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The theory of differential equations is an eminently applicable branch of 
mathematics. The differential equations that govern physical phenomena are 
mostly too complicated to allow a complete mathematical analysis. Usually, 
they involve partial derivatives of order higher than two and are nonlinear. The 
first part of the efforts at solving them then consists in drastic simplifications 
by assumptions that narrow down severely the scope of the results. Naturally, 
the simpler the new differential equations the more one can say about them. It 
is true that in the last few decades the development of fast computing 
machines has widened the range of problems that can be approached by 
numerical analysis, and, indirectly, the many unexpected phenomena dis­
covered by numerical experiments have stimulated the interest in nonlinear 
equations. 

There is, however, still much to be done in the long-studied theories of 
quite simple differential equations. Even for ordinary linear differential 
equations with analytic coefficients there exist more unanswered interesting 
questions—both from the theoretical point of view as well as for the applica­
tions—than most outsiders to the field realize. The simplest nontrivial such 
differential equations, the ones of order two, have been thoroughly explored, 
particularly in the nineteenth century. This literature fills many shelves, and 
even dry summaries of results with a few numerical tables added require 
several volumes. 

The book under discussion goes beyond this classical material in that it 
concentrates on differential equations of order greater than two. It is not 
especially concerned with equations whose order is a large integer, although its 
title might suggest such a misunderstanding. In fact, the illustrative examples 
included—and I am glad that there are so many—are mostly of order not 
exceeding six. The differential equations are assumed to be ordinary, linear 
and homogeneous, and their coefficients are very special, simple analytic 
functions. 

If these equations are written in the form 

(1) w ( w ) - £ c r(z)n ( r ) = 0, 
r=0 

where 0 < / > < « , the cr are analytic functions of the complex variable z, and 
u(r) _ dru/dz\ then a basic, very reassuring theorem guarantees that in a 
neighborhood of any point z0 at which all cr are holomorphic (i.e., regular 
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analytic) all solutions u are also holomorphic. Therefore, they can be repre­
sented there by convergent series in nonnegative powers of z - z0, and the 
coefficients of these series can be successively calculated. If a global under­
standing of the solutions is desired, their study near the singularities of the 
functions cr in (1) is essential. This study is what the title of the book refers to 
by the word "asymptotics". 

Now, the methods used in the asymptotic theory of linear ordinary analytic 
differential equations can be divided into two parts: One is based on expan­
sions into power series—usually divergent ones—the other makes use of 
integral transformations and represents the solutions as definite integrals with 
respect to a parameter. For a global theory, a two-pronged attack involving 
both approaches is necessary, except in the simplest cases. 

The power series method has the advantage that it leads to an algorithm by 
means of which any differential equation of the form (1) can be solved near 
poles of the coefficients cr. This extends even to systems of differential 
equations. It has, however, two great shortcomings: One is that the power 
series appearing in the solutions are divergent, except for a special class of 
singularities quaintly called "regular singularities". In the happy early days of 
mathematical analysis, when it was taken for granted that any plausible 
formalism for the solution of a problem was logically valid, this aspect was not 
given much thought; but when the concern with rigorous reasoning began to 
penetrate calculus, divergent power series were for a while regarded as 
meaningless blind alleys. Only after the middle of the 19th century was it 
recognized that the partial sums of these series are approximations to solutions 
in the sense that their A:th partial sums differ from a solution by an error of 
magnitude o[(z — z0)

k], if z0 is the singularity of the differential equation 
under consideration. This is a weaker assertion than to say that the series 
converges, and this weakening is connected with the second shortcoming of the 
representation by divergent power series: The solutions represented in this 
manner, as z approaches z0, are not the same for approach from all directions. 
In different sectors the same formal series may represent different solutions. 
This seemingly paradoxical phenomenon caused considerable surprise and 
confusion when it was discovered. The difficult task of finding the relations 
between these solutions has been called the "lateral connection problem". 
Considerably more difficult still is the "central connection problem", which is 
to find the convergent power series expansions for the solutions near an 
ordinary, not singular, point from their asymptotic, divergent representations 
near a singular point z0. 

The book being reviewed strongly favors the other approach, the one based 
on integral transformations and the resulting representation of solutions by 
definite integrals. The great advantage of this method is that such integrals 
represent the solution wherever they converge, which, in general, is a large 
region of the complex plane. As there is no free lunch, the appUcabihty of these 
methods is severely restricted by the sad fact that the transformed differential 
equation is usually much more complicated than the given one. For this reason 
the coefficients cr of the differential equation dealt with in the book are rather 
special, very simple functions. Almost the whole treatise deals with equations 
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of the form 
p 

(2) w<"> = z* £ arz
ru^r\ n>p>0, 

r=0 

with real /? and with complex constants ar. In addition, one chapter is devoted 
to the more general differential equations 

p 

(3) u(n) = £ arz
b^r) with real 6r, 

r = 0 

and 
p 

(4) w(w) = z^ £ pr(z)u(r\ {pr& polynomial of degree r ) . 

Here the two ways of attacking the problem, as explained above, must be 
combined, but much of the work is formal, without complete proofs. 

The simplest and oldest integral transformations are those named after 
Fourier and after Laplace. For analytic functions they are best considered as 
special cases of transformations with the kernel exp(sz) and with varying paths 
of integration in the complex plane. Many simple linear differential equations, 
particularly those with linear coefficients, can conveniently be solved in this 
manner. The bulk of the book under review is, however, based on the 
Mellin-Barnes transformations, which are defined by the integral 

(5) « ( z ) - ^ / c g ( , ) r ' A 

with a suitable contour of integration C. Although it looks like a very close 
relative of the complex Laplace transformation, it turns out to be a remarkably 
flexible tool for the solution of differential equations of the type considered. 
Indeed, almost all differential equations of the type in formula (2) possess 
fundamental systems of solutions of the form (5) with explicitly known 
functions g. 

While this method is powerful and fairly general, the formulas that describe 
it are so involved and long that a brief review cannot enter into any details. It 
must suffice here to state that for the class of functions represented by 
Mellin-Barnes integrals in this book g is of the form 

(6) n7.1r( f t>-,)n;.1r(i + J - a j ) 
w SK ' n;_m+1r(i + s - è,)njL„+1r(a, - s) 
(the constants in this formula are not the constants with the same name in 
formulas (2) and (3)). The functions u defined by (5) when g is in the class (6) 
are called Meijer G-functions. In an introductory chapter the authors supply a 
self-contained exposition of the known properties of these G-functions. After 
that the book gives a detailed account of the use of the Meijer G-functions for 
the solution of the differential equations. Most of that work is due to the 
authors. It involves very lengthy and involved manipulations, but the explana­
tions are explicit enough to make verification by the reader possible. 
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Other representations of solutions are mentioned, for instance those in terms 
of generalized hypergeometric functions. The G-functions have one decisive 
advantage over these alternatives: The differential equations have irregular 
singularities at infinity. There, different solutions may have different orders of 
magnitude. In linear combinations of these solutions the fastest-growing com­
ponent present in them determines their order of magnitude. In the solutions 
by G-functions the several orders of magnitude appear separately, while in the 
solutions by generalized hypergeometric functions these distinctions are ob­
literated by the presence of a contribution from the most dominant solution. 

The last third of the book deals with applications. Some of them originate in 
physics, such as boundary layers in magnetohydrodynamics, plasmas, stellar 
winds and viscous flows. Other appHcations are purely mathematical. They 
concern the spectral theory of differential operators in Hubert space, in 
particular the extension to higher order of differentiation of the Titchmarsh-
Weyl theories on the existence and number of L2-eigenfunctions. 

I believe that this book will be often useful to readers who are looking for 
ways to deal with some particular differential equation of order higher than 
two. Rarely will it be studied from beginning to end. The task of following a 
thread through the book to the formulas and techniques needed in the study of 
some specific equation would have been made easier if the displayed formulas 
had been printed in a more easily readable type. 

It is often possible to construct transformations that reduce differential 
equations of a general class into equations of the special forms analyzed in this 
book. This "comparison" technique is well developed for second-order equa­
tions. I would be pleased if this book stimulated the search for more general 
transformations of this kind. 

WOLFGANG WASOW 
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This book grew out of four lectures delivered by Mikhael Gromov in 1981 at 
the College de France in Paris. Its purpose is twofold, namely to give an 
introduction to manifolds of nonpositive curvature and to give the proof of 
two outstanding results: the rigidity of locally symmetric spaces in the class of 
all manifolds of nonpositive curvature (in generalization of Mostow's rigidity 
theorem), as well as an estimate for the topology of nonpositively curved 
analytic manifolds of finite volume (for more precise statements see below). 


