determining 
if two domains in C" are biholomorphically equivalent; however, 
the relevant properties are more subtle than mere smoothness. The 
proof of Poincaré's Theorem given above, after some minor mod­
ifications, yields a proof that the ball £(0; 1) and the complex 
ellipsoid, E = {(z, w) G C : \z\ + |tu| < 1} cannot be biholo­
morphically equivalent, because if they were, they would be so via 
a linear biholomorphic map, and this is clearly impossible. The 
ball and the complex ellipsoid both have C°° smooth boundaries. 
A key property that the boundaries of these two domains do not 
share concerns the degree to which they are pseudoconvex. The 
ball is the most basic example of a strictly pseudoconvex domain, 
and the ellipsoid is the simplest example of a weakly pseudocon­
vex domain. I shall not define pseudoconvexity here, but suffice it 
to say that it is a differential geometric property and that differen­
tial geometric properties of the boundaries of domains determine 
their holomorphic equivalence class rather than topological prop­
erties of their interiors. Indeed, Chern and Moser [15] built on 
the pioneering work of Poincaré and Cartan to produce a com­
plete set of differential geometric boundary invariants which must 
be preserved under biholomorphic maps between smooth strictly 
pseudoconvex domains. 

In order to see that the Chern-Moser invariants are preserved 
under a biholomorphic mapping, it is important to know that a bi­
holomorphic map between smooth strictly pseudoconvex domains 
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must extend smoothly to the boundary. C. Fefferman proved this 
result in [20]. I want to discuss here how the problem of proving 
that a holomorphic map exhibits good boundary behavior relates 
to some classical problems in one complex variable. I shall be­
gin by giving a proof of a classical fact, first proved in 1887 by 
Painlevé [33], that the Riemann mapping function associated to a 
simply connected domain in the plane with C°° smooth boundary 
extends C°° smoothly up to the boundary. It is interesting to note 
that Painlevé proved his result about smooth extension long before 
Carathéodory proved his theorem about continuous extension (see 
[9] for the history of these theorems). 

Theorem (3.1). A biholomorphic map o f a bounded simply con­
nected planar domain with C°° smooth boundary onto the unit 
disc extends C°° smoothly up to the boundary. 

Proof. Suppose Q is a bounded simply connected domain in the 
plane with C°° smooth boundary, and suppose ƒ is a biholomor­
phic map of Q onto the unit disc. It is easily seen that if f {a) = 0, 
then - log|/(z) | is equal to the Green's function G(z, a) associ­
ated to £1 for all zeQ,. Indeed, G(z, a) is uniquely determined 
as the continuous function of z on Ù - {a} which is zero on the 
boundary of Q, such that G(z, a) + log \z - a\ extends to be har­
monic as a function of z on Q. If we differentiate the identity 
- log \f(z)\ = G(z, a) with respect to z , we obtain 

Thus, we obtain 

(3.1) f'(z) = -2f(z)-^G(z,a). 

Now the classical elliptic theory for the Laplacian tells us that 
G(z, a) is in C°°(Ù - {a}) as a function of z . To see this, note 
that G(z, a) is equal to - log | z - a\ minus the function u(z) 
which is the solution to the boundary value problem: Au = 0 
in Q. and u(z) = - log | z — a\ on the boundary of Q. Since 
- log | z - a\ is C°° smooth on the boundary, the solution u to 
this problem extends C°° smoothly up to the boundary of Q. 

Carathéodory 's theorem says that f(z) is continuous up to the 
boundary of Q. Hence (3.1) reveals that f'(z) is continuous up 
to the boundary of Q.. Now it is a simple matter to repeatedly 
differentiate (3.1) with respect to z to see that all the derivatives 



MAPPING PROBLEMS IN COMPLEX ANALYSIS 239 

of ƒ extend continuously to the boundary. This completes the 
proof of the theorem. (Another nice proof of this theorem using 
classical potential theory can be found in Kerzman [24].) 

One would like to adapt this simple proof to the several variable 
setting, however, two major obstacles present themselves. First, 
the Green's function associated to a domain in Cn bears no re­
lation to holomorphic functions. In one variable, harmonic func­
tions are locally the real part of holomorphic functions. In several 
variables, it is pluriharmonic functions which play this role and the 
Dirichlet problem for pluriharmonic functions is not well posed. 
Second, the ball in Cn does not qualify to be the general target 
domain in the theorem because of the failure of the Riemann Map­
ping Theorem in several variables. I shall now show how the proof 
of the one variable theorem above can be cleared of its dependence 
on the unit disc and the theory of harmonic functions and recon­
nected to the theory of the d -problem so that a proof suitable for 
generalization to several variables is obtained. 

Suppose that ƒ is a Riemann mapping function associated to 
the simply connected planar domain Q ; that is, suppose that ƒ is 
a biholomorphic map of Q onto the unit disc. A classical formula 
from the theory of conformai mappings relates the Bergman kernel 
associated to Q to the mapping ƒ . If f (a) = 0 and f'{a) > 0, 
then we have the identity 

f'(z) = cK(z,a) 

where c = nl/2K(a, a)~{/2 and K(z, w) denotes the Bergman 
kernel function of the domain Q (see Bergman [11], Nehari [31]). 
Thus, we will be able to prove that f(z) is C°° smooth up to the 
boundary if we can show that the Bergman kernel is C°° smooth 
up to the boundary. We will see that the Bergman kernel has the 
virtue of being directly linked to the d-problem. 

Theorem (3.2). Suppose that Q, is a C°° smoothly bounded do­
main in the plane. The Bergman kernel function K(z, w) associ­
ated to Q is in C°°(Q) as a function of z for each fixed w e Q,. 

Proof. In order to study the Bergman kernel function, we must 
first define the Bergman projection. Let L2(Q) denote the usual 

2 2 

L space on Q with respect to Lebesgue measure on R equipped 
with the standard inner product ( , )Q . Because a function which 
is holomorphic on a closed disc assumes its average value at the 
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center, it follows that if a sequence of holomorphic functions con-
verges in L (Q), then it converges uniformly on compact subsets 

2 2 

of ÇI. Thus, the space H (Q) of holomorphic functions in L (Q) 
is a closed subspace of L (Q.), and we can define the orthogonal 
projection P of L2(ÇÏ) onto H2(ÇÎ). This operator P is called 
the Bergman projection. 

Let </> denote a real valued function in C°°(Q) with compact 
support in Q which is radially symmetric about a point w e Q 
such that fQ <j> — 1. It follows from the averaging property of 
holomorphic functions that 

(h, (j))çi = h{w) 

for any holomorphic function h on ÇI. If we project (j) onto 
ƒƒ (Q), we obtain a holomorphic function K = Pcj). This function 
/c has the property that 

(A, /c)a = (A, (f))a = h{w) 

for all A G H2(Çl). The Bergman kernel A"(z, w) is defined by 
K(z, w) = K(Z) . 

The Bergman projection is linked to the S -problem via Spencer's 
formula 

(3.2) Pv=v-4^-G^-v 
dz dz 

where G denotes the classical Green's operator which solves the 
Dirichlet problem: A(Gy/) = y/ with Gy/ equal to zero on the 
boundary of Q,. We shall prove Spencer's formula for functions v 
in C°°(Ù). To understand this formula, we need to study the op­
erator Ay/ = 4-^zGy/ . We claim that if y/ is in C°°(Q), then u = 
Ay/ is the unique solution to the 9-problem, (d/dz)u = y/ with 
u orthogonal to H2(Ç1). Furthermore, u e C°°(Ù). Indeed, it is 
a classical fact that G maps C°°(Û) into itself; thus u e C°°(Ù). 
It is also clear that (d/dz)u = y/ because 4(d/dz)(d/dz) = A. 
Furthermore, because Gy/ = 0 on the boundary of Q, we may 
integrate by parts to obtain 

(h,Ay/)Q = -(dh/dz , 4Gy/)Q = 0 
2 — 

for any h e H (Çï). Therefore, u = Ay/ solves the 9-problem. 
(To see that the solution is unique, observe that if ux and u2 both 

2 

solve the problem, then u{ - u2 is a function in H (Cl) which is 
orthogonal to H (Çï) ; this forces us to conclude that u{ - u2 = 0.) 



MAPPING PROBLEMS IN COMPLEX ANALYSIS 241 

We can now prove Spencer's formula. Assume that v e C°°(Q). 
Note that v - A p is a holomorphic function because it is anni­
hilated by d/dz. Furthermore, A p is orthogonal to H2(Q); 
hence P A p = 0. We may now write 

OZ \ OZJ OZ 

and Spencer's formula is proved. 
Spencer's formula reveals that the Bergman projection maps 

C°°(Q) into itself because G also enjoys this property. Now, 
because the Bergman kernel function is given as the projection of 
a function </> in C°°(Q), we conclude that K(z, w) is in C°°(Ù) 
as a function of z for each w e Q,. This completes the proof of 
the theorem. 

Remark. The equipment that we used in the proof of Theorem (3.2) 
can be used to easily show that the Riemann map satisfies the iden­
tity, f\z) = cK(z, a) for some constant c. Indeed, if ƒ maps 
Q onto the unit disc D{ with f (a) = 0, then the analogue of 
formula (2.1) is 

(/'(</> of), ys)Q = (<t>,F'(WoF))Di. 

If we set </> = 1 , and if we let y/ — h , a function in H (Q), then 
the conjugate of this identity yields 

(h , f ' ) a = (F\h o F) , l)Di = 7rF;(0)A(F(0)) = cA(a). 

Thus, f'(z) has the same effect when paired with a holomorphic 
function that cK(z, a) does. Therefore, since ƒ is in 
the two must be equal. 

I shall now show how the second proof of the smoothness of 
the Riemann mapping function can be adapted to several complex 
variables. No special knowledge of several complex variables will 
be required to understand the proof. In fact, because many people 
prefer the security of C , and because the argument does not re­
ally use any special facts from several complex variables, I will set 
n — 1 at certain points in the proof of the following theorem to 
simplify the exposition. Before I state the theorem, let me remark 
that the Bergman projection associated to a domain Q in C" is 
defined exactly as in the one variable case as the orthogonal pro­
jection of L2(Q) onto the subspace H2(Q) of square integrable 
holomorphic functions. 
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Theorem (3.3). Suppose ƒ : Q.l —> Q2 is a biholomorphic mapping 
between bounded pseudoconvex domains in Cn with C°° smooth 
boundaries. If the Bergman projections associated to Q{ and Q,2 

preserve the space of functions which are C°° smooth up to the 
boundary, then ƒ extends to be a C°° diffeomorphism of Ù{ onto 
Ù2. 

This extension of Fefferman's theorem was proved in [10]. The 
proof given here follows the method used in [6]. We shall let P{ 

and P2 denote the respective Bergman projections associated to 
Q,{ and Q 2 . As in the proof of Poincaré's theorem, we shall let 
u denote the holomorphic jacobian determinant of ƒ , F denote 
the inverse of ƒ , and U denote the holomorphic jacobian deter­
minant of F . In our present setting, formula (2.1) becomes 

(3.3) M ^ / ) ^ ) f l l = ( ^ % o F ) ) Û 2 

which holds for all 0 e L2{ii2) and all y/ e L2{Q{). With this 
formula, we may now prove the transformation formula for the 
Bergman projections under biholomorphic mappings: 

Px(u(4>of)) = u{{P2<l>)of). 

Indeed, if <j> is in L (Q2) and h is in ƒ/ (£2,), then (3.3) yields 

W o / ) J ) ö | = ( f ( / ( l l ^ ) ) Ü ! 

' - (P2<t>, U(h o F))^ = (u((P2<i>) o ƒ ) , h)Qi. 

Here, we have used the fact that U(h o F) is in H (Q2) which, 
recall, follows from the classical change of variable formula and 
the fact that \U\ is equal to the real jacobian determinant of F 
viewed as a mapping of R2n . Now, because u(<t>of) paired with an 
arbitrary function h in H (Q{) gives the same value as u((P2(/))o 
ƒ) paired with that function, we conclude that these two project to 
the same holomorphic function. But the second function is already 
holomorphic. Thus, the transformation formula is proved. 

The next stage in the argument is to find a suitable replacement 
for the fact used in the one variable proof that the Bergman kernel 
is the projection of a C°° function with compact support. The 
following lemma will serve the purpose. 

Lemma (3.4). Suppose that Q. is a bounded domain in Cn with 
C°° smooth boundary. If h is a holomorphic function on Q. which 
is in C°°(Ù), then there is a function (j) in C°°(fl) which vanishes 
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to infinite order at the boundary of Q such the Bergman projection 
of (f) is equal to h . 

This lemma does not seem to have been known in the one vari­
able case. It can be used to simplify many classical one variable ar­
guments about boundary regularity of holomorphic and harmonic 
functions. 

Proof of the Lemma. Let us suppose, for the sake of illustration, 
that the boundary of Q. is real analytic and that h is holomorphic 
in a neighborhood of Ù. Then the Cauchy-Kovalevski theorem 
tells us that we can solve the Cauchy problem: Ay/ = h with the 
boundary conditions, y/ = 0 and V> = 0 on the boundary of Q, 
where y/ is a real analytic function defined on a neighborhood of 
the boundary of Q. Let x be a C°° function on Cn which is 
equal to one on a neighborhood of the boundary of Q and which 
has support which is compactly contained in the set where y/ is 
defined. I now claim that the function 0 = h-A(xy/) is such that 
Pcj) = h and (f) e C^°(Q). That (j) is in C™(Q) is clear. To see 
that Pcj) = h , note that we can apply Green's identity to deduce 
that A(xw) is orthogonal to H2(Q,). Indeed, because XV ami 
V(XV) vanish on the boundary, the boundary terms in Green's 
identity do not appear and we obtain 

f A(Xy/)gdV= f(xy/)AgdV = 0 

if g is holomorphic because holomorphic functions are also har­
monic. (I did say that harmonic functions were almost never men­
tioned in several complex variables.) Thus, P(A(xy/)) = 0 and we 
have that h = Ph = Ph - P(A(xy/)) = P</>. The lemma is proved 
in case the boundary of Q, is real analytic and h is holomorphic 
on Ù. 

To prove the lemma in the general case, we try to proceed in 
exactly the same way as above. We run into difficulty at the point 
where the Cauchy-Kovalevski theorem is invoked. At this point, 
we must use what I call "the C°° version of the Cauchy-Kovalevski 
theorem." It is possible to solve the Cauchy problem, Ay/ = h with 
the boundary conditions y/ = 0 and V ^ = 0 on the boundary 
of fi, modulo functions which vanish to infinite order on the 
boundary. That is, there exists a function y/ in C°°(Q) which 
satisfies the boundary conditions such that h - Ay/ vanishes to 
infinite order on the boundary. Now it is clear that we may set 
(/> = h - Ay/ . The lemma is proved. 



244 S. BELL 

We may now use this lemma together with the transformation 
formula for the Bergman projections under biholomorphic maps 
to prove Theorem (3.3). Let h be a holomorphic function which 
is in C°°(Q2) and let 0 be a function in C°°(Q2) which vanishes 
to infinite order on the boundary of Q2 such that P24> = h . We 
now make the following claim. 

Claim. If4>€ C°°(Q?) vanishes to infinite order at the boundary, 
then u((j)of) is in C°°(Ù{). 

Assuming the claim for the moment, let us finish the proof of the 
theorem. The transformation formula for the Bergman projections 
yields that 

M(Ao/) = M((P20)o/) = P1(M(0o/)). 

Since u(<f) o ƒ) G C00(Q1), and because P{ preserves this class of 
functions, we deduce that u(h o ƒ) G C00(Q1). If we let h = 1, 
we see that u e C°°(Û{). If we let h - zi, we see that uf G 
C°°(Ü1). Thus, ƒ extends C°° up to the boundary near boundary 
points where u does not vanish. But u cannot vanish on the 
boundary. Indeed, we may apply the same argument to the inverse 
mapping F to deduce that U extends smoothly to the boundary 
of Q 2 . Now U(f(z)) - 1/M(Z), and therefore, because U is 
bounded, u cannot vanish anywhere on Ü , . This finishes the 
proof of the theorem. 

Proof of the Claim. To convince you of the truth of the claim, 
let me assume temporarily that n — \ . Observe that the classi­
cal Cauchy estimates applied to a bounded function h on discs 
which are internally tangent to the boundary of fi2 yield that the 
derivatives of h satisfy an estimate of the form 

(3.4) 
dkh 

dzk 
<CdAz) k 

where d{(z) denotes the distance from z to the boundary of Q{ 

and C is a constant which is independent of z . We shall prove 
momentarily that ƒ satisfies an estimate 

(3.5) d2{f{z))<cdx(z) 

where d2(z) denotes the distance from z to the boundary of Q2 . 
Assuming this fact, we may finish the proof of the claim. Indeed, 
a derivative of u(4> o ƒ) is a finite sum of terms of the form 
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{Da u){(Dp $) o ƒ) Y[yD
yf where the £>'s stand for arbitrary real 

partial derivatives. Now, ƒ satisfies an estimate of the form (3.4), 
and this implies that u satisfies \d u/dz \ < Cd{(z) . Thus, 
the term (Dau) Yly D

7f is controlled by a constant times dx (z)~m 

where m = |a| + 1 + ]£ \y\. Since, given any positive integer 
m, the infinite order vanishing of 0 makes it possible to find a 
constant k such that \(Dfi</>)(z)\ < kd2{z)m for all z in Q2, we 
may use (3.5) to conclude that \((D </>) o f)\ is less than a constant 
times d{ (z)m . Thus, we may deduce that any derivative of u(cj)of) 
is bounded on Q,l , and hence, that u(4> o ƒ) is in C°°(Û1). 

To finish the proof of the claim, we must prove (3.5). Let À be 
a solution to the Dirichlet problem: AÀ = 1 on Qj and A = 0 
on the boundary of Q,{ . Note that X is a subharmonic function 
on Qj and the maximum principle for subharmonic functions 
implies that À is negative on Q.{ . It therefore follows that Ào F 
is a negative subharmonic on Q2 . Furthermore, Ào F extends to 
be continuous on Ù2 and assumes the value zero on the boundary. 
Let R be chosen so that a disc of radius R may be rolled around 
the inside of the boundary of Q2 without ever touching more than 
one boundary point. Let P(z, Ç) denote the Poisson kernel for 
a disc of radius R which is internally tangent to the boundary of 
Q2 at a point p. To be precise, if we denote the center of this 
disc by W, then 

( ' C ) 2nR\C-z\2 ' 

Assume that £ is on the circle S which is the boundary of this disc 
and that z lies along the inward pointing normal to the boundary 
of Q2 at p. Notice that 

> (a-H-yiKü + n-iri) , cd (z) 
2nR{2R)2 ~ 2 

where C = l/(SnR ) . We may now argue as in the proof of the 
classical Hopf Lemma to obtain that the positive superharmonic 
function -Ào F satisfies the inequality 

(-À o F)(z) > [ P{z, Q{-À o F)(Q dac > C d2(z) f -À o F da 
j s J s 

where da denotes arc length on S. This inequality implies (3.5). 
Indeed, the last integral can be bounded from below by a positive 
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constant which is independent of p . Furthermore, A is C°° up to 
the boundary of Q2 ; thus, —k(w) < (constant)d{(w). We there­
fore see that d{(F(z)) > (constant)(-A(F(z))) > (constant)d2(z) 
and (3.5) follows by replacing z by / (z ) in this inequality. 

The claim is proved in case n—\. The only place in the proof 
where a one variable argument was used was in the construction 
of the subharmonic function A . In several variables, it is a special 
plurisubharmonic function that serves the purpose of the function 
X ; the possibility of constructing such a function is equivalent to 
pseudoconvexity [17]. Details and references can be found in [6]. 

Theorem (3.3) has been generalized to holomorphic mappings 
which are merely proper (see [8 and 18]). Also, see [18] for a his­
tory of the problem of proving boundary regularity of holomor­
phic mappings. Other important references on the subject include 
Webster [42] and Nirenberg, Webster, and Yang [32]. 

4. THE d -PROBLEM IN SEVERAL COMPLEX VARIABLES 

In order to deduce that the Bergman projection associated to 
a bounded domain in the plane with C°° smooth boundary pre­
serves the space of functions which are C°° up to the bound­
ary, we needed to know that the same property holds for the 
solution operator A to the <5-problem: (d/dz)(Ay/) — y/ with 
Ay/ ± H2. In one variable, this follows directly from the fact that 
A may be expressed in terms of the classical Green's operator, 
A = 4(d/dz)G . In several variables, the problem is more difficult. 

Suppose that Q is a bounded domain in Cn with C°° smooth 
boundary. If v is a C1 function on Q,then dv is a differential 
one-form given by £? = 1 (dv/dzt) dzi. To make this section more 
elementary, we shall think of dv as the «-tuple whose / th com­
ponent is dv/dzi. Analogous to the situation in one variable, the 
Bergman projection associated to £1 may be written Pv = v-Adv 
where A denotes the solution operator to a d-problem. However, 
this ö-problem takes the following more complicated form. 

9-Problem. If a = (a{, a2 , . . . , an) is an n-tuple of functions 
in C°°(Q) which satisfies the compatibility condition, dajdz. = 
daj/dzi for i ^ j , then Aa is a function on Q which solves the 

problem: (d/dz^Aa) = ai for i = 1, . . . , n with Aa _L H (Q). 

It is a very difficult problem to determine when the operator A 
preserves the space C°°(Ù). Indeed, in case Q, is not pseudocon-
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vex, A does not even exist and it has been shown by Barrett [4] 
that the Bergman projection need not preserve the space C°°(Q). 
In the strictly pseudoconvex case, however, it was proved by Kohn 
[25,26] that A does preserve C°°(Ù). He did this by relating A 
to an operator TV, called the d-Neumann operator, which is the 
analogue of the Green's operator in several variables. The best re­
sults in the weakly pseudoconvex case have been proved by Catlin 
[12,13,14] using the machinery set up by D'Angelo [16] to mea­
sure the degree of pseudoconvexity. I shall not discuss the problem 
further here; see [27] for an excellent survey. 

5. BLASCHKE PRODUCTS IN SEVERAL COMPLEX VARIABLES 

Like many topics in several variables that grew out of one vari­
able results, the concept of a Blaschke product is interesting in 
many variables because it can readily be shown that the obvious 
generalization of the one variable notion does not make sense. (Re­
cently, John D'Angelo has shown that Blaschke products in several 
variables do make sense provided that the dimensions of the tar­
get and the starting domain are allowed to be different.) In one 
variable, the set of Blaschke products is precisely the set of holo­
morphic mappings of the disc into itself which are proper. A map 
ƒ is called proper if f~ (K) is compact whenever K is compact. 
Proper maps send sequences which tend to the boundary to similar 
sequences. What are the proper holomorphic self maps of the unit 
ball of Cn when n > 1 ? There are none which are not biholomor-
phic! This is Alexander's Theorem [1], which says figuratively that 
all Blaschke products in Cn , n > 1, are Möbius transformations. 
I will now give a proof of Alexander's Theorem using some of the 
ideas developed in §3. 

Theorem (5.1) (Alexander). If ƒ is a proper holomorphic self map 
of the unit ball in Cn , n > 1, then ƒ has a holomorphic inverse, 
i.e., ƒ must be biholomorphic. 

Proof. A very elegant proof of this theorem was discovered by 
Rudin (see [39, p. 314]). I will give another proof which does 
not rely as heavily on special properties of the ball, and which 
therefore can be used to study proper mappings between more 
general domains. 

Proper holomorphic mappings between domains in Cn behave 
similarly to their one dimensional counterparts. If ƒ : Q,{ —» Q,2 is 
a proper holomorphic mapping between bounded domains in Cn , 
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then ƒ maps Q.{ onto Q 2 . Furthermore, there is a number m 
known as the multiplicity of the map, and there are sets Vx and 
V2 such that ƒ is an m-sheeted covering map of Qx - Vx onto 
Q2 - F? . The sets V{ and V1 are small; they are equal to the zero 
sets of holomorphic functions which do not vanish identically. (In 
one variable V{ and V1 are finite sets; in several variables, they 
are n - 1 dimensional complex varieties.) These basic facts about 
proper holomorphic maps are explained very nicely in Chapter 15 
of Rudin's book [39]. 

Our proof of Alexander's Theorem relies on the following trans­
formation formula for the Bergman projections under proper hol­
omorphic maps. This formula holds in one variable too and does 
not seem to have been known. 

Lemma (5.2). Suppose ƒ : Q{ —• Q2 is a proper holomorphic map­
ping between bounded domains in Cn, n > 1. Let u denote the 
holomorphic jacobian determinant of ƒ and let Px and P1 denote 
the respective Bergman projections associated to Clx and Q2 . Then 

Pl(u(<Pof)) = u{(P2(t))of) 

for all c/>eL2(Q2). 

This formula is remarkable because it is exactly the same as the 
transformation formula for biholomorphic maps, yet the transfor­
mation formula for the Bergman kernels under a biholomorphic 
map does not have such a straightforward generalization to proper 
holomorphic maps. 

Proof of the Lemma. I shall need the following fact which is an 
L version of the Riemann Removable Singularity Theorem. 

Fact. If h is a holomorphic function on Q{-V{ which is in L~(QX-
V{) where V{ is the zero set of a holomorphic function which is not 
identically zero, then h extends to be holomorphic on all of Q{ . 

I shall prove this Fact assuming n = 1 . The proof in several 
variables uses some elementary properties of complex varieties that 
I do not want to describe here. It is clear that the Fact is local. We 
may assume that £lx is the unit disc and that h is holomorphic 
on the disc minus the origin. If 0 < e < 1 , let Af denote the 
annulus {z : e < \z\ < 1} . Because every function which is holo­
morphic on Af can be expanded in a Laurent series, and because 
the functions {z : N eZ} are orthogonal in L (A ) , this set of 
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functions forms an orthogonal basis for H (A€). Let || ||c denote 
the norm in L (Ae ) , and let the Laurent expansion of h be given 
by £ r = - o o « X - N o w \\h\\( = £r=-oo |aj | |z" | |£ , and as we let 
e tend to zero, we see that an must be zero if n < 0 because 
the sum tends to a finite number as e —• 0, but \\z \\e —• oo if 
N <0. This finishes the proof of the Fact. 

I can now prove the lemma. Since ƒ is an m-sheeted cover 
of Qj - V{ onto Çl2-V2, we may locally define m holomorphic 
mappings F{, . . . , Fm which map Q2 - V2 into Q{ - V{ and 
which are the local inverses to ƒ . Let U{, . . . , Um denote the 
holomorphic jacobian determinants of F{, . . . , Fm , respectively. 
The analogue of formula (3.3) for a proper holomorphic mapping 
is 

(5.1) W o / ) , w)Qi = U, E * W o Fk)\ . 

To prove formula (5.1), we must first check that u((f)o f) e L (Q{) 
whenever 0 e L 2 ( Q 2 ) and that YlL\ Uk(VoFk) e ^ W w h e n " 
ever y/ e L (Q{). First, notice that 

[ \u\2\(j)of\2dV = m[ \(f)\2dV 
JÇlx-Vx JQ2-V2 

because ƒ is an m-sheeted cover of Q,{-V{ onto Q2 - V2 and be-
cause \u\ is equal to the real jacobian determinant of ƒ viewed 
as a mapping of R n to itself. But V{ and V2 are sets of measure 
zero. Thus \\u((p o f)\\Q = y/rn\\(j)\\Q . Notice that Yl'k=\Uk(y/ ° 
Fk), being a symmetric function, is well defined on Q2-V2. Fur­
thermore, since | J2'\ aj\ < m Yl7 Kl > 

i i2 

and this last integral is equal to 

1 \y/\2dV. 

Thus || i X i Uk(yt o F J H ^ < y/m\\y/\\a . Now it is clear that 
formula (5.1) would be true if Q, and Q2 were replaced by Q[ -
Vx and Q.2 — V2, respectively. But Vx and V2 are sets of measure 
zero. Therefore, (5.1) is proved. 
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We may now use (5.1) together with the Fact to prove the 
lemma. If A e H"{Q{), then ££=1 Uk{h o Fk) is a holomorphic 
function on £22 - V2 which is in L (Q2 - F2). Thus, the Fact 
implies that £™=1 l^(A o F J extends past K2 to be in H2(Q,2). 
If 0 G //2(Q2) and h e H2(QX), then (5.1) yields that 

(w(0o / ) , A > O | = ( 0 , f^Uk{hoFk)\ 

\ *=i / Q 2 

= (u((P24>)of)9 h)Qr 

Now, because u{4> o f) paired with an arbitrary function h in 
7/2(Q,) gives the same value as u((P2(/)) o ƒ) paired with that 
function, we conclude that these two project to the same holomor­
phic function. But the second function is already holomorphic. 
Thus, the lemma is proved. 

Assume that ƒ : £ (0 ; 1) —• 1?(0; 1) is a proper holomorphic 
self map of the unit ball. We wish to show that ƒ is biholomor-
phic. This will be accomplished if we prove that u, the jacobian 
determinant of ƒ , does not vanish. (It then follows that ƒ is 
a one-sheeted covering map of the ball onto itself and our result 
follows from basic topology.) The first step toward proving this 
will be to use Lemma (5.2) to show that ƒ must extend holomor-
phically past the boundary of the ball. 

Let P denote the Bergman projection associated to the ball. It 
is quite easy to show that the Bergman kernel function associated 
to the ball is given by K(z, w) = c{\ - z • w)~n~ where z • w 
stands for Y?i=\ ziWi a n d ^lc is equal to the volume of the ball 
as a set in R2n (see Krantz [28, p. 50] or Stein [41, p. 21]). We 
know from the proof of Lemma (3.4) that for each monomial za , 
there exists a function </>n in C°° of the unit ball with compact 
support such that P4>a = za . Now Lemma (5.2) reveals that 

u{/') = u{(P<l>n)of)=P(u(<l>nof)). 

This shows that u{f*) is the projection of a function in 
C™{B(Q ; 1)). The explicit formula for the Bergman kernel of the 
ball therefore implies that u(fY) extends holomorphically past the 
boundary of the ball. This statement holds for each multi-index 
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a, including a = (0, 0, . . . , 0). We now claim that this implies 
that ƒ itself extends holomorphically past the boundary. To prove 
this, we will need to use the classical fact that the ring of germs of 
holomorphic functions at a point is a unique factorization domain 
(see Hörmander [23, p. 152] or Krantz [28, p. 242]). Let zQ be 
a point in the boundary of the ball. By letting a — (0, . . . , 0), 
we see that u extends to be holomorphic in a neighborhood of 
z 0 . Furthermore, because u cannot vanish identically, it has a 
nontrivial factorization in the ring R of germs of holomorphic 
functions at zQ . Let 

1=1 

denote the factorization of u in R. Let 

7=i 

denote the factorization of ufk . Now, because u(fk)
m is in R 

for each m, we conclude that um~ divides (ufk)
m in R for 

each m . Thus {Wx, . . . , Wr} is a subset of {V{, . . . , Vs} . Let 
us renumber the V 's so that u may be written 

u=n vr-
/=i 

Because wm~ divides (ufk)
m in i? for each m, it also follows 

that (m — l)pi < mqi for all m and for each / in the range 
1 < / < r. This forces us to conclude that p. < qt. Now we see 
that u divides ufk in R and therefore, that fk is an element of 
R, i.e., that fk extends past the boundary of 5(0 ; 1) near z0 as 
a holomorphic function. Thus, ƒ extends holomorphically past 
the boundary of B(0; 1). 

Next, we must show that ƒ preserves normal vectors on the 
boundary. To be more precise, we wish to show that if r is a 
function which is C°° on Cn such that r = 0 and dr ^ 0 on 
the boundary of J?(0; 1), then d(r o ƒ) ^ 0 on the boundary 
of 5 (0 ; 1). To see that this statement holds for all such r, it is 
enough to prove it for a single r because if rx and r2 are two 
such functions, then r{ = Xr2 f° r some C°° function / which 
is nonzero in a neighborhood of the boundary of B(0 ; 1). (This 
follows from the Implicit Function Theorem.) We shall prove the 
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statement for r(z) — \z\ - 1 where we are using the standard 
notation \z\2 = J2" |^-|2 • It is clear that r satisfies the hypotheses. 
We must see that the normal derivative of | ƒ | - 1 does not vanish. 
To do this, note that \f\ - 1 is a subharmonic function on a 
neighborhood of the closed unit ball in l " . Furthermore, | ƒ | -
1 assumes its maximum value of zero on the closed unit ball at 
every point of the boundary. Therefore, the classical Hopf lemma 
implies that the normal derivative of this function does not vanish. 
(The proof of the classical Hopf lemma is very similar to the proof 
we gave of inequality (3.5).) 

We now know that p(z) = \f\ - 1 is what is called a defining 
function for the ball. This means that the ball is given as the set 
where p is less than zero, and that dp ^ 0 on the boundary. The 
ball is a geometrically convex domain; in fact it is a strictly convex 
domain. We wish to express convexity in terms of an analytic 
object in order to deduce some consequences about the boundary 
behavior of ƒ . In this paragraph only, we shall use the convention 
that a subscript j stands for differentiation with respect to ~z ., and 
a subscript i stands for differentiation with respect to zi. Thus, 

2 

Pi- is shorthand for d p/dzfîz.. Let H denote the augmented 
hessian determinant of p defined via 

H = det f ° pj] 
[Pi Pij\ 

where the matrix inside the determinant is (H + 1 ) X ( « + 1 ) . It is a 
general fact that strict convexity of a domain defined by p implies 
that H does not vanish on the boundary. I shall prove this for 

the special case we are treating now. Indeed, if r(z) = |z| - 1 , 
an explicit computation reveals that Hr does not vanish on the 
boundary of the ball. Now, because r and p are both defining 
functions for the ball, there is a function % which is non-zero in 
a neighborhood of the boundary of the ball such that r = XP • 
Another explicit computation shows that Hr = x"+ Hp on the 
boundary of the ball. Thus, H does not vanish on the boundary 
either. Let Jf denote the jacobian matrix of ƒ . The chain rule 
yields that 

VPi Pijl 
= 

"1 0" 
0 Jf 

T 

of 
'1 0" 

-° Jf-
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Taking determinants of this identity gives 

Hp = \detJf\
2Hrof. 

Now, since H and Hr do not vanish on the boundary of the ball 
and since ƒ maps the boundary into the boundary, we conclude 
that u = det Jf cannot vanish on the boundary. We can now 
use Hartog's theorem [23, p. 30] to see that u cannot vanish in 
the interior of the ball. Indeed, Hartog's theorem states that if 
g is holomorphic in a neighborhood of the the boundary of the 
ball, then g extends to be holomorphic on the whole ball (thus, 
there can be no isolated singularities for holomorphic functions of 
several variables). If we apply this theorem to l/u, we deduce 
that l/u is holomorphic on the whole unit ball. This implies 
that u cannot vanish at any point in the ball. Thus, we have 
proved that ƒ is an unbranched covering map of the ball onto 
itself, and therefore, that ƒ must be a biholomorphic mapping. 
This completes the proof of the theorem. 

I said at the beginning of the proof of Alexander's Theorem that 
the method of proof that I would use could be generalized. Let 
me explain briefly how this can be done. First, the ball can be 
replaced by any bounded domain with C°° smooth boundary. It 
can be shown [8,18] that a proper holomorphic self map of such a 
domain extends C°° smoothly up to the boundary. The function 
r = \z\2 - 1 that we used in the proof must be replaced by what 
is called a strictly plurisubharmonic defining function. The Hopf 
lemma can be used to show that rof is a defining function for the 
domain. Finally, the consequences that we obtained using strict 
convexity are deduced from strict pseudoconvexity. On paper, the 
arguments appear exactly the same. The most general result about 
nonexistence of proper holomorphic self maps has been obtained 
by Pincuk [34]. He proved that a proper holomorphic self mapping 
of any strictly pseudoconvex domain must be biholomorphic. 

The survey article by Bedford [5] gives an excellent description 
of the leading problems in the study of proper holomorphic map­
pings between domains in Cn . 

6. TWO POSITIVE RlEMANN MAPPING THEOREMS IN C" 

Before I conclude this paper by listing some open questions, 
I must clear my conscience. I have probably convinced you that 
the notion of a Riemann Mapping Theorem in several variables is 
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absurd. Let me show why that is not entirely true. In one variable, 
we know that a simply connected domain Q that is not the whole 
plane is the same as the disc. It has a large group of biholomorphic 
self maps that correspond to the Möbius transformations of the 
disc. In fact, the automorphism group of Q is transitive, i.e., for 
each pair of points z and w in Q, there is a biholomorphic self 
map of Q. which maps z to w . This property characterizes those 
domains in the plane which are biholomorphic to the disc. Thus, 
a rather silly way to state the Riemann Mapping Theorem is: A 
planar domain, not equal to C, with a transitive automorphism 
group is biholomorphic to the disc. The analogous statement for 
domains in C" is not nearly so silly. Bun Wong [44] proved the 
next theorem in the strictly pseudoconvex case. Later, Rosay [37] 
was able to generalize it so that it can be stated as follows. 

Theorem (6.1). A bounded domain in Cn with C smooth bound­
ary that has a transitive automorphism group is biholomorphic to 
the unit ball in Cn . 

Besides this theorem, there is one other theorem that has a claim 
to being called the Riemann Mapping Theorem in Cn , namely 
Fridman's Theorem [21]. 

Theorem (6.2). Suppose that D is diffeomorphic to the unit ball in 
Cn . For any e > 0, there exist domains Qj and £22 contained 
in D and the unit ball, respectively, such that the boundary of Q{ 

is within a distance of e from the boundary of D and such that 
the boundary of Q2 is within a distance of e from the boundary 
of the unit ball, and such that £ï{ and Q2 are biholomorphically 
equivalent. 

Actually, Fridman's Theorem is best described as an approxi­
mate Riemann Mapping Theorem. 

There, I feel better now. 

7. SOME OPEN QUESTIONS 

The unit polydisc in C has many proper holomorphic self map­
pings which are not biholomorphic. Indeed, the set of proper hol­
omorphic self maps is precisely the set of mappings f{z{9 z2) = 
T(B{(zl), B2(z2)) where B{ and B2 are finite Blaschke prod­
ucts and T is either the identity or the mapping which exchanges 
the first and second variables [40]. The polydisc does not have a 
smooth boundary. Pincuk's Theorem [43] says that smooth strictly 
pseudoconvex domains have no nonbiholomorphic proper holo-
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morphic self maps. Does there exist a smooth domain which has 
a nonbiholomorphic proper holomorphic self map? 

The automorphism group of a domain is said to be noncompact 
if it is possible to find a point zQ in the domain and a sequence 
of automorphisms <I>7 such that O-(z0) tends to the boundary as 
j tends to oo . It is clear that a domain with a transitive automor­
phism group has a noncompact automorphism group. Greene and 
Krantz [22] realized that the only known domains with smooth 
boundaries in C which had noncompact automorphism groups 
were of the form {(z, w) e C : \z\ + \w\ p < 1} where p is 
a positive integer. They conjectured that a smooth domain in C 
with noncompact automorphism group must be biholomorphically 
equivalent to one of these domains and they proved their conjec­
ture in some special cases. Recently, Bedford and Pincuk proved 
the Greene-Krantz conjecture for pseudoconvex domains with real 
analytic boundaries. The conjecture is wide open in the nonreal 
analytic case. 

As we have seen, knowing that the boundary regularity of a 
solution to the 8 -problem is as good as the regularity of the data 
has important applications to the problem of boundary regularity 
of holomorphic mappings. In this paper, I have discussed this 
idea in the C°° category. I would like to conclude this paper by 
mentioning some ideas I have had for studying similar questions 
in the real analytic category. 

In one variable, we have the Schwarz Reflection Principle, which 
says the following. Suppose y is a real analytic curve in the plane 
which passes through the origin and let De denote a small disc 
about the origin such that Df—y consists of exactly two connected 
components. If ƒ is a mapping which is holomorphic on one side 
of y in De and continuous up to y , and if the image under ƒ of 
the curve y is another real analytic curve, then ƒ extends to be 
holomorphic past y . The classical proof of the Schwarz Reflection 
Principle uses facts about harmonic functions, and therefore does 
not extend to several variables. We need to find a proof of the 
Schwarz Reflection Principle which uses the ö-problem. I shall 
now give a 8-proof of a weaker result to illustrate the possibilities. 

Theorem. Suppose that ƒ is a holomorphic mapping on the upper 
half of the unit disc which extends to be C up to the closure of the 
upper half disc. If the image of the real axis is the real axis, then 
ƒ extends to be holomorphic past the real axis. 
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This is a dumb theorem. I hope to give an interesting proof of 
a dumb theorem. 

Proof. Let P denote the Bergman projection associated to the 
upper half disc D+ and let zQ be a point on the real axis with 
- 1 < Re z0 < 1 . Let (j) denote a C°° function on C such that 
d(/>/dz = 1 near z0 in C and such that </> = 0 on the real axis. 
(The existence of </> follows from the Cauchy-Kovalevski theorem, 
or in the simple case at hand, we may take <p(z) = 2/Im z .) Let 
X be a C°° function on C such that x = 1 *n a neighborhood 
of z0 and such that x is compactly supported in the unit disc. 
The idea of the argument I am about to use stems from the proof 
I gave of the extendibility of a proper holomorphic self map of the 
unit ball in §5. Let y/ = d(x(l))/9z . Note that y/ is equal to one 
in a neighborhood of z0 in C. 

I want to show that ƒ ' is equal to the Bergman projection of a 
function which is zero in a neighborhood of z0 . This will imply 
that ƒ extends holomorphically past z0 via an argument using 
the Green's operator for the Laplacian. I claim that ƒ'(*// o ƒ) is 
orthogonal to holomorphic functions on the upper half disc. To 
see this, note that ƒ '(y/ o ƒ) = d{{x<t>) ° f)/9z, and therefore, 
integration by parts yields 

[ f\y>of)TidV = - i ((x4>)of)^dV = 0 
JD+ JD+

 az 

if h is in H (D ) . Thus, P(f'(y/ o ƒ)) = 0. Now we may write 

f' = P(f'((\-y,)of))=P6 

where 6 is function in C(D ) which is zero in a neighborhood 
of z0 . Now the extendibility of ƒ follows from the following 
property of the Bergman projection which I call Condition Q. 

Condition Q. If Q is a bounded domain in the plane and if the 
boundary of Q is a real analytic curve near a boundary point zQ , 
then P6 extends holomorphically past z0 whenever 6 is a function 
in Z/"(Q) which is supported away from zQ. 

This property is deduced from formula (3.2) and the classical 
fact that the Green's operator for the Laplacian is locally analytic 
hypoelliptic. 
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There are two questions that this proof raises. (1) How can the 
assumption about C1 smoothness up to the curve be reduced to 
mere continuity up to the curve? (2) How can the argument be 
used in a several variable setting? In several variables, the C as­
sumption does not have such a bad ring to it. Recently, a great 
deal of progress has been made on generalizing the Schwarz reflec­
tion principle to several variables by Baouendi, Jacobowitz, and 
Treves (see [2, 3, 7, 19, 29, 35, 43]), but we suspect that much 
more general theorems can be proved. 

If, after reading this paper, you want to learn more about several 
complex variables, I highly recommend the textbooks [23, 28, 30, 
36, 39]. 
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