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background material is included, too. Many simple proofs are given. It 
is an excellent source of ideas for a lecture to a mathematics club or high 
school. 

My main criticism of it is the poor quality of typesetting. It is far 
inferior to the TgX to which I have become accustomed. The 101-pp. 
bibliography has a verbose three-column format. One column holds the 
year of the publication and another gives the author. The title and the 
other information occupies the third column. 

The book is so popular that the first edition sold out completely in only 
one year. A second edition will appear soon. Many of the records have 
been broken; these will be updated in the new edition. (Some records in 
this review will be superseded before it appears in print.) A few typo­
graphical errors will be corrected as well, but, alas, the book will not be 
retypeset. 
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1. Introduction. Two important threads in the fabric of stochastic pro­
cesses come together in this monograph: semimartingales and convergence 
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in distribution (weak convergence) of stochastic processes. Even though 
semimartingales arise mainly in the context of stochastic integration, they 
are describable, via their so-called predictable characteristics, in a manner 
that makes them the natural class of stochastic processes for which con­
vergence in distribution is sufficiently tractable to admit a broad theory yet 
still specific enough to be interesting. 

Before delving more deeply into its contents and significance, we con­
sider separately the two threads the book joins. 

2. Semimartingales. Arguably the two most fundamental continuous 
time stochastic processes are the Brownian motion (Wt) and the Poisson 
process (Nt). They share properties of 

• Independent increments: increments in either process over disjoint 
time intervals are independent random variables, 

• Stationary increments: the distribution of the increment of either 
process over an interval (t, t + s] depends on s but not t, 

but differ in another sense as much as possible: 
• Brownian sample paths t —• Wt are continuous (although, with 

probability one, nowhere differentiable), 
• Poisson sample paths t —> Nt are integer-valued step functions, all 

of whose jumps are of size +1. 
Both processes, moreover, admit nearly identical "martingale character­

izations." To explain, recall that a process X is a martingale with respect 
to cr-algebras ^ , with %ft representing the observed history over [0, t], if 
for each t and s, 

(2.1) E[Xt+s\J%] = Xt. 

Equivalently, provided one can make sense of the (forward) differential 
dXu 

(2.2) E[dXt\&t-\ = 0 

for each t, where %ft- corresponds to the history over [0, t). 
The two processes are then characterized as follows: 

• Both (Wt) and (W2 - t) are martingales: 

(2.3) E[dWt\^] = 0 

and 
(2.4) E[{dWtf\F^] = dt. 

Here &l™ — a(Wu: u < t). Together with continuity, (2.3) and 
(2.4) characterize Brownian motion. 

• The processes (Nt - t) and ((Nt - t)2 - t) are martingales: 

(2.5) E[dNt-dt\^] = 0 

and 

(2.6) E[(dNt - dt)2\^] = dt. 

These, along with the "all jumps of size 1" condition, characterize 
the Poisson process. 
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Note in addition the analogies between (2.3) and (2.5) and between 
(2.4) and (2.6). 

The Brownian motion and Poisson process are extreme points of the 
class of stochastic processes with independent increments. For such a 
process X, provided Xo = 0 and there are no fixed times of discontinuity, 
then for each t, 

(2.7) logE[eiuX<] = iubt - y Q + ! (eiux - 1 - iuh{xj) Ft(dx), 

where bt, ct are real, Ft is a positive measure with ƒ min{l,x2}Ft{dx) < oo, 
and h is a bounded function such that h(x) = x near the origin. To in­
terpret, a process with independent increments is, heuristically, a convex 
combination of a deterministic motion, represented by the drift function 
bt; a continuous Gaussian component (a nonstationary version of Brow­
nian motion) with variance function ct\ and a jump component with the 
property that the point process whose points are pairs consisting of times 
and sizes of jumps is a (two-dimensional) Poisson random measure. 

Moreover, with y/t(u) denoting the function defined by the right-hand 
side of (2.7), for each u, 

(2.8) (eiuX'/e*M)t>o is a martingale. 

The essence of a semimartingale is to replace the deterministic elements in 
(2.7) by predictable stochastic processes (Bt), (Ct) and (^([0,*] x dx)) in 
such a manner that (2.8) remains valid. (Note that (y/t{u)) now becomes 
random as well.) There is, however, a more basic definition: a process X 
is a semimartingale if it admits a decomposition 

(2.9) X = X0 + M + A, 

where M is a local martingale and A is a process with sample paths of 
locally bounded variation; X is termed special if A is predictable. The 
theoretical significance of semimartingales is that they are the only "in­
tegrators" for which a reasonable theory of stochastic integration can be 
constructed. 

3. Convergence in distribution. Convergence in distribution of random 
variables, typified by the central limit theorem, dates, of course, almost 
from the antiquity of probability theory, and convergence of finite-
dimensional distributions of stochastic processes is a generally straightfor­
ward modification of it. The latter is inadequate, however, to ensure con­
vergence of many functionals of stochastic processes of interest, and one 
requires the stronger notion of convergence in distribution for stochastic 
processes, which entails viewing processes as random elements of a func­
tion space endowed with a particular topology, and their laws as probability 
measures on this space. 

The "classical method" (cf. Billingsley, 1968) for establishing that a 
sequence (Xn) of stochastic processes (whose sample paths lie in the Sko-
rohod space Z>[0,1] of functions that are right-continuous with left-hand 



372 BOOK REVIEWS 

limits) converges in distribution to a process X, denoted by Xn —• X, is to 
prove that 

• (Xn) is tight, a property equivalent to relative compactness, but 
easier to verify 

• The finite-dimensional distributions of Xn converge to those of X 
• X is characterized by its finite-dimensional distributions. 

Of these, the third is typically trivial; the first is unavoidable, and albeit 
sometimes difficult, tractable in a variety of situations. The second, by 
contrast, is often essentially impossible unless the limit has independent in­
crements; the reason is that many descriptions of stochastic processes, no­
tably via predictable characteristics, provide no useful information about 
the finite-dimensional distributions. 

In this monograph the authors explore in detail the "martingale method" 
paradigm of demonstrating convergence in distribution by proving that 

• (Xn) is tight 
• The characteristics of Xn converge to those of X 
• X is characterized by its characteristics. 

In this latter setting the difficult step is the third rather than the second. 

4. The book. The book is organized into ten chapters, whose contents 
we summarize. 

I. The general theory of stochastic processes, semimartingales and stochas­
tic integrals. This is standard material on the "théorie générale du proces­
sus," available from many sources. 

II. Characteristics of semimartingales and processes with independent 
increments. Here the key concepts are introduced. Given a semimartingale 
X, and a truncation function h {h is bounded with compact support and 
h(x) = x in a neighborhood of the origin), one introduces processes 

tix=y£l(AXs^0)e{sAXs) 
s 

X(h)t=Y^[**s-h(AXs)] 
s<t 

X(h) = X-X(h), 

where AXS = Xs - Xs- is the jump of X at time s. These represent, respec­
tively, the times and sizes of the jumps of X, the "large" jumps (for AXS 
sufficiently small, h(AXs) = AXS) and X with the large jumps removed. 
The process X{h) is a special semimartingale and from its canonical de­
composition 

(4.1) X(h) = X0 + M(h) + B(h), 

one defines the triplet of characteristics of X, consisting of 
• The predictable process B in (4.1) 
• The quadratic variation process C of the continuous martingale 

part of X 
• The compensator v of the "measure of jumps" JLIX. 
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Physically, they generalize the drift, variance of the Gaussian part and Levy 
measure (cf. (2.7)) of a process with independent increments by permitting 
these objects to depend in a predictable manner on the (strict) past of the 
process. 

It is these characteristics whose convergence implies that of semimartin-
gales. Somewhat more precisely, one deals rather than C with the modified 
second characteristic C, the quadratic variation of the martingale M(h) ap­
pearing in (4.1). 

III. Martingale problems and changes of measures. Here the issue is 
whether and to what extent the characteristics of a semimartingale in fact 
do characterize its distribution. Though this is not so in general, fortu­
nately it is true (and all that one needs) for processes that typically arise 
as limits. The approach is via martingale problems, the most fundamen­
tal of which is the following: given a process X; a probability P on an 
initial a -algebra %?§\ and a predictable process B, a continuous process C, 
and a predictable random measure u, does there exist a probability P* ex­
tending P with respect to which X is a semimartingale with characteristics 
(B, C, u)l This question is answered affirmatively in key special cases. 

Elsewhere in the chapter the authors discuss martingale representation 
theorems, absolutely continuous changes of probability law, and Girsanov 
theorems, which give likelihood ratios explicitly. 

IV. Hellinger processes, absolute continuity and singularity of measures. 
The main issue addressed here is absolute continuity and singularity of 
probability laws of semimartingales, to which are applied Hellinger dis­
tances, integrals and processes. 

V. Contiguity, entire separation, convergence in variation. Contiguity 
and entire separation are, roughly speaking, absolute continuity and sin­
gularity in the limit for two sequences of probability measures. They 
have various statistical and mathematical implications, none of which, re­
grettably, is explored here. (Some are described in Greenwood/Shiryaev, 
1985.) Hellinger processes are the main tool. Using bounds on varia­
tion distances between measures in terms (essentially) of L1/2-norms of 
Hellinger processes, several results on convergence in variation for stochas­
tic processes, which is much stronger than convergence in distribution, are 
derived. 

VI. Skorokhod topology and convergence of processes. Like Chapter I, 
this is largely standard material; there are, however, several criteria for 
tightness tailored to semimartingales. 

VII. Convergence of processes with independent increments. 
VIII. Convergence to a process with independent increments 
IX. Convergence to a semimartingale 
Finally, in Chapters VII-IX appear the limit theorems engendering the 

book's title. The general goal of providing conditions implying conver­
gence of a sequence of semimartingales to a limit semimartingale is ap­
proached incrementally: first all processes are assumed to have indepen­
dent increments, then only the limit, then none. The questions posed 
are of one prototypical form: given semimartingales Xn with modified 
characteristics (Bn,Cn,vn) and a semimartingale X with characteristics 
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(B, C, v), derive necessary and sufficient conditions for Xn —• X in terms 
of convergence of (Bn, Cn, vn) to (2?, C, v). Most of these results are too 
complicated to reproduce here, but in general terms the convergence re­
quired of characteristics is 

s u p | ^ - J 9 , o X n | ^ 0 , t>0 
s<t 

(4.2) s u p l Q - Q o ^ l ^ O , *>0 
s<t 

sup\g * itf - (g * vs)oXn\ £ 0, t > 0. 

X. L/ra/Y theorems, density processes and contiguity. Here the authors 
explore some contiguity-related consequences of their limit theorems. 

The main text is complemented by bibliographical comments, a list of 
254 references and indices of symbols and terminology. 

5. Comments. Pascal is reputed to have apologized to a friend for "writ­
ing such a long letter, but I did not have time to write a short one." This 
is not a short book. Jacod and Shiryaev appear to have exercised no selec­
tivity, and in consequence have produced an almost impenetrable morass 
of highly technical theorems, with little interpretation or explanation. The 
unremitting ponderousness of the book is relieved only (but this is signif­
icant!) their repeatedly working out in detail examples and special cases, 
such as the general theory of discrete time stochastic processes, and refined 
theorems corresponding to limits that are point processes (Poisson limit 
theorems, in particular), Gaussian martingales (central limit theorems) and 
martingales. 

Admittedly this is very difficult material, but nevertheless graceful, 
thoughtful exposition (Blumenthal/Getoor, 1968, remains a premier illus­
tration) can elucidate even the most complicated theory. That the English 
is considerably less than fluent compounds the problem. 

Few readers will have the endurance to reach the main results by starting 
at the beginning. Indeed, an amusing misprint, on p. 499, to the effect that 
"We at least [sic] proceed to heart of our subject" seems to summarize the 
situation perfectly. 

This is a pity, because there is a wealth of material here that is useful and 
beautiful, and is otherwise available only in journals, but the authors have 
rendered most of it, to use a relevant technical phrase, totally inaccessible. 
I anticipate that the book will be referred to most often in terms such as 
"It's probably in Jacod and Shiryaev, but " 
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