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As is well known, a problem is said to be well-posed in the sense of 
Hadamard when a unique solution exists and depends continuously upon the 
data. The definition is made precise by stipulating not only the function 
spaces in which the solution and data are to lie but also the measures and 
notion of continuity. A problem that is not well-posed is said to be ill-posed. 

Although nineteenth-century mathematicians contributed to the early 
study of ill-posed problems, it is generally agreed that the subject came to 
prominence only after Hadamard had formulated his well-known definition. 
Unfortunately, he developed an adverse view of the subject which, on becom­
ing widely accepted, had the effect of inhibiting further study. His objections 
were grounded in his celebrated counterexample of the Cauchy problem for 
Laplace's equation. In order for there to be global existence of the solution 
Hadamard demonstrated that the Cauchy data must satisfy a certain compat­
ibility relation but even in the unlikely event of the relation being satisfied he 
further showed that the solution in general does not depend continuously on 
the data. Such behaviour convinced Hadamard that ill-posed problems lacked 
physical relevance and hence should be ignored. This became the prevailing 
attitude, and consequently, in partial differential equations at least, activity 
became confined to the standard initial boundary value problems. It was only 
the growing insistence for a precise theoretical understanding from the applied 
sciences, principally geophysics and computing, that rekindled mathematical 
interest. 

It is worth considering briefly why ill-posed problems are of practical impor­
tance and hence merit detailed study. Take, for example, the simple Dirichlet 
problem for a linear elliptic homogeneous differential equation. Conditions 
are known guaranteeing that the solution exists, is unique and depends con­
tinuously upon the Dirichlet data, i.e., the problem is well-posed. These 
conditions include the requirement that the solution be specified in a suitable 
sense at all points of the boundary of the region of definition. Yet, rarely, 
if ever, can this specification be completely achieved in practice. Measuring 
devices record only approximate values and in any case are able to measure 
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data only at a discrete number of points and not over the entire boundary as 
demanded by the mathematical theory. The solution is therefore not uniquely 
determined by the measured values of the data and consequently cannot de­
pend continuously on them. Thus, when subjected to the limitations of the 
measuring device, even standard problems in differential equations are liable 
to be ill-posed. 

There are, of course, many other examples of ill-posed problems. In differ­
ential equations the most frequently cited include not only the Cauchy prob­
lem for Laplace's equation but also the backward heat equation, the Dirichlet 
problem for the wave equation, and the wave and parabolic equations subject 
to data on time-like regions. Lest these be seen as somewhat contrived, it 
must be emphasised that they all serve as models for practical problems. For 
instance, the Cauchy problem for Laplace's equation corresponds to the sit­
uation, encountered in geophysics, surveying and mineral prospecting, where 
only part of the boundary is accessible for the measurement of data, but over 
which an abundance of data can be collected. Further examples arise from 
inaccuracies in the measurement of the geometry of the region of definition 
and also the value of the operator. Again, the coefficients themselves in the 
differential equations and boundary operators are part of the data and as such 
are also subject to measurement errors. Lack of precision in determining the 
coefficients casts doubt on the validity of supposing that an equation is of 
definite type, so that, strictly speaking, a comprehensive theory of ill-posed 
problems should also include differential equations of indefinite type. 

Ill-posed problems also occur in many other branches of mathematics, el­
ementary examples being the Fredholm integral equation of the first kind, 
analytic continuation of a function, determination of the derivative of a func­
tion that is only approximately specified, and a singular linear system of alge­
braic equations. A further important class concerns inverse problems where 
it is typically required to determine the coefficients of an equation from a 
knowledge of certain functionals of the solution. A well-known example is the 
one-dimensional inverse Sturm-Liouville problem, in which the value of the 
ordinary differential operator is to be determined from the spectral function 
of the solution. Other examples arise in inverse scattering theory, while of 
increasing significance are problems with free boundaries. 

Reference has already been made to one practical situation producing an 
ill-posed problem. Others are found in a wide range of disciplines includ­
ing medicine, continuum mechanics, control theory, nondestructive testing of 
materials, and meteorology. Indeed, given our previous remarks it can be 
argued with only slight exaggeration that most problems arising in practice 
are inevitably ill-posed. (Additional examples of ill-posed problems and the 
contexts in which they arise are described in the expository survey by Payne 
[3] ; see also Tikhonov and Arsenin [5] and the opening chapter of the book 
under review.) 

A common feature of many ill-posed problems is that the solution possesses 
the kind of instability exhibited in Hadamard's original counterexample. The 
aim is therefore to establish conditions under which the problem may be 
stabilised and continuous dependence on the data, and hence uniqueness, 
thereby recovered. Generally speaking, this is achieved by following two ideas 
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first introduced by Pucci and F. John. The first is to impose a suitable 
constraint on the class of admissible solutions, such as requiring them to be 
bounded in norm. The second is to relax the notion of continuity employed 
to that of, say, either Holder or logarithmic continuity. 

Since the 1950s a vast literature has been devoted to these questions. At 
first, major concern was with uniqueness, but then attention became increas­
ingly concentrated on the construction of methods yielding continuous depen­
dence. There is now available a large variety of such methods, including those 
based upon eigenfunction expansions, function-theoretic methods, logarith­
mic convexity and similar arguments, weighted energy, the Lagrange identity, 
comparison arguments, and convergent integrals. Since the error in the data 
may not necessarily be deterministic, other methods have also been developed 
which are probabilistic in nature. A good account of most of the techniques 
employed may be found in Payne [3]; see also Straughan [4]. However, it 
is not yet entirely clear what particular approach is best suited to a given 
class of problems. For instance, the technique based upon the Lagrange iden­
tity appears limited to first- and second-order linear autonomous self-adjoint 
differential equations, whereas methods involving logarithmic convexity or re­
lated arguments may be applied to more general classes of equations. Both 
approaches yield continuous dependence in the sense of Holder, but in those 
cases where they both apply, the one based upon the Lagrange identity often 
requires less stringent hypotheses on the data and regularity of the solution. 
Nevertheless, as the various techniques become further refined the distinc­
tion between them appears to be becoming increasingly blurred, suggesting 
perhaps that there should be renewed effort to fully understand the basic 
structure not only of the techniques themselves, but also of the fundamental 
theory of ill-posed problems. Naturally, elements of an abstract theory have 
been known for some time. For instance, Tikhonov has shown that a large 
class of ill-posed problems satisfy a modified definition of well-posedness in 
which existence and uniqueness are assumed, but in which continuous depen­
dence is required to hold only on some subspace, usually taken to be compact. 
The latter condition corresponds to the constraint which, as described ear­
lier, is imposed when stabilising the problem, while the abstract notion of 
continuity incorporates the relaxation of the continuity concept. 

Much of the work undertaken in ill-posed problems has been stimulated 
by demands arising from the numerical evaluation of solutions where it is 
vital to have conditions guaranteeing continuous dependence of the solution 
on the data or input. The essential finite-dimensional nature of all numerical 
schemes combined with unavoidable rounding errors associated with hardware 
means that many of the difficulties common to ill-posed problems are quickly 
encountered in computation. Their resolution has greatly contributed to the 
general advance of the subject as a whole. 

So far, we have not mentioned the question of existence, which has been 
less extensively studied than either uniqueness or continuous dependence. It 
is characteristic of ill-posed problems, and especially of those connected with 
the Cauchy problem for differential equations, that a solution will not exist 
globally even for arbitrary smooth data. Thus, work in this area has centred 
largely on the notion of "best-approximate" solution in the sense that there 
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is some function which in a suitable space and with respect to an appropriate 
measure best approximates the associated data and equation. In the method 
of quasireversibility, due originally to Lattes and Lions [2], the idea is to pe­
nalise the actual equation by the addition of a term rendering the problem 
well-posed and then to examine the limiting behaviour as the additional term 
is allowed to vanish. Of course, this idea is found elsewhere, including the 
study of nonlinear wave equations, where it is known as the artificial viscosity 
method. Another technique used to study existence is Tikhonov régularisa­
tion (see, e.g., [5] and the present book). Here, an operator is constructed 
which when acting on the approximate data yields a solution stable to small 
perturbations in the data and which also tends to the actual solution as the 
data tends to its exact value. Both the methods of quasireversibility and rég­
ularisation have been extended and refined but apart from them there have 
been few other major developments. On the other hand, by means of con­
cavity and other arguments, several conditions are now known under which 
solutions to nonlinear differential equations fail to exist globally. 

Despite the immense activity in the study of ill-posedness, surprisingly few 
monographs or texts have appeared, probably because of the diverse directions 
the subject has taken and the lack of any overall basic theory. Techniques have 
tended to be developed for different special classes of problems and in any case 
the notion of ill-posedness pervades such disparate fields of application that 
any neat codification probably cannot be expected. The mammoth task of 
kneading the bewildering array of material into a definitive account of theory, 
technique and example is, moreover, continually frustrated by the appearance 
of numerous fresh results. 

The present authors, all distinguished mathematicians in the field, are 
therefore wise to steer a middle course. Their book—first published in Rus­
sian in 1980—eschews attempts to be encyclopaedic and instead divides its 
attention between fundamentals and a discussion of several particular classes 
of ill-posed problems. While little of the abstract theory is new, covering 
ground that may be found, for instance, in the books by Tikhonov and Ars-
enin [5] and by Lavrentiev [2], the opportunity is taken to update and expand 
the material, which results in a comprehensive introduction to some basic an­
alytic concepts, including the method of régularisation, and a good discussion 
of the properties of the ill-posed (nonlinear) operator equation Ax = ƒ where 
A has unbounded inverse. These introductory principles are then immediately 
illustrated by problems concerned with analytic continuation of a function of 
several complex variables, a vital ingredient here being the familiar Hadamard 
three circles theorem. 

However, the major part of the book consists of an extended treatment, 
based largely on Russian contributions, of particular classes of problems. 
There are two broad groups, both concerned with partial differential equa­
tions. The first deals with parabolic and hyperbolic equations subject to 
Cauchy data on time-like regions, and also discusses analogous problems for 
elliptic and ultrahyperbolic equations. This is an important area of compar­
atively recent origin, and so a detailed account is of especial interest. The 
general technique employs a weight function to establish estimates which at 
once yield continuous dependence for suitably constrained solutions. Unique-
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ness immediately follows. The manipulations, elementary but prolix, occupy 
several pages and perhaps much of the detail could have been omitted. Nev­
ertheless, it is salutary to sometimes be explicitly reminded of the intricate 
arguments required to complete these calculations, besides which the account 
also serves as a good guide to those wishing to treat other problems by a 
similar method. 

The discussion of the second group of problems occupies the final three 
chapters and is unified by the study of methods for the stabilisation of inte­
gral equations of the first kind. The first two of these chapters, both important 
in their own right, deal with ill-posed problems respectively arising in Volterra 
integral equations and integral geometry. Integral geometry is concerned with 
the determination of a function from its given (weighted) mean value over 
specified manifolds and includes, for example, the well-known Radon trans­
form and the theory of spherical means. Several stability results are obtained 
for manifolds of fairly general type and further results are presented in the 
restrictive cases where, for example, analyticity of both manifold and solu­
tion is introduced. A separate discussion is devoted to the group of problems 
in which the manifolds become a family of smooth hypersurfaces contained 
in a sufficiently small region where it is required to determine the solution. 
The approach adopted in most of these problems is to rewrite the given mean 
value equation as a Volterra equation and then exploit properties derived in 
the previous chapter. The rewriting is not always straightforward and often 
involves considerable ingenuity. 

The final chapter is devoted to multidimensional inverse problems involving 
second-order parabolic and hyperbolic equations and also first-order hyper­
bolic systems. The treatment, carried out at both the abstract and concrete 
level, leads to the determination of both the coefficients of the equation and 
the value of the operator from a knowledge of the solution on certain man­
ifolds such as the plane x$ = 0. The general method relies upon conversion 
to an integral equation of the first kind whose kernel is then analysed, often 
again by extremely delicate arguments, in order to reduce the problem to one 
of integral geometry. 

Synopses of related work, together with bibliographical references mainly 
to Russian publications, help to place the material of each chapter in proper 
perspective. The explanations throughout are clear and the pace of the book 
maintained by the introduction of new examples at each stage. The result is a 
highly readable, well-organised, coherent account of important selected topics 
in a major field of contemporary research. The translation is excellent but 
the absence of an index regrettable. The book, which is a welcome addition 
to the literature, should prove of value not only to the specialist but also to 
those requiring a reliable general introduction to the entire subject. 
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The Navier-Stokes equations are the fundamental equations governing the 
motion of viscous fluid. Among the versions of these equations, we consider 
here the nonstationary Navier-Stokes equations for viscous incompressible 
fluid. The system of equations is a nonlinear parabolic equation. A fun­
damental analytic question would be whether or not a unique regular solution 
exists for all time for given initial data. This problem was first attacked by 
Leray more than 50 years ago. It turns out that the situation is quite differ­
ent depending on the space dimension of the domain fi occupied with fluid 
where the unknown functions are defined. When the space dimension is two, a 
unique regular solution exists for all time provided that the initial data satisfy 
a compatibility condition and have finite energy. However, when the space 
dimension is three, the problem is still fundamentally open. We do not know 
in general whether a regular solution exists for all time even if the initial data 
are smooth and the domain fi has no boundary. 

In his famous pioneering paper published in Acta Mathematica in 1934, 
Leray studied the nonstationary Navier-Stokes equations on the three dimen­
sional Euclidean space R3 . He showed: 

(I) existence of a global-in-time weak solution 

satisfying the energy inequality, 

and studied its regularity. Once such a weak solution was shown to be regular, 
the problem could be solved. This method is by now well known especially 
for solving variational problems. Let us briefly review his idea for studying 
regularity of his weak solution. He showed: 

(II) existence of a unique local-in-time regular 

solution with nonregular initial data. 

At almost all times £o> the weak solution is in LP(Q) (2 < p < 6) but this does 
not directly imply that the weak solution is smooth at to* (II) gives a local 
regular solution starting from time to which is initially, the same as the value 


