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PROGRESS IN THE THEORY OF COMPLEX ALGEBRAIC CURVES 

DAVID EISENBUD AND JOE HARRIS 

ABSTRACT. We describe the contemporary view of the theory of algebraic 
curves over the complex numbers, with emphasis on the moduli spaces 
of curves and linear series on them. We then give an exposition of some 
of the recent work on the question of the rationality of the moduli space. 

Introduction. In the last twenty years there has been a major develop­
ment in our understanding of algebraic curves. A number of the classical 
problems have been solved and new directions of investigation have been 
begun. We will describe some of the history of the theory, and how it led 
to the modern point of view, and we will sketch proofs of many of the 
main assertions. Then we will explain something of how the modern ideas 
have been used to solve some old problems. 

Many features of the current wave of progress are closely connected 
with patterns that go back to the earliest period in the development of the 
theory, so it's best to start with ancient history. To talk of complex projec­
tive curves, you need the complex numbers and you need projective space, 
so "ancient history" for us will start when these things become available, 
between about 1800 (Gauss' proof of the fundamental theorem of alge­
bra) and 1830, (the introduction by Plücker of homogeneous coordinates 
for the projective plane). It goes without saying that the history below is 
that of a Mathematician and not of an Historian—it should probably be 
described as "fictionalized." 

Naturally we will have to leave out parts of the theory of curves at least 
as rich as the parts we can put in. We beg pardon in advance from anyone 
whose favorite bit we've skipped. A more detailed development along the 
lines of this article may be found in lectures from the Bowdoin conference 
(Harris [1988]). A very beautiful survey covering a different range of topics 
is that of Mumford [1976]. 

A curious aspect of the history of algebraic curves, as with other parts 
of algebraic geometry, is the breakdown of rigor which deeply affected the 
theory, leading to its virtual stagnation in a mire of unproved assertions 
and incomplete proofs in the end of the first third of this century. The 
late nineteenth and early twentieth centuries were of course a period of 
enormous vitality in algebraic geometry, a period in which a large fraction 
of our current knowledge of curves and surfaces was obtained. In some 
cases the low rigor was simply the result of the fact that people lacked a 
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good language for expressing their new discoveries, or the fact that they 
expressed as theorems what might now be called "certainly true conjec­
tures," in the fashion of modern number theory. But in shockingly many 
instances, we see now that the "proofs" were based on the then traditional, 
but totally inadmissible, lack of concern with certain "exceptional" cases— 
cases which were in fact not exceptional at all, but were crucial to the truth 
of the main assertions even in the best and most centrally important cir­
cumstances. A number of the assertions whose original proofs were thus 
tainted will appear in their modern guise in our story. 

It is interesting that mathematicians have in general handled the cir­
cumstances of these wrong and incomplete proofs rather charitably. The 
phrase "X's Theorem," when it is finally noticed that X gave no proof, 
usually becomes "X's Conjecture," and turns back into "X's Theorem," or 
sometimes "Z-7's Theorem" if and when Y finds a proof. (Perhaps a new 
term for this class of mathematical utterances should be coined. Why not 
speak of "X's Folly"—not in the pejorative sense of the word folly, but 
rather in the sense of enlightened madness?) 

In any case, perhaps partly encouraged by the successful reexamination 
of general position and transversality arguments in topology and differen­
tial geometry, these ideas have been broadly studied by algebraic geome­
ters, and many of the applications to the theory of curves have been put 
right. It is one stream of the work in this direction, and the new results it 
has brought, to which we will address ourselves in the second part of this 
article. To prepare the ground, the first part will be taken up with a sketch 
of some of the fundamental ideas and results of the theory of curves. 

There are, as we indicated, many recent developments of great interest 
which we will not discuss below. We will at least give references to a few 
of these, which include the theories of nodal plane curves (Harris [1986]), 
of curves in P3 (Gruson-Peskine [1978,1982], see also Hartshorne [1982]), 
and of Weierstrass points (see for example Eisenbud-Harris [1987] and 
Morrison-Pinkham [1986], where there are also many further references); 
and the Schottky problem (Arbarello, DeConcini, Donagi, Fay, Gunning, 
Shiota, Welters,... —see for example the survey [1988] of Arbarello). 

We are grateful to Scott Wolpert who read a preliminary version of this 
report, helped us with our history, and suggested many useful references. 

I. Basic notions of the theory of curves. 
IN THE BEGINNING. .. curves were in the plane; that is, a curve was an 

equation in two variables (or a homogeneous equation in 3 variables, which 
defines a curve in P2 = {{x : y : z) = (x,y, z)/scalars}, a compactification 
of C2. Two features of this "world-view," in particular, had very significant 
consequences for the future development of the theory: 

FAMILIES OF CURVES. It was natural from the first to consider families 
of curves: having written an equation, why not let the coefficients vary? At 
least in the homogeneous case, this variation does not change the degree 
of the equation. Accordingly, nothing could have been more natural than 
to study the family of all curves of given degree as itself an algebraic 
variety—it is just the projective space of homogeneous equations of that 
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degree. (The use of projective space here is natural since two equations 
that differ by a scalar vanish on the same points and thus define the same 
curve.) 

SINGULAR CURVES. The family of plane curves of a given degree natu­
rally included singular curves, so that even if these did not have precisely 
equal rights, they were at least present to be reckoned with. As one fol­
lowed paths around in the family, say 

y2 =X(X- l)(x-t) 

as t varies, say t goes to 0, one saw nonsingular curves "degenerating" into 
a singular curve—in this case a "nodal" curve. Indeed, many degenerate 
forms arise, as indicated in the diagram 

smooth cu rves 
degenerate to 

nodal curves , which 
m a y degenerate to 
ei ther 

cuspidal curves 

or reducible curves 

and so on. 

FIGURE 1 
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Even "reducible" curves (that is, curves that may be described as the 
union of several curves) and "nonreduced" curves are included here. One 
may think of a nonreduced curve as a curve "with multiplicity," such as 
for example the "double line" which is the limit of the family of ellipses 
x1 + t • y2 = t as t approaches 0: 

OOI 
FIGURE 2 

ABSTRACT CURVES. Curves were finally freed from the plane about 1860 
through the work of Riemann (their liberation was not universally recog­
nized until at least the time of Weyl, however). At first curves appeared 
in the new "Function Theory" as objects which are (ramified) coverings 
of P1, renamed the "Riemann Sphere." This was perhaps not so different 
from considering them as objects with embeddings into P2—a link to a 
projective space still existed—but the bond to a particular projective space 
had been shaken. 

This can be seen as one instance of a global trend in mathematics, in 
which objects that had initially been defined as subsets of a standard object 
were replaced by abstract versions. For example, in differential geometry a 
"manifold" had been a subset of R" defined locally by ^ ^ functions with 
independent differentials; now it became a set with the additional structure 
of a topology, coordinate charts and possibly a Riemannian metric. Sim­
ilarly, in group theory a "group" had been a subset of GLn or <Ôn closed 
under inverse and multiplication; it became a set with binary operation 
satisfying the now-standard axioms. Analogously, through the contribu­
tions of Poincaré, Klein,... ,Weyl, from the 1880s to around 1920, (and 
of course very much through the rise of topology), curves finally shook off 
the need for attachment to a projective space. The term "curve," by which 
had previously been meant a subset of projective space (and most com­
monly the loci of single polynomials in the projective plane), now came to 
mean a compact complex manifold of dimension 1. 

But how is one to study an object that simply floats by itself? A curve in 
P2 has many "features;" for example, points of inflection, or points where 
the tangent line is again tangent at some other point of the curve, to name 
just two constructs that were important in the early theory. Similarly, if 
one studies a curve as a branched cover of P1, the ramification points of 
the covering provide convenient handholds for study of the curve. But an 
abstract curve seems at first rather featureless. 

Another deficiency of the abstract viewpoint is that it is at first diffi­
cult to see how to define families and degenerations of abstract curves. 
The very first problem was to decide which curves should fit together in 
a family. Whereas the coefficients of a plane curve can be varied, giving 
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the family of curves of given degree, or the branch points of a ramified 
cover can be varied, giving a family of curves admitting maps of a certain 
degree to P1, the "obvious" invariant in the new point of view is rather its 
topological structure, so one should expect to see families of curves with 
given topology. A complex manifold is automatically orientable, so a com­
pact complex 1-manifold is a real compact orientable surface—a sphere 
to which a certain number of "handles" have been added, and as such it 
is topologically classified by the number of handles, called its genus. How 
should one think of varying the complex structure on a given topological 
surface, and how would one ever know, for example, if that variation were 
"algebraic?" 

The repair of these deficiencies was of course among the earliest projects 
of the developers of the new views, but it took a long time to achieve 
satisfactory results. We will describe the modern view. 

MAPS TO PROJECTIVE SPACE, AND LINEAR SERIES. TO recover the rich­
ness of a projective embedding for an abstract curve, we must understand 
the data of such an embedding. It cannot be defined by functions in the 
usual sense, since any holomorphic function on a compact space must be 
constant by the maximum modulus principle. Functions would be (global) 
sections of the trivial line bundle. The way out of the problem of nonex­
istence of functions is to look for sections of a nontrivial line bundle: if 
So,... ,sr are sections of a line bundle L on a curve C, and if, say, So does 
not vanish at a point p of C, then the ratios Si(p)/so(p) are well-defined 
complex numbers, so we may define a map, from at least that part of C 
where not all the Sj vanish, to Pr by sending/? to (so{p) : • • • : sr(p)). (From 
a higher-brow point of view, Pr is the classifying space for line bundles 
generated by r + 1 global sections.) To get a well-defined map to projec­
tive space one needs a collection of sections 5/ that do not all vanish at 
any point of C. Note that if we replace the St by a different collection 
of sections generating the same vector space of sections, then we simply 
compose the corresponding map with an automorphism of Pr, so we may 
replace the collection of sections So,..., sr by the vector space of sections 
that they generate. 

Now it is rather a nuisance to be always checking whether there is a 
point at which all elements of a certain collection of sections of a given 
line bundle vanish, and for many purposes it is unnecessary, so we will drop 
the condition and define a linear series on C to be a pair (L, V) consisting 
of a line bundle L and a space V of global sections of L. If (L, V) actually 
corresponds to an embedding, we say that it is very ample. If L together 
with the vector space, written H°(L), of all its sections corresponds to an 
embedding, then L is called very ample. 

We can immediately associate two characteristic numbers to a linear 
series (L, V) : First, all the sections of a line bundle L on a curve C vanish 
at the same number of points (counted with multiplicities) of C, and this 
number is called the degree of the line bundle, or linear series. (It is in 
fact a complete topological invariant for the line bundle, and generalizes 
the degree of a plane curve, as the terminology suggests.) Second, we have 
the dimension: if the vector space dimension of V is r + 1, we speak of a 
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linear series of dimension r, since it may correspond to a map to Pr. In the 
classical terminology, a linear series of dimension r and degree d is called 
a gr

d, a "group" of d points "moving" in an r-dimensional family. This 
view comes from the identification of a section of L (up to scalars) with 
the set on which it vanishes (with multiplicities). Alternately, thinking of 
L, V as corresponding to a map to Pr, we may think of a linear series as 
being the family of sets in which the curve meets hyperplanes in Pr. 

WHAT LINEAR SERIES ARE THERE? One could interpret this question as 
a question about an arbitrary but fixed curve, or as a question about how 
to choose a linear series for each curve simultaneously in some uniform 
way. We begin with the second interpretation. 

Surprisingly, there is an essentially unique answer. This is essentially 
the content of Franchetta's theorem (or "folly," in the language of the 
introduction), which was recently proved through work of Mumford, Ar-
barello, and Cornalba [1987], using the topological work of Harer [1983], 
and refined by Mestrano [1987]. It says roughly that the only line bundles 
that can be chosen uniformly are the (positive and negative) tensor powers 
of the complex tangent bundle. The tangent bundle and its positive pow­
ers are not so interesting from the point of view of linear series, since for 
curves of genus g > 1 they have no sections! But the dual of the tangent 
bundle, the cotangent bundle, which we will write as a>c, always has g 
sections. This bundle plays such a central role in the theory of curves that 
it is called the canonical bundle of C. One of the basic theorems in the 
subject says that for g > 1 these sections do not vanish simultaneously 
anywhere on the curve, so that the "canonical" linear series consisting of 
the canonical bundle together with all its sections always gives a map of 
the curve to P8~l. As soon as g > 3, there is an open dense set of curves 
for which this "canonical map" is an embedding. 

The study of the ideal defining the curve in the canonical embedding is 
an important part of the theory of curves that was begun (with partially 
incomplete proofs and statements that are sometimes simply wrong) by 
Petri in the early part of this century, and brought up to date by St-
Donat [1973] and others. It continues to be an active topic of research; for 
example, it is believed that the minimal free resolution of this ideal reflects 
rather detailed information about what other interesting linear series the 
curve possesses (Green-Lazarsfeld [1986] and Schreyer [1986] and [1988]). 

We now turn to the linear series on an individual curve. We will first 
need to know about the line bundles on the curve, then about the space of 
global sections of a line bundle. 

LINE BUNDLES. An algebraic line bundle L on a curve C is by definition 
a map of spaces L —• C whose fibers are all isomorphic to the complex line, 
C, and so that there is a cover C = (J,- Uj of C by open sets such that the 
restriction of L to each set [// is isomorphic to the trivial bundle C x £//, the 
isomorphism being linear on the fibers. It follows that the identification 
of L\uf = C x Ut with L\uj = C x Uj over Ui n Uj is by means of a 
function fa from Ut n Uj to the set of automorphisms of a 1-dimensional 
vector space, that is, to C*. If we wish to define algebraic bundles, then we 
should properly deal with "algebraic open sets" and polynomial functions; 
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but in fact, since we are dealing only with projective curves, algebraic and 
analytic line bundles are the same, and we will work here in the somewhat 
simpler analytic category. Such a collection of analytic functions ƒ7 may 
be regarded as a Cech 1-cocycle with values in the sheaf (f*n of nowhere 
vanishing analytic functions on C, and we associate to L the corresponding 
cohomology class, in H{(C,(f*n). It is not hard to show that in this way 
the group of all line bundles (the group operation being tensor product), 
called the Picard group of C, and written Pic C, is actually isomorphic to 
H\c,&;n). 

This is useful because of the ease with which we can compute Hl(C, &£n). 
If ƒ is a function on some connected open set U of C, then exp ƒ, de­
fined by (exp f)(z) = ^(27r/)/(z), say, is a nowhere vanishing function on [/, 
identically equal to 1 iff ƒ is a constant function equal to an integer. Con­
versely, if U is small enough to be simply connected, then we may take the 
logarithm of a nowhere vanishing function on U, so that the "exponential 
sequence" 

where we have written @an for the sheaf of analytic functions on C, is an 
exact sequence of sheaves on C Applying cohomology, and using the fact 
that any globally defined analytic function is a constant by the maximum 
modulus principle, we get the exact sequence 

0 ~* Hl(C,Z) - Hl(C90an) -+ Hl(C9*;n) -> H2(C9Z). 

The first and last terms in this sequence are isomorphic to the ordinary 
simplicial or singular cohomology groups of C; since C is a compact ori­
entable surface of genus g they are Z2g and Z respectively. The second 
term in the sequence is a complex vector space of dimension g by the 
Riemann-Roch Theorem, to be discussed below. The third term is by our 
discussion above the sought for group of line bundles, Pic C. Furthermore, 
it is not hard to show that the map in the sequence PicC —• H2(C9Z) is 
given by sending a line bundle to its degree. Since every degree is possible 
(for example, it is easy to see that if p is a point of C then the line bundle 
whose sections, locally, give the functions vanishing to some given order 
d at p has degree -d)9 so the map is onto. Thus for any integer d, the set 
of line bundles of degree d on C is isomorphic to 

Hl(C90an)/H
l(C9Z)*C'/Z2*. 

It turns out that Z2g is here embedded in C^ as a lattice (called the period 
lattice of C—it actually determines C, a result called the Torelli Theo­
rem). Moreover, it turns out that this complex torus C^/Z2^ is actually a 
projective algebraic variety, called the Jacobian variety of C. 

In sum, the family Pic^ C of line bundles of degree d on C forms a 
compact, even projective algebraic, variety of dimension equal to the genus 
of the curve C. In particular, any curve of genus > 1 possesses lots of line 
bundles of each degree. 

Of course we do not immediately get linear series from this—we need 
to know about the sections of these line bundles as well. This brings us to 
one of the most useful of all results in algebraic geometry: 



212 DAVID EISENBUD AND JOE HARRIS 

SECTIONS: THE RIEMANN-ROCH THEOREM. The Riemann-Roch Theo­
rem tells us how many sections a line bundle on a curve has. (There are 
versions for higher dimensional varieties, but they give progressively less 
complete information as the dimension goes up.) In the case of line bun­
dles whose degree is large compared to the genus of the curve, the answer 
is in terms of the genus g and the degree d of the bundle—the topology of 
the situation—alone: it says that there are d - g + 1 independent sections. 
That is, we get a 

d-g 
8d *• 

With this information it is not difficult to deduce the existence of many 
embeddings of the curve, and to gain considerable insight into their geom­
etry. (Many mathematicians—including both the authors of this article— 
hear for the first time about the theory of curves in a course where the 
Riemann-Roch Theorem is the last thing done. For years afterwards, they 
wonder what, if anything, the Theorem is really good for. We feel that it 
should rather be among the first things done in a course on curves—the 
proof is not really very difficult, and it makes a great deal else possible.) 

THE BRILL-NOETHER COMPUTATION. It turns out that in practice one 
is often interested in linear series of lower degree, where Riemann-Roch 
tells one less. In general, writing h°L for the dimension of the vector space 
H°(L) = H°(C,L) of all global sections of L, and hlL for the dimen­
sion of the (Cech) cohomology group Hl(L) = H{(C,L), the statement of 
Riemann-Roch is 

h°L = d-g+l+hlL, 
and Hl(L) is isomorphic to the dual of the vector space H°(L~{ <g> (oc) 
(this is called Serre Duality), so that 

hlL = h°(L-{®coc). 

The reason that the formula simplifies for d > 2g - 2 = degc^c is that 
then L~l <g> a>c has negative degree, and thus no sections, so hlL — 0. 
But for bundles L of lower degree, h°(L~{ <g> a>c) may be fairly large, 
giving rise to interesting "special" linear series, and sometimes embed­
dings. There is a general result that gives us at least a lower bound, 
sharp for the general curve, on the dimension of the family of these spe­
cial linear series. This is the Brill-Noether "Theorem" (more properly, 
"folly"), stated with an incomplete proof by Brill and Noether in the 
1880s, and completely proved about 5 years ago. (Brill-Noether [1874], 
Kempf [1971], Kleiman-Laksov [1972] and [1974], Griffiths-Harris [1980], 
Gieseker [1982], Eisenbud-Harris [1983], Fulton-Lazarsfeld [1981], Lazars-
feld [1986]). In one of its sharp forms, it says that the family Gr

d(C) of 
g j's has dimension 

dim Gr
d{C) >p:=g-(r+l)(g-d + r), 

and that for most C the inequality is an equality, with Gr
d(C) smooth and 

irreducible. 
Though the full proof of the Brill-Noether Theorem remains somewhat 

complex, the idea behind it is very simple: Most gd's in the interesting 
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ranges of d and r will be obtained by taking all the sections of a line 
bundle of degree d, so that to prove the Brill-Noether Theorem we should 
compute the codimenson, in the ^-dimensional family of line bundles 
Pic^(C), of the set of those with (at least) r + 1 sections, and show that 
this codimension is(r+l)(g-d + r). If L0 is a fixed line-bundle of some 
arbitrary but high degree e, and £P c C is the set of points at which some 
section of L0 vanishes, then for all L of degree d we will have an exact 
sequence 

0 _> H°(L) - H°(L®L0)^C^, 

where we have identified H°(L ® L0^) with the functions C00 from 90 to 
C, and CL is the restriction map. 

Since the degree of L0 was chosen "large," we may compute the di­
mension of H°(L ® L0) by Riemann-Roch; it is d + e - g + 1, while the 
dimension of O^, the set of functions from & to C, is e, the number of 
points in 30. Thus the locus of L with h°L > r + 1 is the locus, in the 
family of those (d + e-g+l)xe matrices of the form Ç>L, of the matrices 
with rank at most d + e- g+l — (r+l). (This argument is only "locally" 
valid, since it is not possible to choose a family of bases for the H°(L<8>Lo) 
which varies analytically with L\ these spaces are the fibers of a nontrivial, 
but topologically well-understood vector bundle.) 

Now the locus of a x b matrices of rank < k is well known to have 
codimension {a - k)(b - k) in the space of all a x b matrices. After a 
little arithmetic one sees that if the family of matrices (pL met the locus of 
matrices of rank <d + e-g+\-(r+\) transversely, then the dimension 
statement (and in fact all) of the Brill-Noether theorem would follow. 
This remark, together with some examples with low genus, is essentially 
all the proof given by Brill and Noether; it actually only proves that any 
(nonempty) component of Gr

d(C) will have at least dimension /?, and it 
does nothing to establish the existence of any. (These deficiencies, along 
with a possible program for correcting them, were first pointed out by 
Severi in the 1920s, after the Theorem had been accepted for 40 years!) 

We have now touched on the fundamentals of the modern approach to 
the "projective geometry" of an abstract curve. We will next turn to the 
notions that are necessary to replace the family of plane curves, and of 
degenerations in that family. 

FAMILIES OF CURVES AND DEGENERATIONS: SPACES OF MODULI AND 
THEIR COMPACTIFICATION. First, what is a family of abstract curves, and 
when is it algebraic? It turns out that all the constructions one can think of 
fit neatly into a single general framework: A family of smooth projective 
curves is simply a map ƒ : X —• B whose fibers are smooth curves. The 
family deserves to be called algebraic (or analytic) if ƒ, X and B are all 
algebraic (analytic). If X and B are smooth, a case sufficient for most 
of our needs, no more conditions on ƒ are necessary; in the most general 
case, and in particular if the fibers are singular, one wants to require a weak 
local triviality condition on the family—"flatness" is the one most often 
chosen, since it allows many desirable families and is easy to manipulate. 
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It may take a little experience to realize that one's favorite families of 
curves fit this pattern. For example, to make the family of all plane curves 
of a given degree into a map as above, we let B be the projective space of 
all homogeneous forms in 3 variables of degree d—that is, the projective 
space of all equations of plane curves of degree d. Then let X c P2 x B 
be the set of all pairs (p, F) such that F(p) = 0, and let ƒ : X —• B be the 
projection on the second factor. The fiber over a point F e B is the curve 
defined by F. 

This example is not just "some' family of plane curves of degree d. It is 
in an obvious sense the universal family—every other family ƒ' : X' —• B' 
of plane curves may be deduced from it by "pulling back" this family 
ƒ: X —• B along some map (p: B' -> B. Thus, in principle, we can study 
all possible families of plane curves by studying this one. 

It is the urge to have a similar object to help in studying families of 
abstract curves that leads to the search for and study of the moduli space 
of curves. It is not hard to show that families of smooth curves defined 
as above, with B connected, will consist entirely of curves of a single 
genus (indeed, the family will be locally C°° trivial over B), so the most 
"universal" family that one could hope to find would be a universal family 
consisting of all curves of a given genus g. The base space J?g of such 
a family would be called the moduli space of curves of genus g. (The 
word moduli, hoary with age, denoted originally a collection of complex 
numbers that determine the isomorphism class of a curve.) 

Already Riemann was interested in families of curves of given genus, 
and he even calculated the dimension that such a family could have. Per­
haps on the basis of the example of curves of genus 1 (explained below), 
which was well understood, his contemporaries spoke of at least a space 
whose points would correspond to the isomorphism class of curves. How­
ever (as Brill and Noether point out, apparently to justify their hero Rie­
mann before the skeptics) Riemann, at least, was careful not to assert the 
existence of a universal family, or even a space whose points corresponded 
to the isomorphism classes of all curves. 

It is a sad truth that no universal family of smooth projective curves of 
genus g exists. But the space whose points correspond to the isomorphism 
classes of all smooth curves of genus g—the space which "would be the 
base space of the universal family if that family existed"—does exist! (This 
shows, perhaps, that we have learned something in the 120 years since 
Riemann.) The peculiar phrase in quotation marks can even be turned 
into a valid definition: 

DEFINITION OF Jfg. If a universal family of smooth curves existed, its 
base space J(g would have points in one to one correspondence with the 
isomorphism classes of such curves; this follows because the "family" of 
curves consisting of a single curve, with base space a single point, would 
have to be pulled back along a unique map of the point into J!g. Thus 
the base space certainly exists, as a set—-it is just the set of isomorphism 
classes of curves of the appropriate sort. Further, if there were a universal 
family of curves over ̂ , we could deduce the structure of J[g as a variety 
from its universal property: given any family ƒ : X —• B of smooth curves 
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of genus g, the set-theoretic map cpf'. B -» J[g sending a point b e B to the 
isomorphism class of the fiber f~{{b) would be a map of varieties—indeed, 
<p/ would be the map of varieties necessary to obtain ƒ as a pullback of 
the universal family. The existence of such a map (pf for every family ƒ, 
and the fact that if all these maps factor through some map of varieties 
y/: J[ -» Jfg, then y/ is an isomorphism, are properties which define (at 
most!) a unique structure of algebraic variety Jfg even without the existence 
of a universal family. 

Something approximating the universal family of curves may be defined 
in a similar way: we can look at the set of isomorphism classes of pairs 
(C,p) where C is a smooth curve of genus g and p is a point of C, and 
define on it a structure of algebraic variety by a definition similar to the 
above. The resulting space (which really does exist) is called Wg. There is 
a natural m a p 7t : tog —> J?ig obtained by "forgetting" /?, and the fiber of this 
map over a point corresponding to the isomorphism class of a curve C is 
clearly Cj Aut(C). Since for g > 2 the automorphism group of any curve 
is finite, and for g > 2 most curves have no automorphisms at all, ^ will 
be the desired universal family of curves at least over an open subset of 
Jfg. 

Of course these characterizations do nothing for the question of whether 
varieties with the properties ascribed to dfg and ^ exist. In fact, if the 
problem is changed slightly, say by including all reduced and irreducible 
curves instead of just the smooth ones, then again no such nice structure 
exists! The fact that things work for smooth curves is one of the beautiful 
miracles of the subject. 

Constructions of the moduli space conform to one general pattern: they 
all consist of first constructing a moduli space for curves with some addi­
tional structure, and then realizing the moduli space J?g of curves alone 
as a quotient of this space. There are, broadly, three different approaches, 
associated with the names of three pioneers, depending on the extra struc­
ture attached. We will discuss only the case of Jfg below, that of fêg being 
similar. 

TEICHMÜLLER. The first successful attempt to construct J?g (as an an­
alytic variety) was by Teichmüller [1940] and [1943]. He considered pairs 
(C;S\9...,Sig) consisting of a curve C and a set of generators Su...,S2g 
for the fundamental group n\(C) satisfying certain relations, modulo the 
action of the inner automorphisms of the fundamental group, and he 
showed that the set of such pairs can be parametrized by an analytic vari­
ety, called Teichmüller space «9£. Set-theoretically it is easy to see that the 
moduli space J[g is Teichmüller space modulo the mapping class group— 
the group of homeomorphisms modulo those isotopic to the identity—of a 
topological surface of genus g. Unfortunately, the analytic structure given 
by Teichmüller was the wrong one for this—it was not invariant under the 
mapping class group! The correct definitions and proofs were finally given 
by Ahlfors [1960], Bers [1960] and Weil [1958], after some partial results 
(giving the correct structure away from the hyperelliptic locus) of Rauch 
[1955]; see Bers [1972] for a survey. 
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Teichmüller's construction has been especially important of late because 
of the handle it gives us on the topology of the moduli space. The structure 
of !7g itself is rather simple—as Bers proved in [1970], it is isomorphic to 
an open domain in C3^~3, and homeomorphic to a ball, so it is in partic­
ular contractible. Since the mapping class group acts on ZTg (g > 2) with 
only finite stabilizers of points, we may use this fact to identify the coho-
mology of the moduli space with Q coefficients with that of the mapping 
class group. On the other hand, the mapping class group is an essentially 
topological object, accessible to study, for example, by the methods of 
Thurston's school. This is the basis of Harer's theorems, discussed below. 

SCHOTTKY. Another approach to constructing J£g is to look at pairs 
(C;S{,...,Ô2g) consisting of a curve C and a canonical basis ô\,...9Ô2g for 
the first homology H\(C,Z), modulo suitable isomorphisms. To the pair 
(C; Si,..., Ô2g) we can then associate the period matrix Q, consisting of the 
integrals, over the cycles Sg+i,...,Ô2g, of the g holomorphic differential 
forms cot on C determined by the condition that for i,j = l , . . . ,g , the 
integral of cot over the cycle Sj is the Kronecker delta Stj. The period 
matrix then varies in an analytic subvariety of the Siegel upper half space 
^g of g x g symmetric matrices with positive definite imaginary part; and 
since by a basic theorem of Torelli a curve is characterized by its period 
matrix, we can in this way identify the space of pairs (C;ô\9...,Ô2g) with 
a subvariety ^ of %?g. The moduli space is then realized as the quotient 
of ^g by the action of the group Sp(2g,Z), corresponding to the choice of 
basis S\,...,Ö2g. 

This construction had, until recently, the defect that the space fg was 
extremely mysterious; for example, no one knew how to tell whether a 
given period matrix Q G ^ came from a Riemann surface. It still is 
pretty mysterious, but less so, thanks to the efforts of Arbarello-DeConcini 
[1984] and Shiota [1986] who have given explicit characterizations of pe­
riod matrices arising from curves. Thanks to work of Satake, Bailey-Borel 
and others (see Baily [1962]), however, it is possible to see from this con­
struction that J(g is indeed an algebraic variety. In fact, by compactifying 
the quotient of ^ by Sp(2g, Z), Satake and Bailey-Borel [1966] give a com-
pactification JKg of Jtg such that JKg is a projective variety and J#g -^g has 
codimension 2 in Jfg, showing in particular that there are no nonconstant 
holomorphic functions on J(g. 

MUMFORD. A third, and purely algebraic, construction of the moduli 
space of curves was given as an application by Mumford and Deligne 
of Mumford's "Geometric Invariant Theory" (Mumford [1965], Deligne-
Mumford [1969]). Here the extra structure tacked on to a curve is exactly 
that of a particular projective embedding: namely, we consider curves C 
embedded in projective space P5^ - 6 by the linear system of sections of 
the third power of the canonical bundle (w c)0 3 (the third power is chosen 
because it gives an embedding of any curve of genus > 2, and is the smallest 
power to do so). Just as plane curves may be parametrized in a fairly 
elementary way by the points of a projective space, such images—the set 
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FIGURE 3 

of curves C c P5#~6 of degree 6g-6 and genus g satisfying ^c(l) = wc— 
are naturally parametrized by a subvariety ^ of a projective variety, called 
the Hubert scheme, the moduli space J[g is the quotient of this subvariety 
by the action of the group PGL(5g - 5,C) of automorphisms of P5^ -6 . 

This is the construction that most directly shows us the algebraic (as 
opposed to analytic) structure of J(g, and in fact can be used to give J?g 
the structure of a variety over Q. Unfortunately, it is hard to use this ap­
proach directly to investigate JHg because we have virtually no knowledge 
of the structure of %?. But there are features which make this construc­
tion very useful. In particular, because we are here taking the quotient of a 
quasiprojective variety by a reductive linear group, we may apply Geomet­
ric Invariant Theory to arrive at natural compactifications of JZg and (§^. 
(This compactification is so natural that it was also discovered analytically 
by Earle-Marsden and Bers [1974].) 

STABLE CURVES AND THE MUMFORD COMPACTIFICATION. Unfortunately, 
./#£, the space of smooth curves, is not a compact variety. Smooth curves 
can degenerate to singular ones—as we have seen, they even do it in the 
plane. Fortunately, Mumford's Geometric Invariant Theory tells us what 
to do: To compactify JKg for g > 2, Mumford's theory adds points cor­
responding to the isomorphism classes of certain singular curves, called 
"stable curves." These are curves with only ordinary double points as 
singularities and having no smooth rational components meeting other 
components in less than three points. 

The last condition simply prevents the automorphism group from being 
large. The choice of allowable singularities is more significant. Something 
of its delicacy can be appreciated from the following example, occurring 
in genus one: It is easy to make a rational nodal curve degenerate to a 
cuspidal curve by "pulling the noose closed" little by little; algebraically, 
by considering the family y2 = x3 + t • x2 parametrized by t. However, 
all the nodal curves in this particular family are isomorphic to one another, 
since there is an automorphism of P1 moving any two points to any other 
two points. Thus if we allowed the rational cuspidal curve as a point 
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FIGURE 4 

in our moduli space with the nodal curve, the space would become non-
HausdorfP We could perhaps get around this by simply identifying the 
point corresponding to the isomorphism class of the cuspidal curve with 
the point corresponding to the isomorphism class of the nodal curves, but 
more trouble lurks: for example, the curves in the family y2 = x3 + t 
corresponding to values of / other than 0 are all isomorphic (the map 
(x,y) i-> (t~l^x, t~xl2y) carries the curve Ct to C\)\ but the curve Co is 
our cuspidal curve again. Geometric invariant theory tells us exactly what 
singular curves to include in our moduli, and which, for reasons like the 
above, we have to leave out; in the examples above, we are told to simply 
exclude cuspidal curves. Of course, it is then far from clear that the moduli 
space we get is compact; it is one of the main results of the subject-—the 
"semistable reduction theorem" (see for example the book of Kempf et al. 
[1973])—that given any family of stable curves, parametrized by a smooth 
curve and tending to an arbitrary limit curve, we may after base change 
and birational transformations affecting only the limit curve arrive at a 
family tending to a limit curve that is stable. This is enough _to establish 
the compactness of the moduli space of stable curves, called J£g. 

Similarly, if we take isomorphism classes of "stable pointed curves"— 
that is pairs (C,p) with C z. stable curve and p a smooth point on it 
(allowing C this time to have a smooth rational component meeting only 
two other components, so long as it contains the point), then we obtain 
a compactification Wg of Wg. The map n extends to a map n: 
(which collapses the "excess" rational component caused by the difference 
in the definitions of stability, if any, to a point), and over the open set 
J?'g c J(g consisting of curves without automorphisms, fê g = n~l(^g) 
is the "universal" stable curve. 

DIAGRAM OF THE THEORY OF CURVES. We have been trying to relate the 
spaces of curves in projective space to moduli spaces of abstract curves by 
describing the additional structure needed to specify the former, given the 
latter. We may put this all together in a diagram of spaces, which can be 
thought of as corresponding to curves with progressively more and more 
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"projective" data as one goes from left to right: 

jrg D jfg <- ^ i c^ 4- sg <-;?y. 

Here ^ i c^ is the space of pairs (C,L) where C is a smooth curve of 
genus g and L a line bundle of degree d on C; SJ is the space of triples 
(C,L, K) where (C,L) G ^ i c^ and V c H°(C,L) is a linear series; and 
J%f is the space of smooth curves of degree d and genus g in Pr, each of 
which corresponds, by what has been said above, to a triple (C,L, K) in 
3?J[ together with a choice of basis for the vector space V. 

There are at least two good reasons for including singular curves in this 
picture (in the compactified spaces at the left of the diagram), even if one 
is only interested in the geometry of smooth ones. First, since many of the 
techniques developed for studying varieties deal only with compact ones, 
we will often wish to have compactifications of the varieties given, and the 
nicest of these naturally involve singular curves. Second, it is often the 
case that singular curves are easier to understand than their smooth coun­
terparts rather than harder (as is seen for example, in most of the proofs 
of the Brill-Noether theorem), so that in trying to understanding the ge­
ometry of the varieties above it makes sense to start at points representing 
singular curves. 

As we have seen, Mumford's approach to the moduli space J?% yields 
a natural compactification of it and of ^ , and these spaces have many 
desirable geometric properties (for example, the singularities of Jfg are 
quite mild, and the complement of the set of smooth curves in it is a union 
of subvarieties of codimension 1, which are themselves nearly smooth and 
cross nearly transversely). 

There are also natural compactifications of the spaces %?J in case r > 3, 
namely the (union of the relevant components of the) Hubert schemes of 
all space curves of degree d and genus g in Pr, though these are probably 
not the "right" choices. Even for plane curves, the situation is not entirely 
clear: it is an important current problem to determine a "good" compact­
ification of the set of plane curves having only ordinary double points as 
singularities. 

This leaves as a crucial problem the discovery of good compactifications 
of the spaces c^ic^ and ^J". To the extent that one succeeds in this one 
can undertake the very fruitful exploration of the (rational) maps between 
the compactifications of the spaces involved in the above diagram. The 
recent solution of the long standing "Severi problem" by Harris [1986], 
see also Ran [1986]—the proof that the set of plane curves with degree 
d having a fixed number of nodes as singularities forms an irreducible 
variety—is an example of the success of this program in a case where one 
can piece together at least sufficiently good approximations to solutions of 
the compactification problems cited. 

THE PROBLEM OF LINEAR SERIES ON SINGULAR CURVES. T o COmpaCt-

ify ^ i c^ and ^ r , what is needed is a good theory of line bundles and 



220 DAVID EISENBUD AND JOE HARRIS 

linear series on singular curves, or at least on stable curves. The stan­
dard definitions of both objects make perfect sense for any curve, even 
any variety, but do not have the right properties in the singular case. At 
least for irreducible singular curves one can get a good compactification of 
c^ic^ by including rank one torsion free sheaves along with line bundles, 
and the resulting "compactified Jacobian" has been studied for some time 
(D'Souza [1973], Oda-Seshadri [1979], Altman-Iarrobino-Kleiman [1977], 
Altman-Kleiman [1979] and [1980],..., Gokhale [1986]). 

Unfortunately, the necessary extension to reducible curves seems far 
more troublesome. The rather complicated theory of "Néron models" of 
elliptic curves (see for example Artin [1986]) may be thought of as a step in 
the necessary direction. Fairly satisfactory theories are in hand in the case 
of series of dimension 1 (work of Beauville [1977] and Harris-Mumford 
[1982]) or series on certain curves called curves of compact type (work 
of Eisenbud-Harris [1986]), and there is work on the general case (Ran 
[1985]). The known special cases suffice for many applications, but there 
is probably a small gold mine awaiting a general insight. 

II. The nature of the moduli space. We have now said enough about the 
foundations of the general theory to be able to discuss, in somewhat more 
depth, a problem on which a great deal of recent progress has been made. 
It is a problem which first arose explicitly in the work of Severi in the 
1920s. It concerns the "nature," in a sense to be made precise below, of 
the moduli space of curves. 

THE DIMENSION AND TANGENT BUNDLE OF THE MODULI VARIETY. After 
the existence question for the moduli space Jtg is settled, perhaps the first 
question one might ask about it is its dimension. The question is answered 
by two out of the three constructions J£g referred to above, but it can be 
answered independently of them—indeed Riemann did this, and one can 
still read his computation with profit. We will now explain yet another 
method, this one with a more modern flavor, which actually leads to a 
computation of the tangent bundle to ^ , a computation that we shall 
need later. 

THE KODAIRA-SPENCER MAP. Let C be a smooth projective curve of 
genus g, and let ƒ : X —• B be a family of curves containing C as the fiber 
over a point p € B. Suppose that X and B are smooth, and let t be a 
tangent vector to B at p. If the family ƒ were trivial (that is, X = C x B), 
or even trivial to first order in the direction t in some appropriate sense, 
we could lift the vector Mo a field of tangent vectors to X defined at every 
point of C = f~{(p). We can therefore use the failure of the existence of 
such a lifting to "measure" the nontriviality of ƒ. 

Now T can certainly be lifted to a tangent vector at any given point of 
C, and thus there is a covering C = (J/ ^ °f C by open sets such that 
t can be lifted to a field of tangent vectors Tt to X along [//. Since 7} 
and Tj are both defined along 17/ n Uj and project to the same vector t 
at p e B, their difference Tt - Tj is a section over [/,- n Uj of the tangent 
bundle ©c to C. This collection of differences defines a Cech 1-cocycle on 
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T, 

T j - T i 

FIGURE 5 

C with coefficients in 0 C , and thus the construction defines a map, called 
the Kodaira-Spencer map, from the tangent space to B at p to Hl(Oc)-

It turns out that the Kodaira-Spencer map above extends to a suffi­
ciently small analytic neighborhood of p, and actually captures all the an­
alytic local data of the family: One can define a "versai" family of curves 
fo : X0 —• Bo with base space B0 a small neighborhood of the origin in 
Hl(Qc), and the given family ƒ, restricted to a small analytic neighbor­
hood of p, can be obtained by pulling back this versai family along the ex­
tended Kodaira-Spencer map. (The case of complex manifolds described 
above was first treated by Kodaira-Spencer [1958], Related constructions 
of deformation theory extend the theory to higher-dimensional varieties, 
singular varieties, and other still more complicated objects—see Illusie 
[1971].) 

In particular, we get a map cp from B0 c H{(QC) to a neighborhood of 
the point representing the isomorphism class of C in dfg. The mapping 
property of B0 indicated above suggests that cp might be an isomorphism, 
and indeed it "usually" is. To understand the general picture, consider the 
case when C has an automorphism a that does not extend to nearby curves. 
a induces an automorphism a* of Hl(Qc)> Since the construction of the 
versai family over Hl(Oc) is functorial, a extends to an automorphism 
of X0 covering a*. On the other hand, since a does not extend to curves 
near C, a* must act nontrivially, so that several of the fibers of fo are 
isomorphic, and the corresponding points of i?o will be identified by (p. 

In case the genus g is > 2, the general curve has no automorphisms 
at all, and thus no automorphism that a particular curve happens to have 
can be extended to nearby curves. The above argument suggests, correctly, 
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that in this case a neighborhood of the point corresponding to C in J[g 

will have the form BQ/ Aut(C). In particular, we see from this that ^g 

is nonsingular away from the set of curves with automorphisms, and also 
that if C has no automorphisms, then the tangent space to Jtz at the point 
corresponding to C is Hl(Qc)- By Serre duality, the cotangent space to 
Jtg at C is then H°(coc ® O^1) = H°(Q}Ç). As the degree of co2

c is 4g - 4, 
we can compute the dimension of this space, which is also the dimension 
of J£g, by using the Riemann-Roch Theorem: we get 

dim^g = 3g - 3. 

THE STRUCTURE OF THE MODULI VARIETY. We now know that J?g is an 
irreducible algebraic variety, and we know its dimension. What question 
should we ask about it next? The only sensible approach is to study the 
variety concretely for as many g as possible, and try to guess what might 
be its properties in general. 

For g = 0, everything is trivial: «^o is a single point, corresponding to 
P1 . 

The study of Jf\ is one of the most classical and beautiful parts of 
complex analysis. A Riemann surface of genus one is a complex torus, 
and as such can be realized as the space of complex numbers, its universal 
covering space, modulo a lattice, which after rotation and scaling can be 
taken to have basis 1 and T, with T in the upper half plane %?. This 
representation is not unique, since the automorphism group Sl(2, Z) (the 
"modular group") acts; the moduli space is thus the quotient ^T/S1(2,Z). 
The famous "modular function" j maps %? to the complex line, and is 
invariant under the action of Sl(2, Z); it provides an isomorphism J£\ = C. 

Alternately, a curve of genus 1 with a chosen base point can be embed­
ded, by means of the linear series of all rational functions with poles of 
order at most 3 at the base point and no poles elsewhere, as a cubic curve 
in the projective plane; after a linear transformation of the plane it will 
have an equation of the form y2 = x(x - \){x - X). The value of X is then 
determined up to a finite group; the field of functions invariant under this 
group is generated by the rational function 

1 = 256-.^-^ 
(A2 - A + l ) 3 

which is the same parameter as before on J[\ = C. 
^i'. Any smooth curve of genus 2 can be represented in a unique way 

as a ramified double covering of P1 , branched over 6 distinct points. In 
fact, this map to P1 corresponds to the linear series obtained by taking 
all of the sections of the cotangent bundle to the curve. The 6 branch 
points are easily seen to determine the curve; for example, if they are 
^ . . . J A O G C C P 1 , then the curve may be realized through the equation 

y2 = (x-Ai)-'-(x-A6)-

Writing down this equation, we can say that we have written down the 
general (indeed, every smooth) curve of genus 2. 
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Of course, the points A/ are obviously not unique: any automorphism of 
P1 will carry six points to another six points giving the same curve. Thus 
the moduli space will be the quotient of the sixfold symmetric product 
(P*)(6) (minus diagonals) by the action of the group PSL(2,C). But we 
can do better than this: the automorphism group can be used to carry 3 
of the 6 points to 0,1, and oo, with only a finite ambiguity left over— 
which 3 points did we choose, and in which order?—so that J^i may be 
realized as the quotient of an open subset of the threefold product (P1)3 

by a finite group. Igusa [1960] has carried through the analysis completely, 
and shown that the moduli space is in fact C3/Z5 with a certain explicit 
action of the cyclic group Z5, so we know things very precisely here. 

*/#3: If C is a general curve of genus 3, then the 3-dimensional vector 
space of sections of the cotangent bundle of C yields an embedding of 
C as a curve of degree 4 in P2 ("general" here means that C belongs to 
the complement of the codimension 1 set of curves possessing a g\—the 
"hyperelliptic" curves. If C is hyperelliptic, the map associated to a>c 
maps C 2 to 1 onto a conic). Further, any smooth curve of degree 4 in P2 

will have genus 3. Thus an open subset of the moduli space, at least, can 
be realized as an open subset in the P14 of smooth quartic curves modulo 
the automorphism group PSL(3,C) of P2. 

^4 : To give one more example explicitly, it is a standard (and elemen­
tary) fact that a general curve C of genus 4 may be embedded in P3 by 
the linear system of sections of its cotangent bundle (the exceptions as 
before being the hyperelliptic curves). For even more general curves, it is 
furthermore the case that the image of this embedding will be the curve of 
intersection of a smooth quadric Q with a cubic surface S (the exception 
here will be curves with a "vanishing theta-null"—that is, curves possess­
ing a divisor D with 2D linearly equivalent to the canonical divisor and 
r(D) > 1—whose canonical images lie on a quadric cone rather than a 
smooth quadric. To see this, note that if a and T are sections of (?{D)9 
then a = a2, p = a x and y = r2 will be sections of the canonical bundle 
satisfying ay = fi2, so that the canonical image of C will lie on a quadric 
cone). We may thus realize the space ^ as the quotient of the space of 
pairs (Q,S) (or, to be marginally more efficient, we could fix the quadric 
Q and realize JH4 as the quotient of the projective space of cubics modulo 
those containing Q). 

Alternately, if we project the canonical image of the curve C from a 
point p of C to the plane P2, we see that C may be realized as a plane 
quintic with exactly two double points, corresponding to the two lines 
of Q passing through p. The space of qunitics with two double points 
may in turn be rationally parametrized, by first freely specifying the two 
double points P and Q in P2, and then letting the coefficients of the quintic 
polynomial vary in the vector space of quintics double at P and Q. 

FURTHER EXAMPLES. We could continue this list, with slowly increasing 
difficulty, for some time; this was in fact done by Severi up to g = 10. It 
seems to us salient, as it apparently seemed also to Severi, that in each of 
these cases, there is at least a large open set ofJKg which is the image of a 
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large open subset ofCn for some n. A variety with this property is said to 
be unirational. 

To show systematically that J(g is unirational for g < 10, one can, with 
Severi, proceed as follows. By the Brill-Noether theorem stated above, 
a general curve of genus g will have a linear system gj—and so will be 
realized as a plane curve of degree d—if and only if p - g-3(g-d+2) > 0, 
that is, d > 2g/3 + 2 (the cases of genus 3 and 4 discussed above are 
examples of this). Moreover, a general such representation will have only 
nodes as singularities; so that an open subset of Jfg will be a quotient 
of an open subset of the space of plane curves of degree d with 8 = 
(d - \){d - 2)/2 - g double points. In case the number S of double points 
is relatively small—precisely, if ô < (d + \){d + 2)/6, so that there will 
exist a nonzero vector space of polynomials of degree d vanishing to order 
two at ô arbitrarily assigned points of the plane—then as in the case of 
genus 4 above we see that this space, and hence J£g, may be rationally 
parametrized. The two conditions d > 2g/3 + 2 and (d-l)(d-2)/2-g < 
(d + l)(â?2)/6 can be satisfied for some d precisely when g < 10. 

Seven's argument unfortunately ignores the subtle fact that the nodes 
of a general plane model of a general curve need not a priori be general 
points, and will not be such, in fact, except under special circumstances. In 
recent times Arbarello and Cornalba [1983] have, however, given a correct 
version of the argument, so that we now know in this way that ^g is 
unirational for g < 10. 

The approach via plane curves is not the only one. Sernesi in [1981] 
used a representation of a general curve of genus 12 as a space curve in 
P3 to rationally parametrize Jf\i\ and Chang and Ran [1984] were able to 
carry out similar analyses in genera 11, 12 and 13. Beyond 13, however, 
no moduli space ^g is known to be unirational; new methods seem to be 
required. 

The rest of this paper will be devoted to the question of the unirational-
ity of Jüg, a question which has motivated a great deal of work in this 
field. Before plunging into this we prepare with a digression. 

THE MEANING OF RATIONALITY, UNIRATIONALITY, AND UNIRULEDNESS. 

One basic question one can ask about any variety X is whether or not it 
is rational', that is, whether or not the field of meromorphic functions on 
X is purely transcendental over C, or, equivalently, whether or not some 
open subset of X is isomorphic to an open subset of Cn. In the case of 
curves, this is clearly a fundamental question: a smooth curve X is rational 
if and only if it is the Riemann sphere. In higher dimensions, however, 
rationality becomes much harder to ascertain—for example, it is not clear 
whether, in a family n: %? —• B of smooth varieties, the locus {b GB: Xb 
is rational} is open, or closed, or neither. Indeed, the notion appears less 
fundamental in the higher-dimensional case. 

There are, however, related conditions, equivalent to rationality for one-
dimensional varieties, that are easier to test for in practice and that are, 
conjecturally at least, related to the most important numerical invariants 
of a variety. One is unirationality: we say that a variety X is unirational 
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if the field of meromorphic functions on X is a subfield of a purely tran­
scendental extension of C; or, equivalently, if there exists a surjective 
algebraic map from an open subset of Crt to an open subset of X. Both 
conditions amount simply to saying that most of the elements of X may be 
rationally parametrized: if we regard X as a subvariety of some fixed pro­
jective space P^, then the condition says that there exist rational functions 
Fo(to,...,tn),...,FN(to,...Jn) such that the points 

(Fo{to,..., tn) : • • • : FN(t0,..., tn)) e P , 

for freely varying (/0,..., tn), fill up most of X. 
Perhaps still more important is the weaker condition of uniruledness: we 

say that X is uniruled if, though a general point of X, there passes at least 
one rational curve; equivalently, X is uniruled if there exists an algebraic 
map (p from an open subset of a product variety Y xP1 onto an open subset 
of X such that (p is not constant on the fibers {point} x P1 c Y x P1. We 
have, of course, 

rational => unirational => uniruled; 

all three conditions are equivalent for curves, and the first two for surfaces, 
but in higher dimensions the three are distinct. 

Part of the interest in the condition of uniruledness is the (partly conjec­
tural) criterion for it in terms of more geometric objects, the "pluricanon-
ical divisors." A "pluricanonical form" on a smooth compact variety X is 
by definition a nonzero global section of a tensor power of the line bundle 
cox> itself defined as the highest exterior power of the cotangent bundle of 
X. The significance of these comes partially from the fact that, although 
defined in terms of the whole variety, the existence of, and indeed the 
dimension of the space of, pluricanonical forms of a given type depends 
only on dense open subsets of X\ that is, if a dense open subset of X is 
isomorphic to a dense open subset of a smooth compact variety X', then 
the sections of a given power of a>x are in natural correspondence with the 
sections of the same power of a>x'. Further, if X has the form F x P 1 for 
some Y, then essentially because differential forms on P1 (of which there 
are none) would have to be involved in any pluricanonical form on X, 
X has no pluricanonical forms at all. This proves that a uniruled variety 
has no pluricanonical forms. Conversely, it is conjectured as part of the 
"classification theory for higher dimensional varieties" that a variety with 
no pluricanonical forms must be uniruled; this is known for curves (easy), 
for surfaces (one of the triumphs of Castelnuovo in the "golden age" about 
100 years ago) and for 3-folds (by a very recent theorem of Miyaoka-Mori 
[1986]). 

In many important cases it is useful to interpret the existence of pluri­
canonical forms in terms of the existence of certain subvarieties of codi-
mension 1. The idea is that the locus Y along which a section of a given 
line bundle on a variety X vanishes determines the bundle, and the deter­
mination can sometimes be made simply in terms of the number of points 
in which Y meets various curves lying in X. Thus to check whether X 
is uniruled one might try to characterize the zero loci of pluricanonical 
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forms—called pluricanonical divisors—in terms of their intersection num­
bers with certain known curves, and then to ask whether subvarieties with 
the desired intersection properties actually exist. 

THE INTERPRETATION OF UNIRATIONALITY AND UNIRULEDNESS OF MOD­

ULI. To say that Jfg is unirational amounts to saying that there is a pro­
cedure with "free parameters" that describes nearly all curves of genus g, 
i.e., that we can write down a curve C c P r of genus g in such a way that 
the general curve of genus g is obtained by varying the coefficients of the 
defining equations of C as rational functions of parameters t\,..., tn. In­
formally, this amounts to saying just that "we can write down the general 
curve of genus g" 

On the other hand, the statement that J?g is not uniruled would imply, 
for example, that there is a dense open set of curves C of genus g such that 
if a surface in a projective space has one of these curves C as a hyperplane 
section, then the surface is ruled by lines over C, that is, it is the union 
of the family of lines corresponding to a map of C to the Grassmannian 
of lines in projective space. Thus unirationality and uniruledness or their 
lack have rather dramatic consequences. 

THE QUESTION OF THE UNIRATIONALITY OF Jtg. In view of the difficulty 
geometers experienced for a half a century in trying to extend Seven's 
result beyond genus 10, the suspicion naturally arose that there might not 
be a rational parametrization of the moduli of curves of genus g for all 
g (to paraphrase Barry Mazur, "While working on a proof by day, spend 
your nights looking for counterexamples"). 

How one might prove that J£g is not unirational is not so clear, unless 
one is lucky and J(g is not even uniruled. In that case, as indicated above, 
the "natural" thing to do is to search for pluricanonical forms on JHg. Para­
doxically, this method of proving that a variety is not unirational requires 
that the variety be compact—even though unirationality is a property of 
every algebraic open (that is, Zariski open) subset. It also requires that the 
variety be smooth, something the moduli space is also not. 

Luckily, we have a good compactification of the moduli space ^g, 
namely the moduli space Jfg of stable curves. The problem then becomes 
one of determining, if we can, whether or not there are pluricanonical 
forms on JKg\ or, equivalently, if the divisor class on jtfg represented by 
this line bundle contains any effective divisors. 

As for the singularities, a close analysis shows that the method still 
works in the presence of some very mild singularities (Tai [1982]). As we 
have seen, the singularities of Jfg look like the singularities of spaces of 
the form 7/°(a>^2)*/Aut(C). A detailed analysis by Harris and Mumford 
of the possibilities for the action of Aut(C) on H°(œ®2)* revealed that the 
singularities appearing could be safely ignored. 

LINE BUNDLES ON THE MODULI SPACE. We now consider the question of 
describing line bundles on the moduli space of curves, the goal being to be 
able to characterize the pluricanonical divisors. Since J[g is obtained from 
Jig by adding divisors on the boundary, and the classes of those divisors 
are easily seen to be independent, knowing the group of line bundles on 
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Jfg is equivalent to knowing it on J(g, and we will focus on the latter 
problem. It turns out that the situation is reasonably simple. There are 
two approaches, one through cohomology classes and the other through 
homology classes, which together will give us sufficient information. 

COHOMOLOGY—THE NONTRIVIALITY OF FAMILIES OF CURVES. First we 
look at the cohomology classes (Chern classes) associated to line bundles; 
by work_of Machlachlan and Harer (see Harer [1988]) the first Betti num­
ber of Jfg is zero, so by the argument using the exponential sequence to 
determine the Picard group as explained above, any line bundle is deter­
mined by its first Chern class, an element of H2(^g,Z). 

Now (ignoring torsion for the moment) a cohomology class can be 
thought of as a linear function on cycles, measuring their nontriviality. 
Since a cycle in JKg is roughly a family of curves, a cohomology class in 
H2(^g,Z) may thus be thought of as a device that measures the nontriv­
iality of a family ƒ : X —> B of smooth curves. Associated with any such 
family there is a vector bundle E f on B, called the Hodge bundle, whose 
fiber at a point b € B with preimage f~xb = C is H°(coc) (more pre­
cisely, E f is the push-forward of the relative dualizing bundle on X). If 
ƒ were a trivial family, the Hodge bundle would be a trivial bundle, so 
we may measure the nontriviality of ƒ by the nontriviality of the Hodge 
bundle. Explicitly, if we apply this construction to the universal curve 
n:fêg -> J!'g, and use the fact that the complement of Jtg has codi-
mension > 2 in J£g (except along a certain locus in the boundary, which 
requires special care) we get a fundamental class, associated to the line 
bundle X — f\gEn usually also denoted X e H2(J(g, Z). 

Instead of using the global sections of the cotangent bundle of C in 
the above construction, we could rather have taken the global sections of 
a tensor power, say the square, //°(o>^2), obtaining a bundle E on Jf£ 
whose fiber at the point corresponding to a curve C is H°(co%2). We have 
already shown that this is the same as the fiber of the cotangent bundle to 
JKg, and indeed E turns out to be the cotangent bundle. 

On the other hand, it is again a theorem of Harer's (using some earlier 
work of Mumford) that H2(^g,Z) = Z. A theorem of Arbarello and 
Cornalba [1987] shows that H2(^g9Z) is actually generated by A, so that 
the first Chern class of each of the bundle E is an integral multiple of L To 
see this directly for the canonical bundle co, and to compute the multiple in 
this case, we can use the Grothendieck-Riemann-Roch formula (Borel-Serre 
[1958]). Essentially, whenever we have a family of line bundles on curves, 
parametrized by a variety B, we can define an object on B that will be, in 
nice cases, a bundle whose fiber at each point b e B is the space of global 
sections of the original line bundle on the fiber over b. The Grothendieck-
Riemann-Roch formula then measures the nontriviality of this bundle, by 
determining its Chern character. (The ordinary Riemann-Roch-formula is 
just the Oth graded piece of the Grothendieck-Riemann-Roch, inasmuch 
as it tells us the rank of this bundle.) When we apply the Grothendieck-
Riemann-Roch formula to the family of line bundles consisting of the 
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square of the canonical bundle on each curve, we find that 

cùj?g ~C\(E) = 13 A. 

We can extend the computation to all of Jfg to obtain the formula 

(*) coj>rl3-A-2.S 

where ô denotes the fundamental class of the boundary Jfg - J£g. (This 
formula is actually accurate only in the "functorial Picard group"—the 
moduli space is singular along one component of the boundary, and this 
causes difficulties which we are ignoring.) 

It is worth remarking—though irrelevant to our story—that the "13" 
occurring here is, according to string theorists, the "reason" why the di­
mension of the universe in which we live (in one popular model) is 26! 
See for example Nelson [1987]. 

HOMOLOGY—LOCI CHARACTERIZED BY PROPERTIES OF CURVES. The 
approach above gave us a complete description of the line bundles on JHg. 
But we still need to know whether the pluricanonical line bundles have 
nonzero sections (it is interesting to ask more generally which bundles 
have nonzero sections). In this second approach we try to describe the 
codimension 1 subvarieties of moduli, called divisors, directly. Here we 
are lucky: while our knowledge of the geometry of J£g is far from sufficient 
to allow us to describe divisors on Jfg by writing down equations for them, 
there is another way. Since the points of J£g correspond to curves, any time 
we write down a geometric property enjoyed by some, but not all curves, 
we arrive at a subset of Jfg that is usually a (locally) closed subvariety. 
Thus, for example, the locus of hyperelliptic curves is a subvariety of, and 
hence describes a cycle in, J[g\ as are the loci of trigonal (or more generally 
fc-gonal) curves, smooth plane curves of degree d (or more generally curves 
realizable as curves of degree d in Pr; see the next paragraph), curves with 
a given automorphism group, curves with a given type of Weierstrass point, 
and so on. To find divisors, we just have to look for those conditions that 
define subvarieties of codimension one; for example, the locus on Jfg of 
curves with a nonnormal Weierstrass point is a union of two divisors whose 
classes have been determined by Diaz [1985] and Cukierman [1987]; the 
locus of curves with a vanishing theta-null (equivalently, a semicanonical 
pencil) has a divisorial component whose class has been determined by 
Mumford and Teixidor [1986]. 

An important class of examples of such divisors in Jfg is provided by 
the Brill-Noether theorem. This theorem says that a general curve C of 
genus g will possess a linear system gr

d if and only if the Brill-Noether 
number p = g - (r + l)(g - d + r) is nonnegative; thus, whenever p < 0, 
the locus dfgs4 °f curves possessing such a series is a proper subvariety of 
Jfg. More generally, it seems sometimes to be the case, especially when 
p is negative with small absolute value, that ^,r,</ will have codimension 
—p\ in particular, it turns out that whenever p — - 1 , J£g^d will have a 
unique component of codimension one (and is conjecturallyjrreducible). 
The class of this component—or rather of its closure in J£g—was first 
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determined in case r = 1 by Harris and Mumford [1982], and for arbitrary 
r by Eisenbud and Harris [1986]; the dual cohomology class is given by 
the formula 

where all the b( are greater than one, and cgAd is an explicitly known 
rational number. 

THE RESULT. The significance of this computation is that, because ^g,r,d 
is by definition an effective divisor on dfgi it asserts the existence of certain 
meromorphic functions on J£g. Specifically, it says that there exist sections 
of the line bundle km on Jfg having zeroes of order at least m • (6 + 
\2jg + 1))_1 along every boundary component Aa of Mg\ in particular, it 
says that whenever the number 6 + 12/(g + 1) is less than the ratio 13/2 
appearing in the formula (*) for the canonical class of J(g, then there will 
exist holomorphic pluricanonical differentials on Jfg. Since, as observed, 
a uniruled variety can never have such forms, we deduce the 

THEOREM (HARRIS-MUMFORD [1982], HARRIS [1982], WOLPERT [1983], 
EISENBUD-HARRIS [1986]). For any g > 23, the moduli space ̂ g of stable 
curves possesses pluricanonical forms, and hence is not unirational, or even 
uniruled. 

The argument given above takes care of the case when g+1 is composite, 
so thatthere are integers r and d such that p = - 1 , and thus divisors of the 
form ^gAd\ other divisors can be used when g + 1 is prime, as in Harris 
[1982]. Also, it should be pointed out that the conclusion given here is 
substantially weaker than may actually be deduced. In facVthe argument 
outlined above shows that for g > 23 the moduli space Jtg is in fact a 
variety of general type, meaning that the dimension Pm of_the space of 
sections of co®-£ grows as a polynomial in m of degree d i m ( ^ ) = 3 g - 3. 

A SPECULATION. The question of whether the moduli space J[g is unira­
tional for values of g between 14 and 22 remains open. As for the related 
question of whether J£g admits pluricanonical forms, this is equivalent 
to the question of what linear combinations of the divisor classes k and 
à — J2 àa are represented by effective divisors, which is in turn related to 
the question of what inequalities are satisfied by the degrees of k and S for 
a one-parameter family of curves containing the general curve of genus g. 
Chang^and Ran [1984], [1986] have constructed families showing that in 
fact Jfg has no pluricanonical forms when g < 13 or g = 15, and natural 
conjectures of Harris and Morrison [1987] suggest that this is so for the 
remaining open cases, that is for all g < 23. Putting this together with the 
conjectures from the classification theory of higher dimensional varieties, 
we get 

CONJECTURE. J(g is uniruled iff g < 23. 

(Ó+^VA-^O-V^-... 
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