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NONLINEAR PARABOLIC EQUATIONS 
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INTRODUCTION 

Recently M. Crandall and P. L. Lions [3] developed a very suc­
cessful method for proving the existence of solutions of nonlinear 
second-order partial differential equations. Their method, called 
the theory of viscosity solutions, also applies to fully nonlinear 
equations (in which even the second order derivatives can enter in 
nonlinear fashion). Solutions produced by the viscosity method 
are guaranteed to be continuous, but not necessarily smooth. Here 
we announce smoothness results for viscosity solutions. Our meth­
ods extend those of [1]. We obtain Krylov-Safonov (i.e. Ca esti­
mates [8]), C 1 ' " , Schauder (C2,a) and W2iP estimates for vis­
cosity solutions of uniformly parabolic equations in general form. 
The results can be viewed as a priori estimates on the classical C 
solutions. Our method produces, in particular, regularity results 
for a broad new array of nonlinear heat equations, including the 
Bellman equation [6]: 

u - sup[a^.(x, t)u.. + bUx, t)u. + ca(x, t)u - ga(x, t)] = 0. 

On the other hand, in the special case of linear equations, to which 
our method of course also applies, our proofs are much easier than 
the classical estimates for classical solutions, and also produce new 
results in this long-and well-studied field. For elliptic equations, 
similar results were obtained by Caffarelli [1], in the case that the 
equations do not involve the term Du. 

We consider the following equation for a real-valued function 
u: 

(1) ut - F(D u, Du, u, x, t) = 0, 

where ut = du/dt, D2u = (d2u/dxixJ), Du = (du/dx^. Clas­
sically, there are two ways of attacking the problem of regularity 
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of solutions. One either writes down the solution explicitly, as in 
the theory of singular integrals, or differentiates the equation to 
get equations for the derivatives, as in [2], [4]. However, these 
methods do not apply to the very general equations we consider. 
The basic tools in our approach are the Aleksandrov-Bakel'man-
Pucci-Krylov-Tso maximum principle [7, 12] and the method of 
compactness. Our method is fundamentally nonlinear, that is, it 
does not rely on a linearization of the equations. Loosely speaking, 
using the maximum principle, we can obtain tangent paraboloids 
for solutions (see Theorem 2 below), which then lead directly to 
second order derivative estimates. Theorem 2 is our main techni­
cal result; Theorems 3, 4 and 5 contain the main applications. 

All the terminology used in this paper is in the sense of parabolic 
equations. See, for example, O. A. Ladyzhenskaya, V. A. Solon-
nikov, and N. N. Ural'tseva [9]. Thus if the space variable x 
has homogeneity 1, then the time variable t has homogeneity 2; 
Ca means Ca in x and C a / 2 in t ; paraboloid means that it is 
quadratic in x and linear in t. 

Definition. For a domain Q in Rn+l and p > n + 1, let Y = 
W2'P{Q), the Sobolev space of functions with the second order 
derivatives in if . By a standard estimate any function in Y is 
continuous. We say u is a viscosity solution of (1) provided that 
the following two conditions are satisfied: 

(a) if u - (p attains a local maximum 0 at (x0, *0), then 

(2) ess-inf-lim^ - F(D (p, D(p, cp, x, t)] < 0 
for all (p in Y. 

(b) if u - (p attains a local minimum 0 at (xQ, t0) in Q, then 
2 

(3) ess-sup-lim[>, - F(D (p, Dtp, cp, x, t)] > 0 
for all (p in Y. 

(2)(resp.(3)) is equivalent to requiring that (x0, t0) cannot be 
a density point of 

{<pt - F(D cp, Dip, (p, x, t) > <5(resp. < -ô)} for ô > 0. 

In a similar way, u in C(Q) is said to be a viscosity subsolution 
(resp. supersolution) if (a)(resp.(b)) holds. We will write 

2 

ut - F(D u, Du, u, x, t) < 0 (resp. > 0). 
We say F(M, P, v, x, t) is uniformly elliptic (i.e. (1) is uni­

formly parabolic) if there are two positive real numbers À, A such 
that 

(4) X\N\ < F(M + N, P,v,x,t)~ F(M, P , v , x , 0 < A\N\ 
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where N is an arbitrary positive definite matrix and |JV| is its 
norm. 

For simplicity, let us consider ( 1 ) in the form of 
2 

(5) ut - F(D u, Du, u, x, t) = g(x, t) 
where F is such that F(0 , Du, u, x, t) = 0. Here g is some 
bounded measurable function. Our methods, however, immedi­
ately extend to the more general case where ƒ depends on u and 
Du. 

For r > 0, define sets in Rn+l = Rn x Rl as follows: 

Ö, = (M <r}x (-r2, 0], Qr(x, t) = Qr + (x,t); 

Qr = (M < r} x (0, r 2 ] , Q r(x, 0 = Qr + (x, t). 

For example, Qx = B{ x ( - 1 , 0]. 
Denote dpQ{ = dB{ x ( - 1 , 0]uB{ x {-1} , the parabolic bound­

ary of Q{. 
For a real number u, let u+ and w~ be its positive part and 

negative part respectively. We have u — u+ - u~ . 
Our first result is the parabolic version of Aleksandrov-

Bakel'man-Pucci-Krylov-Tso maximum principle [7, 12] for vis­
cosity solutions. Let us introduce a special barrier function for u 
in C(QX): 

r(w) = sup f(x, t) 
f<-u~ 

where the supremum is taken over all the functions which are con­
vex in x, decreasing in t and bounded above by -u~ . 
Theorem 1. Let u be a supersolution of (5) in Q{. Assume u>0 
on dpQ{. Then 

(6) sup(*T)<C / \g \{n+l)dxdt) 
\Ju=r(u) J 

where C is a constant depending only on X, A. 

Let u be a supersolution as in Theorem 1, and let 
(7) 

Gh = {(*o ' 'o) e Q\ '• "(•* ' l ) ^ "(xo » 'o) + B(xo > ' o ) ^ - xo) 

- A{x^to)\x - x0\
2 + A{x0, t0)(t - f0) for {x, t) e g , , 

t<t0 with u(xQ, t0) + A + \B\ <h and A > o l 
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i.e. Gh is the set where u has a tangent paraboloid with aperture 
h from below. Let 

(8) *A = Ö I - < V 

Theorem 2. Lef u be a positive supersolution in Q2 U Q2 with 
inf^ w < 1. Then the measure of Bh satisfies 

(9) \Bh\<C±, 

for some e = c(A, A) awd C depending only on ||£||n+1 • 

Remark. The proof of Theorem 2 is based on Theorem 1 and a 
Caldéron-Zygmund decomposition. From Theorem 2, we can get 
a Harnack inequality as in [10] and Ca estimates which give com­
pactness for the set of solutions. 

Moreover, if u is a solution of (5), then it has second order 
derivatives almost everywhere. 

One immediate consequence of Theorem 2 is 

(10) f \ut\
e°+[ \Du\e°+[ \D2u\e°<C 

JQX JQ{ JQI 

where e0 — e/2, e as in Theorem 2. Using (10), we have the 
following theorem: 

Theorem 3. Let u be a continuous (W ,p-viscosity) solution of 
2 

ut - F(D u, x, t) = g(x, t) 

with \u\ < 1 and let 

*(*'')-sup pg^n 

where the supremum is taken over the set of symmetric matrices. If 
the equation 

vt-F(D2v + M9090) = N 

for M, N on the surface F(M, 0 ,0) = N, has interior C1 '1 

estimates: 

(H) \\D2V\\L-W ^ ^IMIi^e*) 

and 
\\S(x9t)\\Loo(Q)<SQ(p9X9A)9 
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then for p> n + \ 

(12) f \ut\
p + \D2u\p<cU\g\p + \\. 

We have the following lemma, whose proof relies on a new and 
useful general compactness argument as in the remark following 
Theorem 2. It plays a central role and is the real reason why we 
are able to develop a fully nonlinear method without linearization. 

Approximation Lemma. Let u be a solution of equation (13) in 
Qx with \u\ < 1. 

(13) ut- F(D u, Du, x, t) - g(x, t). 

Let 

(14) Sh(X,t)=suP^M>P + «>XJ-F(M>P>0>W 
\q\<h | A f | + l 

where the supremum is taken over M, p , q. 
Then, for any e > 0, there exist ô(e, À , A) and h(e, A, A) 

such that if 

vt-F{D2v,0,0,0) = 0, onQl/2 

V\d0 = M , 

then 

ilW-VllL~(C l /2)^C 

provided that the small oscillation condition 

(15) ll^||L-+.(Ci) + ||g||L-+i ( f l i )<tî(e,A,A) 

for h > h(e, A, A), is satisfied. 

In addition to the compactness argument described above, the 
proof of this lemma depends on a uniqueness theorem of Jensen 
[5] and Theorem 3 for Pucci's maximum operators [11]. 

From this lemma, we derive C l a , Schauder and W2,p esti­
mates for general parabolic equations. For example, we have 

Theorem 4. Let u be a bounded solution of (13). 
(a) Suppose that the equation 

vt-F(D2v,P,0,0) = 0 

has interior C1 '^ estimates (similar to (11)). 
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Then there exists ô0 = ôQ(fi, A, A) such that if 

<16) Sfe(^|,*'"+I) l + I N I c o ^ ^ O . 
where j Q = \/\Qr\ JQ , then u is Cl'a at (0, 0) for a < p, 
provided 

a 
i i«+l \ ^ ^ —l+a 

'a 
(b) Suppose that the equation 

vt - F(D2v, Dv + P, 0, 0) = 0 

has interior C 1 / ? estimates. 
Then there exists ô0 = ô0{p, X, A) such that if 

l i m U | 

then u is C 'a at (0,0) for a < /?, provided 

a 
\ 1/(1+1) 

i i«+l 1 ^ ^ — l+a 

1*1 <^> 
Theorem 5. Lef u be a solution of 

2 

ut - F(D u, x, t) = g(x, 0 . 
If the equation 

vt-F(D2v + C,0,0) = D 

for C, D on the surface F(C, 0, 0) = D, has interior C2 '^ esti­
mates (similar to (11)) and 

\ i/("+i) 

\S\n+{) <Cr\ 
'Qr J 

(similar definition for S as in Theorem 3) and 

i/("+i) 

a 
a | * - * ( 0 , 0 ) f + 1 < C r û 

then u is C 2 , a ^ (0, 0) for a < p. 

Remarks 1. A combination of the above theorems gives a regular­
ity theory for ( 1 ). We remark that the estimates in Theorems 3 and 
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5 hold for all equations of type (1) with natural growth condition 
as in [9]. 

2. All of the above theorems have analogs for boundary regu­
larity of the Dirichlet boundary value problem. 

3. All of the above theorems also have analogs for elliptic equa­
tions under similar conditions (change Ln*1 to Ln ). 

Without the small oscillation condition (16), we have the fol­
lowing boundary regularity. 

Theorem 6. Suppose P0 = (JC0, t0) e dpQ{ and u is a solution of 
(5) in Qx. Also suppose that u\d Q = 0 . Then for t0 > - 1 , u 

is C{,a at P0 for some a > 0 depending only on A, A and /?, 
provided 

ƒ \g\n+l) <c/-\ 

For t0 = - 1 , u is C2,a at P0 for some a > 0, provided 
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